СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Альманах по физике №1 «Физика вокруг нас»

Категория: Физика

Нажмите, чтобы узнать подробности

Настоящий выпуск альманаха был создан ребятами 9 класса с целью обобщения общих понятий и представлений о науке физика, в рамках школьной программы.

Физика – наука, изучающая общие свойства и законы движения вещества и поля (А.Ф.Иоффе). Поскольку вещество и поле встречаются в любых материальных системах, физике принадлежит исключительное место: она составляет основу всего современного естествознания. Сама физика как наука показывает тот идеал, к которому должна стремиться любая область знаний, когда на основании сравнительно небольшого числа экспериментально обоснованных принципов, опираясь на мощный математический аппарат, можно логически совершенно строго вывести массу следствий и точно предсказать конечный результат процесса по исходным данным.

Просмотр содержимого документа
«Альманах по физике №1 «Физика вокруг нас»»

Альманах

по физике №1 «Физика вокруг нас»







































Содержание

Введение ___________________________________3 стр

  1. Открытия физики и не только _________________4 стр

  2. Физика сегодня ________________________________

  3. Выдающиеся физики ___________________________

  4. Физика невозможного __________________________

  5. Физика и астрономия ___________________________

























Введение.

(от главного редактора)

Настоящий выпуск альманаха был создан ребятами 9 класса с целью обобщения общих понятий и представлений о науке физика, в рамках школьной программы.

Физика – наука, изучающая общие свойства и законы движения вещества и поля (А.Ф.Иоффе). Поскольку вещество и поле встречаются в любых материальных системах, физике принадлежит исключительное место: она составляет основу всего современного естествознания. Сама физика как наука показывает тот идеал, к которому должна стремиться любая область знаний, когда на основании сравнительно небольшого числа экспериментально обоснованных принципов, опираясь на мощный математический аппарат, можно логически совершенно строго вывести массу следствий и точно предсказать конечный результат процесса по исходным данным.













ОТКРЫТИЯ ФИЗИКИ И НЕ ТОЛЬКО …

Понятие «Физика»

Физика (φύσις - «природа») — наука о фундаментальных закономерностях, которые определяют эволюцию и структуру всего материального. Физика лежит в основе всех наук.

Понятие «Физика» придумал Аристотель 2400 лет назад.

Изначально «философия» и «физика» были синонимами, так как задача обеих - объяснить законы работы Вселенной.

Из-за научных открытий XVI века физика стала отдельной наукой.

Грандиозные открытия 21 века

Наука работает на опережение: сегодняшние открытия становятся нашей реальностью, определяя ее облик. Поразительно, но с каждым годом этот процесс ускоряется. И начало XXI века уже подарило миру целую россыпь революционных находок, которые прямо сейчас меняют наш мир. Давай остановимся на самых значимых открытиях начала столетия.

Графен – практически полностью прозрачный, сверхтонкий и сверхпрочный (второй после карбина) двумерный материал с целой гаммой полезных свойств и перспективой применения в технике недалекого будущего.

Открыт Андре Геймом и Константином Новосёловым, за что ученым-физикам была присуждена Нобелевская премия 2010 года.

Идеально подходит для создания мягких световых панелей, гибких, как прочная бумага, компьютеров, сенсорных экранов нового поколения, часов-браслетов и многих других ноу-хау. Кроме бытового применения, открытие фантастическим образом изменило представление о научных исследованиях. Теперь явления, для изучения которых ранее потребовались бы колоссальные и затратные установки типа адронного коллайдера, можно исследовать в лаборатории. Велики перспективы использования графена в солнечных батареях, электродах суперконденсаторов, для создания сверхлегких и высокопрочных «космических» композитных.

Квантовые часы – наиболее точный в мире хронометр, превзошедший все ранее существовавшие.

Квантовые часы, устройство для точного измерения времени, основной частью которого является квантовый стандарт частоты. Роль «маятника» в квантовых часах играют атомы. Частота, излучаемая или поглощаемая атомами при их квантовых переходах из одного энергетического состояния в другое, регулирует хо квантовых часов. Эта частота настолько стабильна, что квантовые часы позволяют измерять время точнее, чем астрономические методы. Квантовые часы часто называют атомными часами.

Нобелевские лауреаты 2012 года Серж Арош и Дэвид Уайнленд совершили открытие, позволившее преодолеть квантовый барьер.

Применение – создание квантовых компьютеров. Работа с квантовыми битами, или как их назвали «кубитами», позволяет в разы увеличить мощность компьютерной техники. Пока полноценная система подобного рода не создана, но это дело времени.

Магнитная оперативная память (MRAM) – результат открытия Альбером Фером и Петером Грюнбергом эффекта гигантского магнетосопротивления. В 2007 году ученые получили за него Нобелевскую премию, а мир – революционную технологию в сфере компактного хранения информации. Быстродействующая память характеризуется низким электропотреблением и высокой плотностью записи.

Что немаловажно – содержимое MRAM сохраняется даже при отключении электропитания. Также, в отличие от динамической и ферромагнитной памяти, на ее работу не оказывает влияния ионизирующее излучение. А это уже говорит том, что ее с успехом можно применять в космической технике! Мы стали свидетелями того, как плотность записи информации на жесткие диски многократно возросла. И миниатюрные устройства с громадной информационной емкостью – наша реальность

Бозон Хиггса – "частица Бога" ценой в 10 млрд $  

Бозон Хиггса – это теоретически предсказанная частица, которая придает другим частицам массу

Ученые пытались найти свидетельства существования бозона Хиггса в течение последних 45 лет. Обнаружение бозона Хиггса было основной целью строительства Большого адронного коллайдера (БАК). БАК стоимостью 10 млрд $  – самый мощный ускоритель частиц из всех когда-либо построенных. Бозон Хиггса – это фундаментальная частица, один из кирпичиков, из которых построена Вселенная. Тара Ширс, физик элементарных частиц из Ливерпульского университета, в интервью Би-би-си сказала, что не будь у частиц массы, не было бы звезд, галактик и даже атомов. Об открытии бозона Хиггса было объявлено в Женеве, где расположен Большой адронный коллайдер.

