СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Аннотация к рабочей программе по физике 7-9 класс ФГОС ООО

Категория: Физика

Нажмите, чтобы узнать подробности

Аннотация к рабочей программе по физике 7-9 класс ФГОС ООО

Рабочая программа по физике  для 7-9 классов разработана в соответствии:

Автор программы: Е. М. Гутник, А. В. Пѐрышкин.Название программы «Физика 7-9 классы» (базовый уровень).

Выходные данные программы: Рабочая программы по физике 7 -9 классов по учебникам А.В. Пѐрышкина, автор- составитель Г. Г. Телюковой, издательство «Учитель» Волгоград, 2014 год.

Количество учебных часов по программе: 68 часов в год в 7 классе (2 часа в неделю) из 204 часов за весь курс обучения (3 года)

Аннотация к рабочей программе по физике 7-9 класс ФГОС ООО

Рабочая программа по физике  для 7-9 классов разработана в соответствии:

Автор программы: Е. М. Гутник, А. В. Пѐрышкин.Название программы «Физика 7-9 классы» (базовый уровень).

Выходные данные программы: Рабочая программы по физике 7 -9 классов по учебникам А.В. Пѐрышкина, автор- составитель Г. Г. Телюковой, издательство «Учитель» Волгоград, 2014 год.

Количество учебных часов по программе: 68 часов в год в 7 классе (2 часа в неделю) из 204 часов за весь курс обучения (3 года)

Аннотация к рабочей программе по физике 7-9 класс ФГОС ООО

Рабочая программа по физике  для 7-9 классов разработана в соответствии:

Автор программы: Е. М. Гутник, А. В. Пѐрышкин.Название программы «Физика 7-9 классы» (базовый уровень).

Выходные данные программы: Рабочая программы по физике 7 -9 классов по учебникам А.В. Пѐрышкина, автор- составитель Г. Г. Телюковой, издательство «Учитель» Волгоград, 2014 год.

Количество учебных часов по программе: 68 часов в год в 7 классе (2 часа в неделю) из 204 часов за весь курс обучения (3 года)

 

Просмотр содержимого документа
«Аннотация к рабочей программе по физике 7-9 класс ФГОС ООО»

Аннотация к рабочей программе по физике 7-9 класс ФГОС ООО

Рабочая программа по физике для 7-9 классов разработана в соответствии:

Автор программы: Е. М. Гутник, А. В. Пѐрышкин.Название программы «Физика 7-9 классы» (базовый уровень).

Выходные данные программы: Рабочая программы по физике 7 -9 классов по учебникам А.В. Пѐрышкина, автор- составитель Г. Г. Телюковой, издательство «Учитель» Волгоград, 2014 год.

Количество учебных часов по программе: 68 часов в год в 7 классе (2 часа в неделю) из 204 часов за весь курс обучения (3 года)


  • с Законом РФ «Об образовании» от 29 декабря 2012 г. N 273 - ФЗ;

  • с Приказом «Об утверждении Федеральных перечней учебников»;

  • Федеральным государственным образовательным стандартом основного общего образования (утвержден приказом Министерства образования и науки Российской Федерации от 17.12.2010г. № 1897);

  • Основной образовательной программой основного общего образования;

Цели и задачи курса:

Цели, на достижение которых направлено изучение физики в школе, определены исходя из целей общего образования, сформулированных в Федеральном государственном стандарте общего образования:

  • повышение качества образования в соответствии с требованиями социально-экономического и информационного развития общества и основными направлениями развития образования на современном этапе;

  • усвоение обучающимися смысла основных понятий и законов физики, взаимосвязи между ними;

  • формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;

  • формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;

  • развитие познавательных интересов и творческих способностей обучающихся и приобретение опыта применения научных методов познания, наблюдения физических явлений, проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; оценка погрешностей любых измерений;

  • систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;

  • формирование готовности современного выпускника основной школы к активной учебной деятельности в информационно-образовательной среде общества, использованию методов познания в практической деятельности, к расширению и углублению физических знаний и выбора физики как профильного предмета для продолжения образования;

  • организация экологического мышления и ценностного отношения к природе, осознание необходимости применения достижений физики и технологий для рационального природопользования;

  • понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф.



