СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Методическая разработка комбинированного занятия для преподавателя по теме 4.3 Состав атомных ядер. Дефект массы. Деление тяжелых атомных ядер. Цепная реакция деления ядер.

Категория: Физика

Нажмите, чтобы узнать подробности

Понятие атомного ядра, дефекта массы, цепной ядерной реакции, термоядерной реакции. Ядерный реактор. Получение радиоактивных изотопов и их применение. Отработка навыка решения задач. Отработка умения уверенно пользоваться физической терминологией и символикой. Формирование собственной позиции по отношению к физической информации, получаемой из разных источников.

Просмотр содержимого документа
«Методическая разработка комбинированного занятия для преподавателя по теме 4.3 Состав атомных ядер. Дефект массы. Деление тяжелых атомных ядер. Цепная реакция деления ядер.»

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

НОВОСИБИРСКОЙ ОБЛАСТИ

«БАРАБИНСКИЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»


Рассмотрена на заседании

ЦМК ОГСЭД

Протокол № ___________

от ____________ 2019 г.

Председатель ЦМК

Хританкова Н. Ю.

(Ф. И. О.)


______________________

(подпись)


МЕТОДИЧЕСКАЯ РАЗРАБОТКА

КОМБИНИРОВАННОГО ЗАНЯТИЯ ДЛЯ ПРЕПОДАВАТЕЛЯ


Специальность 34.02.01 Сестринское дело (с базовой подготовкой)


Дисциплина: «Физика»


Раздел 4 Квантовая физика и элементы астрофизики


Тема 4.3 Состав атомных ядер. Дефект массы. Деление тяжелых атомных ядер. Цепная реакция деления ядер.



Разработчик – преподаватель Вашурина Т. В.










2019

СОДЕРЖАНИЕ

Методический лист

3

Примерная хронокарта занятия

5

Исходный материал

9

Приложение №1 Контроль знаний по предыдущей теме

18

Приложение №2 Задания для закрепления и систематизации новых знаний

23

Приложение №3 Задания для предварительного контроля знаний

24

Приложение №4 Контролирующий материал

26

Задание для самостоятельной внеаудиторной работы студентов

27

Список использованных источников

29


Выписка из рабочей программы ОУД.08. ФИЗИКА

для специальности 34.02.01 Сестринское дело (с базовой подготовкой)


Наименование разделов и тем

Содержание учебного материала, лабораторные и практические работы, самостоятельная работа обучающихся, курсовая работ (проект) (если предусмотрены)

Объем часов

Тема 4.3

Состав атомных ядер. Дефект массы. Деление тяжелых атомных ядер. Цепная реакция деления ядер.

Содержание учебного материала

2


Понятие атомного ядра, дефекта массы, цепной ядерной реакции, термоядерной реакции. Ядерный реактор. Получение радиоактивных изотопов и их применение. Отработка навыка решения задач. Отработка умения уверенно пользоваться физической терминологией и символикой. Формирование собственной позиции по отношению к физической информации, получаемой из разных источников.

Лабораторная работа

-

Практическое занятие

-

Контрольная работа

-

Самостоятельная работа обучающихся.

-подготовка сообщений: «Цепная ядерная реакция», «Создание ядерного оружия», «Работа атомной электростанции: преимущества и недостатки»;

- работа с учебником, выполнение упражнений [2, с. 306 - 316];

- работа с конспектом лекции.

1



МЕТОДИЧЕСКИЙ ЛИСТ



Тип занятия: комбинированный урок.


Вид занятия: беседа, объяснение с демонстрацией наглядных пособий, решение задач.

Продолжительность: 90 минут.



ЦЕЛИ ЗАНЯТИЯ


Учебные цели: сформировать представления о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений через изучение понятий атомного ядра, дефекта массы, цепной ядерной реакции, термоядерной реакции, ядерного реактора, получение радиоактивных изотопов и их применение; способствовать формированию умения владеть основополагающими физическими понятиями, уверенно пользоваться физической терминологией и символикой. Способствовать формированию умения организовывать собственную деятельность, выбирать типовые методы и способы выполнения упражнений (ОК 2).

Развивающие цели: развивать интерес к будущей профессии, понимание сущности и социальной значимости (ОК 1), способствовать формированию умения решать физические задачи.

Воспитательные цели: способствовать развитию коммуникативных способностей; создавать условия для развития скорости восприятия и переработки информации, культуры речи; формировать умение работать в коллективе и команде (ОК 6).