Питер Хиггс собственной персоной



Среди присутствовавших на объявлении открытия ученых был и сам Питер Хиггс, профессор Эдинбургского университета, предсказавший существование этой частицы 50 лет тому назад.

Автор материала: Шняк Дмитрий















ФИЗИКА СЕГОДНЯ

Глобальное потепление — быстрее, чем ожидалось


В 2015 году ученые из Всемирного центра мониторинга ледников при Цюрихском университете (Швейцария) под руководством доктора Михаэля Цемпа, работая совместно с коллегами из 30 стран, установили, что темп таяния ледников на Земле к настоящему времени, по сравнению c усредненными показателями за XX век, вырос в два-три раза. 


Экспериментально подтверждено существование графена


Его двумерная (толщиной в один атом) кристаллическая решетка проявляет необычные электрофизические свойства. Впервые графен был получен Андреем Геймом и Константином Новоселовым в 2004 году (Нобелевская премия за 2010-й). Его планируется использовать в электронике (в сверхтонких и сверхбыстрых транзисторах), композитах, электродах и т. д. Кроме того, графен — второй по прочности материал на свете (на первом месте — карбин). 



Найден бозон Хиггса


Существование этой элементарной частицы, отвечающей за массу всех прочих частиц, теоретически было предсказано Питером Хиггсом еще в 1960-х годах. А найдена она была во время экспериментов на Большом адронном коллайдере в 2012-м (за что Хиггс, совместно с Франсуа Энглером, получил Нобелевскую премию 2013 года).







Автор материала Михайлова Дарина



Выдающиеся физики

Одной из основополагающих наук нашей планеты является физика и ее законы. Ежедневно мы пользуемся благами ученых физиков, которые уже много лет работают для того чтобы жизнь людей становилась комфортнее и лучше. Существование всего человечества построено на законах физики, хотя мы об этом и не задумываемся. Благодаря кому у нас в домах горит свет, мы можем летать на самолетах по небу и плавать по бескрайним морям и океанам. Об ученых посветивших себя науке мы и поговорим. Кто же самые известные физики, чьи работы изменили нашу жизнь навсегда. Великих физиков огромное множество в истории человечества. О семи из них мы и расскажем.


Альберт Эйнштейн (Швейцария)

(1879-1955)


Альберт Эйнштейн один из величайших физиков человечества родился 14 марта 1879 года в немецком городе Ульм. Великого физика-теоретика можно назвать человеком мира, ему пришлось жить в тяжелое время для всего человечества во время двух мировых войн и часто переезжать из одной страны в другую.

Эйнштейн написал больше 350 работ по физике. Является создателем специальной (1905) и общей теории относительности(1916), принципа эквивалентности массы и энергии(1905). Разработал множество научных теорий: квантового фотоэффекта и квантовой теплоемкости. Вместе с Планком, разработал основы квантовой теории, представляющие основой современной физике. Эйнштейн имеет большое количество премий за свои труды в области науки. Венцом всех наград выступает Нобелевская премия, по физике полученная Альбертом в 1921 году.

Никола Тесла

(Сербия)

(1856-1943)

Родился известный физик-изобретатель в небольшой деревушке Смилян 10июля 1856 года. Работы Теслы намного опередили время, в которое жил ученый. Николу называют отцом современного электричества. Он сделал множество открытий, и изобретений получив более 300 патентов на свои творения во всех странах, где работал. Никола Тесла был не только физиком теоретиком, но и блестящим инженером, создававшим и испытывавшим свои изобретения.

Тесла открыл переменный ток, беспроводную передачу энергии, электричества, его работы привели к открытию рентгена, создал машину, которая вызывала колебания поверхности земли. Никола предсказывал наступление эры роботов, способных выполнять любую работу. Из-за своей экстравагантной манеры поведения не снискал признания при жизни, но без его работ сложно представить повседневную жизнь современного человека.

Исаак Ньютон (Англия)

(1643-1727)

Один из отцов классической физики появился на свет 4 января 1643 года в городке Вулсторп в Великобритании. Являлся сначала участником, а впоследствии главой королевского общества Великобритании. Исаак сформировал и доказал главные законы механики. Обосновал движение планет Солнечной системы вокруг Солнца, а также наступление приливов и отливов. Ньютон создал фундамент для современной физической оптики. Из огромного списка работ великого ученого, физика, математика и астронома выделяются две работы одна из которых была написана в 1687 году и «Оптика» вышедшая из под пера в 1704 году. Верхом его работ является известный даже десятилетнему малышу закон всемирного тяготения.


Стивен Хокинг (Англия)

Самый известный физик современности появился на нашей планете 8 января 1942 года в Оксфорде. Образование Стивен Хокинг получал в Оксфорде и Кембридже, где и преподавал в дальнейшем, также работал в Канадском Институте теоретической физики. Главные работы его жизни связаны с квантовой гравитацией и космологией.

Хокинг исследовал теорию возникновения мира вследствие Большого взрыва. Разработал теорию исчезновения черных дыр, вследствие явления получившего в его честь название-излучение Хокинга. Считается основоположником квантовой космологии. Член старейшего научного общества, в которое входил еще Ньютон, Лондонского королевского общества на протяжении долгих лет, вступив в него в 1974 году, и считается одним из самых молодых членов принятых в общество. Всеми силами приобщает к науке современников с помощью своих книг и участвуя в телепередачах.