Достижение целей рабочей программы по физике обеспечивается решением следующих задач:

  • обеспечение эффективного сочетания урочных и внеурочных форм организации образовательного процесса, взаимодействия всех его участников;

  • организация интеллектуальных и творческих соревнований, проектной и учебно-исследовательской деятельности;

  • сохранение и укрепление физического, психологического и социального здоровья обучающихся, обеспечение их безопасности;

  • формирование позитивной мотивации обучающихся к учебной деятельности;

  • обеспечение условий, учитывающих индивидуально-личностные особенности обучающихся;

  • совершенствование взаимодействия учебных дисциплин на основе интеграции;

  • внедрение в учебно-воспитательный процесс современных образовательных технологий, формирующих ключевые компетенции;

  • развитие дифференциации обучения;

  • знакомство обучающихся с методом научного познания и методами исследования объектов и явлений природы;

  • формирование у обучающихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;

  • овладение обучающимися общенаучными понятиями: природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

  • понимание обучающимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.


Описание места учебного предмета в учебном плане

В основной школе физика изучается с 7 по 9 класс. Объём учебного времени, выделенного на изучение физики в основной школе составляет 210 учебных часов.

Личностные, метапредметные и предметные результаты освоения курса физики.

С введением ФГОС реализуется смена базовой парадигмы образования со «знаниевой» на «системно-деятельностную», т. е. акцент переносится с изучения основ наук на обеспечение развития УУД (ранее «общеучебных умений») на материале основ наук. Важнейшим компонентом содержания образования, стоящим в одном ряду с систематическими знаниями по предметам, становятся универсальные (метапредметные) умения (и стоящие за ними компетенции). Поскольку концентрический принцип обучения остается актуальным в основной школе, то развитие личностных и метапредметных результатов идет непрерывно на всем содержательном и деятельностном материале.

Личностными результатами обучения физике в основной школе являются:

  • Сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей, обучающихся;

  • Убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;

  • Самостоятельность в приобретении новых знаний и практических умений;

  • Готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;

  • Мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

  • Формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.


Метапредметными результатами обучения физике в основной школе являются:

  • Овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

  • Понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

  • Формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

  • Приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников, и новых информационных технологий для решения познавательных задач;

  • Развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;

  • Освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

  • Формирование умений работать в группе, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.


Предметные результаты

Предметными результатами изучения курса физики 7 класса являются:

  • понимание физических терминов: тело, вещество, материя;

  • умение проводить наблюдения физических явлений; измерять физические величины: расстояние, промежуток времени, температуру;

  • владение экспериментальными методами исследования при определении цены деления прибора и погрешности измерения;

  • понимание роли ученых нашей страны в развитие современной физики и влияние на технический и социальный прогресс;

  • понимание и способность объяснять физические явления: диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел;

  • владение экспериментальными методами исследования при определении размеров малых тел;

  • понимание причин броуновского движения, смачивания и не смачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;

  • умение пользоваться СИ и переводить единицы измерения физических величин в кратные и дольные единицы;

  • умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана окружающей среды);

  • понимание и способность объяснять физические явления: механическое движение, равномерное и неравномерное движение, инерция, всемирное тяготение;

  • умение измерять скорость, массу, силу, вес, силу трения скольжения, силу трения качения, объем, плотность, тела равнодействующую двух сил, действующих на тело в одну и в противоположные стороны;

  • владение экспериментальными методами исследования в зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления;

  • понимание смысла основных физических законов: закон всемирного тяготения, закон Гука;

  • владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости, равнодействующей двух сил, направленных по одной прямой в соответствие с условиями поставленной задачи на основании использования законов физики;

  • умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем, плотности тела с его массой и объемом, силой тяжести и весом тела;

  • умение переводить физические величины из несистемных в СИ и наоборот;

  • понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, и способов обеспечения безопасности при их использовании;

  • умение использовать полученные знания, умения и навыки в повседневной жизни, быту, охране окружающей среды;

  • понимание и способность объяснить физические явления: атмосферное давление, давление жидкостей, газов и твердых тел, плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Землю, способы уменьшения и увеличения давления;

  • умение измерять: атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда;

  • владение экспериментальными методами исследования зависимости: силы Архимеда от объема вытесненной воды, условий плавания тела в жидкости от действия силы тяжести и силы Архимеда;

  • понимание смысла основных физических законов и умение применять их на практике: закон Паскаля, закон Архимеда;

  • понимание принципов действия барометра-анероида, манометра, насоса, гидравлического пресса, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании;

  • владение способами выполнения расчетов для нахождения давления, давление жидкости на дно и стенки сосуда, силы Архимеда в соответствие с поставленной задачи на основании использования законов физики;

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности;

  • понимание и способность объяснять физические явления: равновесие тел превращение одного вида механической энергии другой;

  • умение измерять: механическую работу, мощность тела, плечо силы, момент силы;

  • КПД, потенциальную и кинетическую энергию;

  • владение экспериментальными методами исследования при определении соотношения сил и плеч, для равновесия рычага;

  • понимание смысла основного физического закона: закон сохранения энергии;

  • понимание принципов действия рычага, блока, наклонной плоскости, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании;

  • владение способами выполнения расчетов для нахождения: механической работы, мощности, условия равновесия сил на рычаге, момента силы, КПД, кинетической и потенциальной энергии;

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.