Методы обучения: объяснительно-иллюстративный с использованием информационных технологий, репродуктивный.

Место проведения: аудитория колледжа.





МОТИВАЦИЯ

Тема 4.3 «Состав атомных ядер. Дефект массы. Деление тяжелых атомных ядер. Цепная реакция деления ядер» входит в программу по учебной дисциплине Физика и имеет большое значение, т.к. знания, полученные при изучении данной темы необходимы для общего развития каждой личности. При изучении данной темы, обучающие должны усвоить теоретические вопросы, связанные с понятиями атомного ядра, дефекта массы, цепной ядерной реакции, коэффициента размножения нейтронов, ядерного реактора, получение радиоактивных изотопов и их применение.

Сколько уже в последнее время говорилось об опасности, которая несет в себе проникающая радиация, о возникновении вследствие ее пагубного действия раковых опухолей и других смертельно опасных заболеваниях. Желая обезопасить себя от пагубного влияния радиации, мы избегаем рентгеновского обследования, солнечного загара, контакта с другими потенциальными источниками опасности, покупаем радиационный дозиметр, в надежде вовремя обнаружить и обезопасить себя от облучения.

В. Гейзенберг и Д. Д. Иваненко предложили протонно-нейтронную модель ядра. Согласно этой модели ядро состоит из протонов и нейтронов. Ядра с одним и тем же числом протонов, но с разным числом нейтронов называются изотопами. Их химические свойства тождественны.

Протоны и нейтроны удерживаются внутри ядра мощными короткодействующими силами. Это ядерные силы.

Важнейшим для всей ядерной физики является понятие энергии связи. Энергия связи ядер в миллионы раз превышает энергию ионизации атомов.

На данное занятие отводится 2 учебных часа. Во время комбинированного занятия проводится актуализация знаний в форме устного опроса, с целью проверки остаточных знаний, которые необходимых при изучении нового материала; непосредственное изучение нового материала; первичного закрепление нового материала с помощью решения задач по данной теме. Контроль уровня усвоения нового материала проводится в форме самостоятельной работы студентов по решению задач. Каждому образованному человеку необходимо непрерывно пополнять свои знания в области физики, развивать интерес к будущей профессии, понимать сущность и социальную значимость (ОК 1), научиться организовывать свою деятельность, уметь выбирать методы и способы выполнения задач и в дальнейшем оценивать их качество (ОК2), а также необходимо для будущего медицинского работника научится работать в коллективе и команде (ОК6).

ПРИМЕРНАЯ ХРОНОКАРТА КОМБИНИРОВАННОГО ЗАНЯТИЯ


п/№

Наименование этапа

Время

Цель этапа

Деятельность

Оснащение

преподавателя

студентов

-1-

-2-

-3-

-4-

-5-

-6-

-7-

Организационный этап

2

Организация начала занятия, формирование способности организовывать собственную деятельность (ОК 2).

Приветствие. Проверка готовности аудитории. Отмечает отсутствующих студентов в журнале.

Староста называет отсутствующих студентов. Студенты приводят в соответствие внешний вид, готовят рабочие места.

Журнал, тетради для конспектов.


Контроль знаний по предыдущей теме

15

Оценка уровня сформированности знаний по предыдущей теме. Развитие грамотной речи обучающихся, самоконтроль своих знаний.


Инструктирует и проводит контроль знаний.


Повторяют домашнее задание, отвечают устно.

Вопросы для устного опроса. Приложение 1.


Мотивационный этап и целеполагание

2

Развитие интереса к будущей профессии, понимания сущности и социальной значимости (ОК 1), установка приоритетов при изучении темы.


Объясняет студентам важность изучения данной темы, озвучивает цели занятия.

Слушают, задают вопросы, записывают новую тему в тетради.

Методическая разработка комбинированного занятия, мультимедийная презентация.

Изложение исходной информации

30

Формирование знаний, понимания сущности и социальной значимости своей будущей профессии (ОК 1),

Формирование представления о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений через изучение понятий атомного ядра, дефекта массы, цепной ядерной реакции, термоядерной реакции, ядерного реактора, получение радиоактивных изотопов и их применение; способствовать формированию умения владеть основополагающими физическими понятиями, уверенно пользоваться физической терминологией и символикой.


Излагает новый материал, демонстрирует презентацию.

Слушают, читают материал на слайдах, записывают.

Методическая разработка (исходный материал), мультимедийное оборудование, мультимедийная презентация.