Мария Кюри-Склодовская

(Польша, Франция)

(1867-1934)


Самая известная женщина физик появилась на свет 7 ноября 1867 года в Польше. Окончила престижный университет Сорбонна, в котором изучала физику и химию, а впоследствии стала первой женщиной-преподователем в истории своей Альма-матер. Вместе со своим мужем Пьером и известным физиком Антуаном Анри Беккерелем изучали взаимодействие солей урана и солнечного света, вследствие экспериментов получили новое излучение, которое было названо радиоактивностью. За это открытие вместе со своими коллегами получила Нобелевскую премию по физике 1903 года. Мария состояла во множестве научных обществ по всему земному шару. Навсегда вошла в историю как первый человек, удостоившийся Нобелевской премии, по двум номинациям химии в 1911и физике.

Вильгельм Конрад Рентген

(Германия)

(1845-1923)


Рентген впервые увидел наш мир городе Леннеп, в Германии 27 марта 1845 года. Преподавал в Вюрцбургском университете, где 8 ноября 1985 года и сделал открытие, которое изменила жизнь всего человечества навсегда. Ему удалось открыть икс-излучение, впоследствии получившее название в честь ученого — рентгеновское. Его открытие стало толчком к появлению целого ряда новых течений в науке. Вильгельм Конрад вошел в история как первый обладатель Нобелевской премии по физике



Андрей Дмитриевич Сахаров (СССР, Россия)

21 мая 1921 года родился будущий создатель водородной бомбы. Сахаров написал немало научных работ на тему элементарных частиц и космологии, по магнитной гидродинамике и астрофизике. Но главным его достижением является создание водородной бомбы. Сахаров был гениальным физиком в истории не только огромной страны СССР, но и мира.


Автор материала Лысенко Алина
















Лауреаты Нобелевской

премии по физике объяснили свое открытие на примере булочки, кренделя и бублика

Простое объяснение сложных процессов. В Стокгольме сегодня назвали имена обладателей Нобелевской премии по физике. Ее удостоены Дэвид Тоулесс, Данкан Халдейн и Майкл Кастерлитц – британские ученые, работающие в США. Как говорится в официальном заявлении Шведской Академии наук, они получили награду: «за теоретическое открытие топологических фазовых переходов и топологических фаз материи». Для непосвященных – члены комитета решили объяснить процессы на примере булочки с корицей, кренделя и бублика.

Члены Нобелевского комитета при Королевской академии наук объявили имена лауреатов на традиционной конференции. Отметили что Дэйвид Таулесс, Дуанкан Холдейн и Майкл Костерлиц распахнули дверь в мир, в котором материя может принимать необычные состояния.

«Если вы занимаетесь топологией, действительно интересно в вещах то, чем они отличаются. У этой вещи нет отверстия, у рогалика есть одно отверстие, у кренделя с солью есть два отверстия. Количество отверстий это то, что топология назвала бы топологическим инвариантом», – объяснил член Нобелевского комитета по физике Торс Ханс Ханссон.

Ученые, продолжили работу советского физика Вадима Березинского.  Еще в 1970-х он исследовал вихри в двумерных системах. 

«Он не догадался, что именно эти вихри, играют важнейшую роль в фазовом переходе. И на основе этих исследований Костерлиц и Таулесс внесли свой прорывной вклад, они обнаружили новый тип фазового перехода – принципиально отличный от свойств фазовых переходов в трехмерных системах. Холдейн сделал тоже очень важные работы для двумерных систем», – прокомментировал физик-теоретик, профессор МФТИ Юрий Лозовик.

Нынешние исследования лауреатов могут быть важны для таких направлений, как наноэлектроника, оптоэлектроника, конечно, науки.

«Это помогает при использовании сверхроводящих пленок в самых разнообразных устройствах и, наверное, для жидких кристаллов. Жидкие кристаллы – это наши дисплеи. Понимание двумерных материалов – как они себя ведут, какие у них фазовые переходы могут быть – это, конечно, помогает и конкретных инженерных применениях», – отметил физик, член-корресподент РАН, профессор Физического института им. П.Н. Лебедева Петр Арсеев. 

В эту сферу немалый вклад внесли советские ученые. В 1962-м Нобелевскую премию получил за пионерские исследования в теории конденсированного состояния, в особенности жидкого гелия, получил Лев Ландау, в 1978-м – отец понятия "сверхтекучесть" – Петр Капица, в 2003-м – Виталий Гинзбург и Алексея Абрикосов – за вклад в развитие теории сверхтекучести, а также сверхпроводимости. 

Физика невозможного


Если в первый момент

идея не кажется абсурдной,

она безнадежна.


    Альберт Эйнштейн


Научимся ли мы когда-нибудь проходить сквозь стены?

Строить звездные корабли, способные летать быстрее света?

Читать мысли?

Становиться невидимыми?

Двигать предметы силой мысли?

Мгновенно преодолевать космическое пространство?

Я уверена, многих из нас с детства мучили подобные вопросы. Чем ближе мы знакомимся с наукой физикой, тем больше начинаем мечтать. Мечтаем о путешествиях во времени, лучевых пушках, силовых полях, параллельных вселенных и т. п. А уж магия, фэнтези и научная фантастика представляют собой гигантской игровую площадку для нашего воображения. Так начинаются непреходящая любовь и интерес к невозможному.

Американский ученый физик-теоретик Митио Каку предлагает разделить невозможности на три класса.

I. Если заслуженный, но пожилой ученый утверждает, что некое явление возможно, он наверняка прав. Если он утверждает, что некое явление невозможно, он, весьма вероятно, ошибается.
II. Единственный способ определить пределы возможного - это набраться смелости и проникнуть на ту строну, в невозможное.
III. Любая достаточно развитая технология неотличима от волшебства. 