Предметными результатами изучения курса физики 8 класса являются:

  • понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, конденсация, кипение, выпадение росы;

  • умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, удельная теплоту парообразования, влажность воздуха;

  • владение экспериментальными методами исследования зависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре и давления насыщенного водяного пара: определения удельной теплоемкости вещества;

  • понимание принципов действия конденсационного и волосного гигрометров психрометра, двигателя внутреннего сгорания, паровой турбины с которыми человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;

  • понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;

  • овладение разнообразными способами выполнения расчетов для нахождения удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя в соответствии с условиями поставленной задачи на основании использования законов физики;

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности;

  • понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления в позиции строения атома, действия электрического тока;

  • умение измерять силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление;

  • владение экспериментальными методами исследования зависимости силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала;

  • понимание смысла закона сохранения электрического заряда, закона Ома для участка цепи. Закона Джоуля-Ленца;

  • понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания, с которыми человек сталкивается в повседневной жизни, и способов обеспечения безопасности при их использовании;

  • владение различными способами выполнения расчетов для нахождения силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора;

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности;

  • понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током;

  • владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи;

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности;

  • понимание и способность объяснять физические явления: прямолинейное распространения света, образование тени и полутени, отражение и преломление света;

  • умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы;

  • понимание смысла основных физических законов и умение применять их на практике: закон отражения и преломления света, закон прямолинейного распространения света;

  • различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;

  • умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды , технике безопасности;

  • понимание и способность описывать и объяснять физические явления: поступательное движение (назвать отличительный признак), смена дня и ночи на Земле, свободное падение тел. невесомость, движение по окружности с постоянной по модулю скоростью;

  • понимание смысла основных физических законов: динамики Ньютона, всемирного тяготения, сохранения импульса, сохранения энергии), умение применять их на практике и для решения учебных задач;

  • умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения. Знание и умение объяснять устройство и действие космических ракет-носителей;

  • умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, техника безопасности и др.);

  • умение измерять мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности;

  • понимание и способность описывать и объяснять физические явления: колебания нитяного (математического) и пружинного маятников, резонанс (в т. ч. звуковой), механическиеволны, длина волны, отражение звука, эхо;

  • знание и способность давать определения физических понятий: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин: амплитуда, период, частота колебаний, собственная частота колебательной системы, высота, тембр, громкость звука, скорость звука; физических моделей: гармонические колебания, математический маятник;

  • владение экспериментальными методами исследования зависимости периода колебаний груза на нити от длины нити;

  • понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров излучения и поглощения;

  • умение давать определения / описание физических понятий: магнитное поле, линии магнитной индукции; однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;

  • знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора;

  • знание назначения, устройства и принципа действия технических устройств:

электромеханический индукционный генератор переменного тока, трансформатор,

колебательный контур; детектор, спектроскоп, спектрограф;

  • понимание сути метода спектрального анализа и его возможностей;

  • понимание и способность описывать и объяснять физические явления: радиоактивное излучение, радиоактивность;

  • знание и способность давать определения/описания физических понятий:

радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Д. Томсоном и Э. Резерфордом;

  • знание и описание устройства и умение объяснить принцип действия технических устройств и установок: счётчика Гейгера, камеры Вильсона, пузырьковой камеры, ядерного реактора;


Частными предметными результатами изучения в 9 классе темы «Строение и эволюция Вселенной» (5 часов) являются:

  • представление о составе, строении, происхождении и возрасте Солнечной системы;

  • умение применять физические законы для объяснения движения планет Солнечной системы;

  • знать, что существенными параметрами, отличающими звёзды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звёзд и радиоактивные в недрах планет);

  • сравнивать физические и орбитальные параметры планет земной группы с

соответствующими параметрами планет-гигантов и находить в них общее и различное;

  • объяснять суть эффекта Х. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.


Общими предметными результатами изучения курса являются:

  • умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;

  • развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.




Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!