Выполнение заданий для закрепления знаний

17

Закрепление, систематизация, обобщение новых знаний. Отработать навык решения задач. Организация собственной деятельности, выбор типовых методов и способов решения задач, оценка их выполнения (ОК2).

Инструктирует и контролирует выполнение заданий, обсуждает правильность ответов, отвечает на вопросы студентов.

Выполняют задания, слушают правильные ответы после выполнения, вносят коррективы, задают вопросы.

Слайды презентации с текстами заданий.

Приложение 2.

Предварительный контроль новых знаний

10




Оценка эффективности занятия и выявление недостатков в новых знаниях.

Инструктирует и проводит контроль.

Устно отвечают на вопросы.

Вопросы для предварительного контроля знаний.

Приложение 3.

С. р.

Итоговый контроль. Взаимопроверка

10

Закрепление материала, формирование умения делать выводы, обобщать.



Формирование умения работать в команде (ОК6). Контроль усвоения знаний и умений учащихся.

Контролирует ход работы.



Контролирует взаимопроверку, поясняет критерии оценки.

Работают в малых группах, решают задачи по образцу (письменно).


Предоставляют выполненное задание, сопоставляют ответы с эталонами, выставляют оценки.


Контролирующий материал.

Приложение 4.


Слайд презентации с эталонами ответов и критериями отметки.

Подведение итогов занятия

2

Развитие эмоциональной устойчивости, дисциплинированности, объективности оценки своих действий, умения работать в коллективе и команде (ОК6).

Оценивает работу группы в целом. Объявляет оценки, мотивирует студентов, выделяет наиболее подготовленных.


Слушают, участвуют в обсуждении, задают вопросы.

Журнал группы.



Задание для самостоятельной внеаудиторной работы студентов

2

Определить объем информации для самостоятельной работы студента, обратить внимание на значимые моменты.


Дает задание для самостоятельной внеаудиторной работы студентов, инструктирует о правильности выполнения, критериях оценивания.

Записывают задание.

Слайд презентации с домашним заданием.

ИСХОДНЫЙ МАТЕРИАЛ

План изложения учебного материала по теме: «Состав атомных ядер. Дефект массы. Деление тяжелых атомных ядер. Цепная реакция деления ядер»

1. Состав атомных ядер.

2. Открытие нейтронов.

3. Ядерные силы.

4. Энергия связи. Дефект массы.

5. Деление тяжелых атомных ядер.

6. Цепная реакция деления ядер.

7. Термоядерные реакции.

1. Состав атомных ядер

К 20-м годам XX века физики уже не сомневались в том, что атомные ядра, открытые Э. Резерфордом в 1911 г., также как и сами атомы, имеют сложную структуру. В этом их убеждали многочисленные экспериментальные факты, накопленные к этому времени: открытие радиоактивности, экспериментальное доказательство ядерной модели атома, измерение отношения e / m для электрона, α-частицы и для так называемой H-частицы – ядра атома водорода, открытие искусственной радиоактивности и ядерных реакций, измерение зарядов атомных ядер и т. д.

В настоящее время твердо установлено, что атомные ядра различных элементов состоят из частиц двух видов – протонов и нейтронов.

Первая из этих частиц представляет собой атом водорода, из которого удален единственный электрон. Эта частица наблюдалась уже в 1907 г. в опытах Дж. Томсона, которому удалось измерить у нее отношение e / m. В 1919 году Э. Резерфорд обнаружил ядра атома водорода в продуктах расщепления ядер атомов многих элементов. Резерфорд назвал эту частицу протоном. Он высказал предположение, что протоны входят в состав всех атомных ядер. Схема опытов Резерфорда представлена на рис. 1.

Рисунок 1.Схема опытов Резерфорда по обнаружению протонов в продуктах расщепления ядер. К – свинцовый контейнер с радиоактивным источником α-частиц, Ф – металлическая фольга, Э – экран, покрытый сульфидом цинка, М – микроскоп


По современным измерениям, положительный заряд протона в точности равен элементарному заряду e = 1,60217733·10–19 Кл, то есть равен по модулю отрицательному заряду электрона. В настоящее время равенство зарядов протона и электрона проверено с точностью 10–22. Такое совпадение зарядов двух непохожих друг на друга частиц вызывает удивление и остается одной из фундаментальных загадок современной физики.


Масса протона, по современным измерениям, равна mp= 1,67262∙10–27 кг. В ядерной физике массу частицы часто выражают в атомных единицах массы (а. е. м.), равной массы атома углерода с массовым числом 12: 1 а. е. м. =

= 1,66057·10–27 кг.