Три закона Артура Кларка 


Невозможности I класса

1 класс невозможностей это то, до чего мы с вами можем добраться за 50, 100 или 200 лет. Это искусственный интеллект, звездолеты, телепортация, телекинез и многое другое. Главное, что ни одна из этих технологий не нарушает существующих законов физики. Потенциально это возможно или даже доступно уже сейчас, но в зачаточном состоянии. Например, телепортация элементарных частиц, ведь их уже телепортируют. Важно то, что в основном, принципы этих явлений, описанных в фантастике, сами по себе не реалистичны, но наука может достичь эффект этих явлений, зайдя в другой стороны. Например, левитация из книг это не победа над гравитацией, а вопрос магнетизма высокотемпературного сверхпроводника.

II класс невозможного

Это то, что осуществимо, но не при нашем развитии цивилизации. В основном это связано с доступностью энергии и пространства. Здесь расположились машина времени, путешествие через кротовые норы и гиперпространственные скачки. Вот достигнем мы хотя бы первого этапа по шкале Кардашева, а еще лучше, второго. Первый этап означает, что мы можем использовать энергию целой планеты, второй – целой звезды.

III класс невозможностей отрицает все законы физики, поэтому если когда-нибудь окажется, что вечный двигатель или предсказание будущего реальны, то мы ничего не смыслим в квантовой механике и общей теории относительности.

Автор материала Муханова Виктория

Физика и астрономия


Физика и астрономия тесно связаны между собой. В течение многих веков астрономия была привязана к Земле.

Так, движение Луны вокруг Земли и падение тел на Землю происходят по одной и той же причине – силе тяготения. Одинаковы процессы, происходящие, например, в недрах Солнца и в ускорителях частиц, установленных на Земле. Развитие физики приводит к новым открытиям и в астрономии. В частности, изучить строение и состав звезд стало возможным благодаря использованию специальных физических методов исследования. Космические полеты стали реальными, когда научились рассчитывать траектории космических кораблей и создавать специальные материалы, обладающие необходимыми свойствами: прочностью, легкостью, жаростойкостью и т.п.


Еще на заре человеческого общества у людей возникла необходимость ориентироваться при передвижении к своему жилищу, к местам охоты и т.д. По мере развития земледелия появилась потребность в отсчете времени, например, для проведения сельскохозяйственных работ, в соответствии с наступлением того или иного времени года. Однако у древнего человека не было никаких приборов для измерения времени или расстояний. Именно по расположению и движению Солнца, Луны и звезд на небе люди уже более двух тысяч лет назад научились ориентироваться на местности и вести счет больших и малых промежутков времени. Так возникла потребность в изучении звездного неба и появилась еще одна наука – астрономия (слово «астрономия» образовано от греч. astron – звезда и nomos – закон).

Астрономия возникла и независимо развивалась практически у всех древних народов: в Вавилоне и Египте, Индии и Китае. Значительного расцвета она достигла в Древней Греции, поэтому многие астрономические термины имеют греческое происхождение, а некоторые пришли к нам из арабского языка. Так в 1576 г. датский король Фридрих II – усердный покровитель науки и искусств – назначил Тихо содержание для астрономических исследований с астрономической щедростью.

Венценосный "спонсор" отвел звездочету целый остров Вен в проливе Зунд для постройки дома и обсерватории, что обошлось королю в бочку золота. В добавление к ежегодному окладу в пользу Тихо отводились доходы от аренды острова местными крестьянами. Это был настоящий средневековый замок со шпилями, бойницами и даже тюрьмой, расположенной в подвале. Тихо назвал его Ураниборгом (Небесным замком), а по-другому – "Дворцом Урании" (музы – покровительницы астрономии).


Стараясь вспомнить расположение звезд, человек мысленно объединял их в отдельные группы – созвездия. В те далекие времена в сознании людей знания о небе тесно переплетались с мифологией. В расположении звезд различные народы видели очертания того, что их окружало: всевозможных животных, рыб, птиц, предметов своего быта, а также героев легенд и сказаний. Постепенно человек все глубже познавал Вселенную. После великого открытия Н.Коперника, предложившего гелиоцентрическую модель, непрерывно расширяются доступные для наблюдения пределы космического пространства. Передовые ученые разных стран продолжали делать выдающиеся открытия. До середины XX века астрономы определяли размеры небесных тел и расстояния между ними, пользуясь телескопом и опираясь на физические законы. Они рассчитали, что от Земли до Солнца примерно 150 млн. км, и назвали эту величину астрономической единицей. В а.е. принято измерять разные расстояния в Солнечной системе.


Сейчас более точные сведения получают с помощью радаров и космических аппаратов. А за пределами Солнечной системы астрономы измеряют расстояния световыми годами. Свет распространяется со скоростью 300.000 км/с, а значит, световой год – это примерно 10 млрд. км. Так как Млечный путь выглядит дисковидной спиралью, состоящей из множества вращающихся вокруг его центра звезд, диаметр этого диска около 100.000 световых лет, а толщина в 100 раз меньше. От центра Галактики до Солнца около 33.000 световых лет, т.е. примерно две трети пути к краю диска. А наше Солнце совершает полный оборот вокруг центра своей Галактики за 226 млн. лет.

Для развития астрономии много сделано и делается в нашей стране. Еще в конце XVII века Петр I открыл в Москве в Сухаревской башне школу, где обучали астрономии. Затем в Петербурге открылась обсерватория при Академии наук. Для исследований строения звездного мира в 1839 году на Пулковских холмах под Петербургом, была построена крупнейшая обсерватория, названная астрономической столицей мира, куда приезжали учиться астрономы из Западной Европы и Америки. Наша астрономия занимает виднейшее место в мировой науке.


Первыми в истории человечества 4 октября 1957 года мы запустили искусственный спутник Земли. «Умом и глазом» астрономы проникли вглубь Вселенной на миллиарды световых лет или секстильоны километров. Но они не могли оторваться от Земли. Они смогли это сделать только 12 апреля 1961 года, когда на космическом корабле Восток Ю. А. Гагарин совершил первый полет продолжительностью 108 минут. Теперь наступила эпоха, когда вселенную можно наблюдать и изучать не только с Земли, но и из космического пространства. А это открыло новые и невиданны еще перспективы познания Вселенной. С выходом человека в космическое пространство появились новые разделы астрономии: ультрафиолетовая и инфракрасная астрономия, рентгеновская и гамма-астрономия. Необычно расширилась возможность исследования первичных космических частиц, падающих на границу земной атмосферы: астрономы могут исследовать все виды частиц и излучений, приходящих из космического пространства.

Инфракрасная астрономия — раздел астрономии и астрофизики, исследующий космические объекты, видимые в инфракрасном (ИК) излучении. При этом под инфракрасным излучением подразумевают электромагнитные волны с длиной волны от 0,74 до 2000 мкм. Инфракрасное излучение находится в диапазоне между видимым излучением, длина волны которого колеблется от 380 до 750 нанометров, и субмиллиметровым излучением. Инфракрасная астрономия начала развиваться в 1830-е годы, спустя несколько десятилетий после открытия инфракрасного излучения Уильямом Гершелем. Первоначально прогресс был незначительным, и до начала 20 века отсутствовали открытия астрономических объектов в инфракрасном диапазоне помимо Солнца и Луны. Однако после ряда открытий, сделанных в радиоастрономии в 1950-х и 1960-х годах, астрономы осознали наличие большого объёма информации, находящегося вне видимого диапазона волн.


Ультрафиолетовая астрономия — термин, использующийся применительно к наблюдениям электромагнитного излучения Вселенной в ультрафиолетовом диапазоне (длины волн примерно от 10 до 320 нанометров). Более коротковолновые (высокоэнергетические) фотоны изучаются рентгеновской астрономией и гамма-астрономией. Свет, имеющие эти длины волн, поглощается атмосферой Земли, так что наблюдение должно осуществляться из верхних слоев атмосферы или из космоса.

Измерение спектральных линий ультрафиолетового диапазона используется для определения химического состава, плотности и температуры межзвёздной среды, а также температуры и состава молодых горячих звёзд. Наблюдения в ультрафиолетовом диапазоне позволяют получить значимую информацию об эволюции галактик.

Основными космическими телескопами, осуществляющими наблюдение в ультрафиолетовом спектре являются космический телескоп Хаббл и аппарат Far Ultraviolet Spectroscopic Explorer (FUSE), хотя применяются и другие инструменты.


Рентгеновская астрономия — раздел астрономии, исследующий космические объекты по их рентгеновскому излучению. Под рентгеновским излучением обычно понимают электромагнитные волны в диапазоне энергии от 0,1 до 100 кэВ (от 100 до 0,1 Å). Энергия рентгеновских фотонов гораздо больше, нежели оптических, поэтому в рентгеновском диапазоне излучает вещество, нагретое до чрезвычайно высоких температур. Источниками рентгеновского излучения являются чёрные дыры, нейтронные звезды, квазары и другие экзотические объекты, представляющие большой интерес для астрофизики. Основным инструментом исследования является рентгеновский телескоп.


Гамма-астрономия — раздел астрономии, исследующий космические объекты по их гамма-излучению. Гамма-лучи представляют собой электромагнитные волны с чрезвычайно малой длиной волны, менее 0.1 Å. Их волновые свойства практически не проявляются, но зато ярко выражены корпускулярные, поэтому их часто называют гамма-квантами. Со стороны низких энергий гамма диапазон соседствует с рентгеновским, условной границей считается 100 кэВ. Для испускания гамма-лучей требуются колоссальные запасы энергии, поэтому, как и в рентгеновской астрономии, их источниками становятся «экзотические» объекты: пульсары, остатки сверхновых звезд, активные ядра галактик и др. Формирование гамма-квантов тесно связано с высокоэнергетическими частицами, поэтому гамма-астрономия и физика космических лучей во многом пересекаются.


ЧТО ИЗУЧАЕТ АСТРОНОМИЯ?


С древних времен и до наших дней астрономия изучает явления, происходящие с небесными телами и их системами. К небесным телам относятся звезды, планеты, в том числе и Земля, спутники планет, например Луна, кометы, метеориты. Системы звезд и их скопления представляют собой галактики. Наша Земля является одной из планет солнечной системы, в которую входят и другие планеты с их спутниками.

Астрономия также изучает движение звезд, планет, спутников, процессы, происходящие в атмосферах планет, в звездах и в других небесных телах. Астрономия не только раскрывает тайны глубин Вселенной, но и помогает людям в их практической деятельности: в составлении точных карт поверхности Земли, правильном определении курса кораблей и самолетов, Службе точного времени. На протяжении тысячелетий астрономы получали только ту информацию о небесных явлениях, которую им приносил свет. Можно сказать, что они изучали эти явления через узенькую щель в обширном спектре электромагнитных излучений. Четыре десятилетия тому назад благодаря развитию радиофизики возникла радиоастрономия, необычно расширившая наши представления о Вселенной. Она помогла узнать о существовании многих космических объектов, о которых ранее не было известно. Дополнительным источником астрономических знаний стал участок электромагнитной шкалы, лежащий в диапазоне дециметровых и сантиметровых радиоволн. Огромный поток научной информации приносят из космоса другие виды электромагнитного излучения, которые не достигают поверхности Земли, поглощаясь в ее атмосфере.