Следовательно, mp = 1,007276 а. е. м. Во многих случаях массу частицы удобно выражать в эквивалентных значениях энергии в соответствии с формулой E = mc2. Так как 1 эВ = 1,60218·10–19 Дж, в энергетических единицах масса протона равна 938,272331 МэВ.


Таким образом, в опыте Резерфорда было открыто явление расщепления ядер азота и других элементов при ударах быстрых α-частиц и показано, что протоны входят в состав ядер атомов.


После открытия протона было высказано предположение, что ядра атомов состоят из одних протонов. Однако это предположение оказалось несостоятельным, так как отношение заряда ядра к его массе не остается постоянным для разных ядер, как это было бы, если бы в состав ядер входили одни протоны. Для более тяжелых ядер это отношение оказывается меньше, чем для легких, т. е. при переходе к более тяжелым ядрам масса ядра растет быстрее, чем заряд.

2. Открытие нейтронов (доклад студентов с презентацией)

В 1920 г. Резерфорд высказал гипотезу о существовании в составе ядер жестко связанной компактной протон-электронной пары, представляющей собой электрически нейтральное образование – частицу с массой, приблизительно равной массе протона. Он даже придумал название этой гипотетической частице – нейтрон. Это была очень красивая, но, как выяснилось впоследствии, ошибочная идея. Электрон не может входить в состав ядра. Квантово-механический расчет на основании соотношения неопределенностей показывает, что электрон, локализованный в ядре, т. е. области размером R ≈ 10–13 см, должен обладать колоссальной кинетической энергией, на много порядков превосходящей энергию связи ядер в расчете на одну частицу. Однако идея о существовании тяжелой нейтральной частицы казалась Резерфорду настолько привлекательной, что он незамедлительно предложил группе своих учеников во главе с Дж. Чедвиком заняться ее поиском. Через 12 лет, в 1932 г. Чедвик экспериментально исследовал излучение, возникающее при облучении бериллия α-частицами, и обнаружил, что это излучение представляет собой поток нейтральных частиц с массой, примерно равной массе протона. Так был открыт нейтрон. На рис. 2 приведена упрощенная схема установки для обнаружения нейтронов.

Рисунок 2.Схема установки для обнаружения нейтронов



При бомбардировке бериллия α-частицами, испускаемыми радиоактивным полонием, возникает сильное проникающее излучение, способное преодолеть такую преграду, как слой свинца толщиной в 10–20 см. Это излучение почти одновременно с Чедвиком наблюдали супруги Ирен и Фредерик Жолио-Кюри (Ирен – дочь Марии и Пьера Кюри), но они предположили, что это γ-лучи большой энергии. Они обнаружили, что если на пути излучения бериллия поставить парафиновую пластину, то ионизирующая способность этого излучения резко возрастает. Они доказали, что излучение бериллия выбивает из парафина протоны, которые в большом количестве имеются в этом водородосодержащем веществе. По длине свободного пробега протонов в воздухе они оценили энергию γ-квантов, способных при столкновении сообщить протонам необходимую скорость. Она оказалась огромной – порядка 50 МэВ.


Дж. Чедвик в 1932 г. выполнил серию экспериментов по всестороннему изучению свойств излучения, возникающего при облучении бериллия α-частицами. В своих опытах Чедвик использовал различные методы исследования ионизирующих излучений. На рис. 2 изображен счетчик Гейгера, предназначенный для регистрации заряженных частиц. Он состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой нити, идущей вдоль оси трубки (анод). Трубка заполняется инертным газом (обычно аргоном) при низком давлении. Заряженная частица, пролетая в газе, вызывает ионизацию молекул. Появившиеся в результате ионизации свободные электроны ускоряются электрическим полем между анодом и катодом до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и через счетчик проходит короткий разрядный импульс тока. Другим важнейшим прибором для исследования частиц является так называемая камера Вильсона, в которой быстрая заряженная частица оставляет след (трек). Траекторию частицы можно наблюдать непосредственно или фотографировать. Действие камеры Вильсона, созданной в 1912 г., основано на конденсации перенасыщенного пара на ионах, образующихся в рабочем объеме камеры вдоль траектории заряженной частицы. С помощью камеры Вильсона можно наблюдать искривление траектории заряженной частицы в электрическом и магнитном полях.

Нейтрон – это элементарная частица. Ее не следует представлять в виде компактной протон-электронной пары, как первоначально предполагал Резерфорд.