Современная астрономия включает в себя несколько разделов. Часть астрономии, изучающая происхождение и развитие небесных тел, называется космогонией (от греч. kosmos – вселенная и genos – происхождение). Космогония отвечает на вопросы, как и когда возникли Вселенная, галактики, звезды, планеты, какие на них происходят изменения. Космология представляет собой учение о Вселенной в целом, о ее наиболее общих свойствах. Само слово «космос» – синоним Вселенной, и астрономы, изучающие ее строение, называются космологами. Они пользуются самыми крупными и чувствительными телескопами, так как только они могут зарегистрировать слабый свет, доходящий до нас от далеких галактик. Космологами было установлено, что галактики – это основные «кирпичики» Вселенной. Они образуют скопления типа Местной группы, включающей наш Млечный путь. А эти группы составляют скопления высшего уровня (Местная групп входит в Местное сверхскопление), то есть образуются в системы еще более высокого порядка. Значительно увеличила возможности изучения Земли и других небесных тел космонавтика (от греч. kosmos + nautike – кораблевождение). Она изучает движение космических аппаратов в космическом пространстве. Основоположником космонавтики является выдающийся русский ученый К.Э. Циолковский (1857–1935) . Он теоретически обосновал возможность покорения космоса при помощи ракет. Начало нашей практической космонавтике было положено запуском первого искусственного спутника Земли. Вскоре после этого, в 1959 году, были запущены советские межпланетные автоматические станции для исследования Луны, были получены фотографии ее стороны, невидимой с Земли. К настоящему времени совершено уже более пятидесяти космических экспедиций. Если первый космический полет продолжался немногим более двух часов, то позднее космонавты проводили на орбите более года. Они работали на орбитальных станциях «Салют» и «Мир» , выполняя различные научные исследования Лучший результат показал комплекс «Мир», почти непрерывно заселенный разными экипажами с 1986 – 1999 гг.


В 1969 году американские космонавты Н. Армстронг и Э. Олдрин вышли из корабля на поверхность Луны, и один из них фотографировал другого. Передвигались они по Луне на вездеходе. Космические исследования не ограничиваются изучением Земли и ее спутника Луны, они продолжаются: уже запущены автоматические межпланетные станции к Марсу, Венере, Юпитеру. Изучение возможности высадки на Марсе – главная цель строящееся сейчас международной станции. Следующими шагами человека в космосе станет создание лунных марсианских баз и обитаемых космических обсерваторий.

Одна из важнейших задач космонавтики – создать целый комплекс приборов и электронно-вычислительных машин, с помощью которых космонавты могут сами ориентироваться по звездам, находит свое место в космическом пространстве и рассчитывать поправки своей траектории; определять скорость, ускорения и точное направление своего движения; быстро обрабатывать полученные показания. Таким образом, космонавтика, это небесная механика и кинематика тел в физическом поле тяготения, это спектральный анализ, это радиосвязь и лазерная связь, это термодинамика и двигатели, то есть это все разделы физики и химии.

Движение космических аппаратов осуществляется по законам, которые были открыты на Земле при изучении движения свободно падающих тел.


А использование законов Ньютона позволило астрономам не только рассчитать размеры Солнечной системы, но и составить точный «график» движения планет, их спутников и комет.

Развитие астрономии, в частности астрофизики и космонавтики, способствует развитию физики. Вселенная для ученых представляет собой как бы огромную физическую лабораторию. Вещество в ней находится нередко в таких состояниях, которые нельзя получить на Земле. Многие физические открытия были сделаны при анализе явлений в космосе. Так, газ гелий был открыт при исследовании солнечного света, а затем его обнаружили в атмосфере Земли.

Отсюда и его название – helios, в переводе с греческого означает Солнце. Открытие прибора спектроскопа Бунзеном и Кирхгофом с телескопом позволило анализировать излучение Солнца и установить его химический состав.

Оказалось, что там присутствуют те же элементы, что и на Земле.

Спектроскоп может разложить пучок света от звезды на его цветовые составляющие. На фотопластинке регистрируется спектр звезды, полученный после разложения света призмой.

Астрономы изучают спектры звезд, чтобы узнать, из каких химических элементов они состоят. Спектральный анализ позволяет определить и скорость, с которой движутся относительно нас звезды, туманности и галактики.

Измерения с помощью спектроскопа показали, что звезды образованы раскаленными газами, а планеты только отражают их свет. Одни туманности оказались разреженными газовыми облаками, другие – звездными скоплениями. А к 1900 г. благодаря спектроскопу астрономы стали астрофизиками, изучающими состав различных объектов Вселенной.

И в настоящее время бурное развитие получила астрофизика. Это часть астрономии, которая изучает физические свойства небесных тел и процессы, протекающие в них и в космическом пространстве. При изучении этой части широко используют физические законы, поэтому она и получила такое название.

Теория относительности Эйнштейна подтвердилось во время солнечного затмения в 1919 году. Из нее следует, что Вселенная расширяется и это доказано наблюдениями астрономов, прежде всего Эдвина Хаббла (1889 – 1953). Космические аппараты сделали снимки планет Солнечной системы, а новейшие телескопы позволили заглянуть в самые глубины Вселенной. Сейчас создаются основы нейтринной астрономии, которая будет доставлять ученым сведения о процессах, происходящих в недрах космических тел, например, в глубинах нашего Солнца. Появление нейтринной астрономии стало возможным только благодаря успехам физики атомных ядер и элементарных частиц.

Гравитационнын волны


Гравитацио́нные во́лны — изменения гравитационного поля, распространяющиеся подобно волнам. Излучаются движущимися массами, но после излучения отрываются от них и существуют независимо от этих масс. Математически связаны с возмущением метрики пространства-времени и могут быть описаны как «рябь пространства-времени».


В общей теории относительности и в большинстве других современных теорий гравитации гравитационные волны порождаются движением массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны имеют весьма малую величину, с трудом поддающуюся регистрации.


Гравитационные волны предсказываются общей теорией относительности (ОТО). Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами обсерватории LIGO, на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух чёрных дыр и образования одной более массивной вращающейся чёрной дыры. Косвенные свидетельства их существования были известны с 1970-х годов — ОТО предсказывает совпадающие с наблюдениями темпы сближения тесных систем двойных звёзд за счёт потери энергии на излучение гравитационных волн. Прямая регистрация гравитационных волн и их использование для определения параметров астрофизических процессов является важной задачей современной физики и астрономии.


В рамках ОТО гравитационные волны описываются решениями уравнений Эйнштейна волнового типа, представляющими собой движущееся со скоростью света (в линейном приближении) возмущение метрики пространства-времени. Проявлением этого возмущения должно быть, в частности, периодическое изменение расстояния между двумя свободно падающими (то есть не испытывающими влияния никаких сил) пробными массами. Амплитудой h гравитационной волны является безразмерная величина — относительное изменение расстояния. Предсказываемые максимальные амплитуды гравитационных волн от астрофизических объектов (например, компактных двойных систем) и явлений (взрывов сверхновых, слияний нейтронных звёзд, захватов звёзд чёрными дырами и т. п.) при измерениях в Солнечной системе весьма малы (h=10−18—10−23). Слабая (линейная) гравитационная волна согласно общей теории относительности переносит энергию и импульс, двигается со скоростью света, является поперечной, квадрупольной и описывается двумя независимыми компонентами, расположенными под углом 45° друг к другу (имеет два направления поляризации).


Разные теории по-разному предсказывают скорость распространения гравитационных волн. В общей теории относительности она равна скорости света (в линейном приближении). В других теориях гравитации она может принимать любые значения, в том числе до бесконечности. По данным первой регистрации гравитационных волн их дисперсия оказалась совместимой с безмассовым гравитоном, а скорость оценена как равная скорости света.


За экспериментальное обнаружение гравитационных волн в 2017 году была присуждена Нобелевская премия по физике.


Генерация.

Гравитационную волну излучает любая материя, движущаяся с асимметричным ускорением. Для возникновения волны существенной амплитуды необходимы чрезвычайно большая масса излучателя или/и огромные ускорения, амплитуда гравитационной волны прямо пропорциональна первой производной ускорения и массе генератора. Однако если некоторый объект движется ускоренно, то это означает, что на него действует некоторая сила со стороны другого объекта. В свою очередь, этот другой объект испытывает обратное действие (по 3-му закону Ньютона), при этом оказывается, что m1a1 = − m2a2. Получается, что два объекта излучают гравитационные волны только в паре, причём в результате интерференции они взаимно гасятся почти полностью. Поэтому гравитационное излучение в общей теории относительности всегда носит по мультипольности характер как минимум квадрупольного излучения.

Наиболее сильными источниками гравитационных волн являются:

сталкивающиеся галактики (гигантские массы, очень небольшие ускорения),

гравитационный коллапс двойной системы компактных объектов (колоссальные ускорения при довольно большой массе). Как частный и наиболее интересный случай — слияние нейтронных звёзд. У такой системы гравитационно-волновая светимость близка к максимально возможной в природе планковской светимости.


Что такое пространство-время?


Простра́нство-вре́мя (простра́нственно-временно́й конти́нуум) — физическая модель, дополняющая пространство равноправным временны́м измерением и таким образом создающая теоретико-физическую конструкцию, которая называется пространственно-временным континуумом. Пространство-время непрерывно и с математической точки зрения представляет собой многообразие с лоренцевой метрикой.


В нерелятивистской классической механике использование Евклидова пространства, не зависящего от одномерного времени, вместо пространства-времени уместно, так как время рассматривается как всеобщее и неизменное, будучи независимым от состояния движения наблюдателя. В случае релятивистских моделей время не может быть отделено от трёх измерений пространства, потому что наблюдаемая скорость, с которой течёт время для объекта, зависит от его скорости относительно наблюдателя, а также от силы гравитационного поля, которое может замедлить течение времени.


В космологии и релятивистской физике вообще концепция пространства-времени объединяет пространство и время в одну абстрактную Вселенную. Математически она является многообразием, состоящим из «событий», описанных системой координат. Обычно требуется три пространственных измерения (длина, ширина, высота) и одно временное измерение (время). Измерения — это независимые составляющие координатной сетки, необходимые для локализации точки в некотором ограниченном «пространстве». Например, на Земле широта и долгота — это две независимые координаты, которые вместе однозначно определяют положение. В пространстве-времени координатная сетка, которая простирается в 3+1 измерениях, локализует события (вместо просто точки в пространстве), то есть время добавляется как ещё одно измерение в координатной сетке. Таким образом, координаты определяют где и когда происходят события. Однако единая природа пространства-времени и его независимость от выбора координат позволяют предположить, что чтобы выразить временную координату в одной системе координат, необходимы как временная, так и пространственная координаты в другой системе координат. В отличие от обычных пространственных координат, в пространстве-времени возникает понятие светового конуса, накладывающее ограничения на допустимые координаты, если одна из них везде должна быть временной. Эти ограничения жёстко связаны с особой математической моделью, которая отличается от Евклидова пространства с его очевидной симметрией.


В соответствии с теорией относительности, Вселенная имеет три пространственных измерения и одно временное измерение, и все четыре измерения органически связаны в единое целое, являясь почти равноправными и в определённых рамках (см. примечания ниже) способными переходить друг в друга при смене наблюдателем системы отсчёта.


В рамках общей теории относительности пространство-время имеет и единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами (телами, полями) и есть гравитация. Таким образом, теория гравитации в рамках ОТО и других метрических теорий гравитации есть теория пространства-времени, полагаемого не плоским, а способным динамически менять свою кривизну.


До начала двадцатого века время полагалось независимым от состояния движения, протекающим с постоянной скоростью во всех системах отсчёта; однако затем эксперименты показали, что время замедляется при больших скоростях одной системы отсчёта относительно другой. Это замедление, названное релятивистским замедлением времени, объясняется в специальной теории относительности. Замедление времени подтвердили многие эксперименты, такие как релятивистское замедление распада мюонов в потоке космических лучей и замедление атомных часов на борту космического челнока, ракеты и самолётов относительно установленных на Земле часов. Длительность времени поэтому может меняться в зависимости от событий и системы отсчёта.