По современным измерениям, масса нейтрона mn = 1,67493∙10–27 кг = 1,008665 а. е. м. В энергетических единицах масса нейтрона равна 939,56563 МэВ. Масса нейтрона приблизительно на две электронные массы превосходит массу протона. Сразу же после открытия нейтрона российский ученый Д. Д. Иваненко и немецкий физик В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями. Протоны и нейтроны принято называть нуклонами.


Для характеристики атомных ядер вводится ряд обозначений. Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом или атомным номером (это порядковый номер в периодической таблице Менделеева). Заряд ядра равен Ze, где e – элементарный заряд. Число нейтронов обозначают символом N.


Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом A: A = Z + N


Ядра одного и того же химического элемента могут отличаться числом нейтронов. Такие ядра называются изотопами. У большинства химических элементов имеется несколько изотопов.

3. Ядерные силы

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удерживающие нуклоны в ядре, называются ядерными. Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы примерно в 100 раз превосходят электростатические силы и на десятки порядков превосходят силы гравитационного взаимодействия нуклонов. Важной особенностью ядерных сил является их короткодействующий характер. Ядерные силы заметно проявляются, как показали опыты Резерфорда по рассеянию α-частиц, лишь на расстояниях порядка размеров ядра (10–12–10–13 см). На больших расстояниях проявляется действие сравнительно медленно убывающих кулоновских сил.


На основании опытных данных можно заключить, что протоны и нейтроны в ядре в отношении сильного взаимодействия ведут себя одинаково, т. е. ядерные силы не зависят от наличия или отсутствия у частиц электрического заряда.

4. Энергия связи. Дефект массы

Важнейшую роль в ядерной физике играет понятие энергии связи ядра.


Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.


Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра Mя всегда меньше суммы масс входящих в его состав протонов и нейтронов:

p + Nmn.


Разность масс ΔM = Zmp + Nmn – Mя.

называется дефектом массы.


По дефекту массы с помощью формулы Эйнштейна E = mc2 можно определить энергию, выделившуюся при образовании данного ядра, т. е. энергию связи ядра Eсв: Eсв = ΔMc2 = (Zmp + Nmn – Mя)c2.


Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.

В качестве примера рассчитаем энергию связи ядра гелия , в состав которого входят два протона и два нейтрона. Масса ядра гелия Mя = 4,00260 а. е. м. Сумма масс двух протонов и двух нейтронов составляет 2mp + 2mn = 4, 03298 а. е. м. Следовательно, дефект массы ядра гелия равен ΔM = 0,03038 а. е. м. Расчет по формуле Eсв = ΔMc2 приводит к следующему значению энергии связи ядра :Eсв = 28,3 МэВ. Это огромная величина. Образование всего 1 г гелия сопровождается выделением энергии порядка 1012 Дж. Примерно такая же энергия выделяется при сгорании почти целого вагона каменного угля. Энергия связи ядра на много порядков превышает энергию связи электронов с атомом. Для атома водорода например, энергия ионизации равна 13,6 эВ.


5.Деление тяжелых атомных ядер

Энергия, освобождаемая при различных превращениях ядер, называется ядерной.

Оба пути получения ядерной энергии – деление тяжелых ядер и соединение (синтез) легких ядер – используются в настоящее время. Первый путь применяется в ядерных реакциях с тяжелыми элементами, например с изотопами урана, второй – в термоядерных реакциях с легкими элементами, например с изотопами водорода (дейтерием, тритием).

Деление ядер атомов может происходить самопроизвольно или при воздействии на них различных элементарных частиц и легких ядер.

Самопроизвольный распад ядер происходит в естественных условиях, при этом интенсивность процесса не поддается управлению и определяется исключительно индивидуальными физическими свойствами самих радионуклидов и не зависит от внешних условий.

В атомных реакторах и ядерных боеприпасах деление ядер атомов (делящихся) веществ осуществляется при помощи нейтронов. Эти ядерные частицы способны сравнительно легко проникать в ядро, поскольку им не приходится преодолевать при этом электростатические силы отталкивания ядра.

Механизм деления тяжелых ядер под действием нейтронов состоит в следующем (на примере деления  U, рис. 3).




Рис. 3. Механизм деления тяжелых ядер

Нейтрон захватывается ядром  U, при этом образуется неустойчивое промежуточное ядро (  U) вследствие получения ядром дополнительной энергии (возбуждения), равной сумме энергии связи нуклонов в ядре и кинетической энергии захваченного нейтрона n.