Термин пространство-время получил широкое распространение далеко за пределами трактовки пространства-времени с нормальными 3+1 измерениями. Это действительно соединение пространства и времени. Другие предложенные теории пространства-времени включают дополнительные измерения, обычно пространственные, но существуют некоторые умозрительные теории, включающие дополнительные временные измерения, и даже такие, которые включают измерения, не являющиеся ни временными, ни пространственными (например, суперпространство). Сколько измерений необходимо для описания Вселенной — этот вопрос до сих пор открыт. Умозрительные теории, такие как теория струн, предсказывают 10 или 26 измерений (с М-теорией, предсказывающей 11 измерений: 10 пространственных и 1 временное), но существование более четырёх измерений имело бы значение только на субатомном уровне.


Кривизна пространства-времени.

Кривизна простр́анства-вр́емени — физический эффект, проявляющийся в девиации геодезических линий, то есть в расхождении или сближении траекторий свободно падающих тел, запущенных из близких точек пространства-времени. Величиной, определяющей кривизну пространства-времени, является тензор кривизны Римана, входящий в уравнение девиации геодезических линий.

Вообще говоря, тензор кривизны в n-мерном пространстве может иметь независимых компонент. В 4-мерном пространстве-времени это даёт 20 величин, 10 из которых связаны с тензором Вейля, 9 — с бесследовым тензором Риччи и 1 — со скалярной кривизной.

Размерность компонент кривизны — обратный квадрат длины.

В рамках общей теории относительности и других метрических теорий гравитации рассматривается неевклидово пространство-время, искривленное гравитацией. В этом пространстве-времени уже нельзя ввести Галилеевы координаты, мировые линии свободно движущихся тел расходятся или сходятся по отношению друг к другу. Скалярная гауссова кривизна такого пространства-времени получается сверткой метрического тензора с тензором Риччи.


Говоря более технически, пространство-время в современной физике моделируется обычно как четырёхмерное многообразие, являющееся базой для расслоённого пространства, отвечающего физическим полям. В этом пространстве вводится аффинная структура, задающая параллельное перенесение разнообразных величин. Рассматривая естественную структуру самой базы, можно также ввести в ней аффинную структуру. Ею полностью определяется кривизна пространства-времени. Если предположить далее, что на этом многообразии существует метрическая структура, то можно выделить единственную согласованную с метрикой связность — связность Леви-Чивиты. В противном случае возникает также кручение и неметричность параллельного перенесения. Только в метрическом пространстве можно свернуть тензор кривизны, чтобы получить тензор Риччи и скалярную кривизну.

Кротовые норы(wormholes)


Крото́вая нора́, также «крото́вина» или «червото́чина» (последнее является дословным переводом англ. wormhole) — гипотетическая топологическая особенность пространства-времени, представляющая собой в каждый момент времени «туннель» в пространстве. Эти области могут быть как связаны и помимо кротовой норы, представляя собой области единого пространства (см. пример на рисунке), так и полностью разъединены, представляя собой отдельные пространства, связанные между собой только посредством кротовой норы.

Общая теория относительности (ОТО) допускает существование таких туннелей, хотя для существования проходимой кротовой норы необходимо, чтобы она была заполнена экзотической материей с отрицательной плотностью энергии, создающей сильное гравитационное отталкивание и препятствующей схлопыванию норы. Решения типа кротовых нор возникают в различных вариантах квантовой гравитации, хотя до полного исследования вопроса ещё очень далеко.


Область вблизи самого узкого участка кротовины называется «горловиной». Кротовые норы делятся на «внутримировые» (англ. intra-universe) и «межмировые» (англ. inter-universe), в зависимости от того, можно ли соединить её входы кривой, не пересекающей горловину.


Различают также проходимые (англ. traversable) и непроходимые кротовины. К последним относятся те туннели, которые коллапсируют слишком быстро для того, чтобы наблюдатель или сигнал (имеющие скорость не выше световой) успели добраться от одного входа до другого. Классический пример непроходимой кротовины — мост Эйнштейна — Розена в максимально расширенном пространстве Шварцшильда, а проходимой — кротовины Морриса — Торна.


Проходимая внутримировая кротовая нора даёт гипотетическую возможность путешествий во времени, если, например, один из её входов движется относительно другого, или если он находится в сильном гравитационном поле, где течение времени замедляется. Также кротовые норы гипотетически могут создавать возможность для межзвёздных путешествий, и в этом качестве кротовины нередко встречаются в научной фантастике.


Для того, чтобы понять, для чего требуется экзотическая материя, следует рассмотреть входящий сигнал светового фронта, передвигающегося вдоль геодезических, которые пересекают червоточину и вновь расширяются с другой стороны. Расширение идёт с отрицательного на положительное. Так как узкая часть червоточины имеет конечный размер, то не ожидается расширяющего развития, по крайней мере, в непосредственной близости от этой области. Согласно оптической теореме Рейчаудхури (англ.)русск. это требует нарушения усреднённого нулевого состояния энергии (англ.)русск.. Квантовые эффекты, такие, как эффект Казимира, не могут нарушать усреднённое нулевое состояние энергии в любой окрестности пространства с нулевой кривизной, но расчёты в полуклассической гравитации (англ.)русск. предполагают, что квантовые эффекты могут нарушить это условие в искривлённом пространстве-времени. Несмотря на это, было предположение, что квантовые эффекты не могут нарушать ахрональную версию усреднённого нулевого энергетического условия, но нарушения, тем не менее, были найдены, в связи с этим остаётся открытой возможность, что квантовые эффекты могут быть использованы для поддержки червоточины.

Теории метрик кротовых нор описывают геометрию пространства-времени кротовой норы и служат теоретическими моделями для путешествий во времени

Один из типов метрики непроходимой кротовой норы является решением Шварцшильда.

Автор материала Сартаков Александр.



15



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!