Если энергия возбуждения промежуточного ядра превысит определенный порог, величина которого различна для разных ядер, ядро разделится на части (осколки), т. е. произойдет реакция деления. Если же указанный порог не будет превышен, то деление не произойдет, а выделится элементарная частица или гамма-квант с определенной энергией, а ядро возвратится в основное состояние.


6. Цепная реакция деления ядер


Из всех известных реакций деления тяжелых ядер нейтронами наибольший интерес представляют реакции деления ядер атомов  U,  U и  Pu. При захвате ядрами этих изотопов нейтронов даже с очень небольшой энергией (медленных нейтронов) происходит деление ядер на два осколка, обладающих большей энергией, чем исходные ядра. Кроме того, в момент деления испускаются 2–3 нейтрона, которые способны разделить 2–3 новых ядра этих же изотопов, в результате чего могут появиться еще 2–3 нейтрона на каждое разделившееся ядро и т. д. (рис. 4).


Рис. 4. Цепная ядерная реакция деления  U

Следовательно, в большой массе этих изотопов создаются условия для возникновения саморазвивающейся цепной ядерной реакции деления, при которой число делящихся ядер будет нарастать лавинообразно и в течение весьма малого промежутка времени выделится огромное количество энергии. Так при делении всех ядер атомов, находящихся в 1 г  U, освобождается такое же количество энергии, как при взрыве тротилового заряда весом 20 т.

В других изотопах урана и плутония саморазвивающаяся цепная реакция деления осуществлена быть не может, т. к. энергия нейтронов, образующихся при делении ядер атомов этих изотопов, недостаточна для последующих делений. Так, например, для деления ядра  U требуются нейтроны с кинетической энергией не менее 0,9 МэВ. Вещества, в которых возможно осуществление саморазвивающейся цепной ядерной реакции деления, называют делящимися веществами или ядерным горючим.

Саморазвивающаяся (цепная) реакция деления на тепловых нейтронах может носить неуправляемый (взрывной) характер, при этом она служит источником энергии в ядерных боеприпасах, и управляемый характер – служит источником получения тепловой энергии в ядерных реакторах.

Для получения управляемой цепной ядерной реакции, очевидно, необходимо создать такие условия, чтобы каждое ядро, поглотившее нейтрон, при делении выделяло в среднем один нейтрон идущего на деление второго тяжелого ядра.

Основное количество энергии ядерных реакций выделяется в виде теплоты. Так, например, температура в области ядерного взрыва достигает 10 млн. градусов Цельсия.

В ядерных реакторах используются не чистые изотопы, а их смеси, например природный уран (  U), обогащенный изотопами  U (до 5%). С помощью специальных поглотителей нейтронов число делений в единицу времени поддерживается на заданном уровне, не приводящем к перегреву и разрушению реактора.

7. Термоядерные реакции

Другим способом получения ядерной энергии является соединение легких ядер (реакция синтеза). Осуществить реакцию синтеза значительно труднее, чем реакцию деления. Это объясняется тем, что соединению ядер препятствует их взаимное электростатическое отталкивание. Соединиться могут только ядра, обладающие большим запасом кинетической энергии. Такие ядра, двигаясь с огромной скоростью, могут сближаться настолько, что между ними начнут действовать ядерные силы взаимного притяжения, которые обусловливают соединение легких ядер, сопровождающееся выделением быстрых нейтронов. Необходимую скорость движения ядра могут приобрести при температуре порядка миллионов градусов. По этой причине реакции синтеза ядер называются термоядерными реакциями.

В природе термоядерные реакции существуют в недрах Солнца и Звезд, где температура достигает десятков миллионов градусов. В земных условиях температура, необходимая для протекания реакции синтеза ядер, пока что достигается только в зоне ядерного взрыва, основанного на делении тяжелых ядер.

Создание высокой температуры с помощью внешнего источника необходимо лишь для начала реакции, а затем она сможет поддерживаться за счет собственной энергии. Если энергетические потери окажутся большими, чем выделяющаяся энергия, то температура понизится и термоядерная реакция прекратится.


ПРИЛОЖЕНИЕ №1

КОНТРОЛЬ ЗНАНИЙ ПО ПРЕДЫДУЩЕЙ ТЕМЕ (устно)

Студенту предлагается дать развернутый ответ на каждый из следующих пунктов:

  1. Естественная радиоактивность. История открытия

  2. Радиоактивный распад

  3. Закон радиоактивного распада

  4. Изотопы

  5. Биологическое действие радиоактивных излучений


Естественная радиоактивность.

История открытия

История радиоактивности началась с того, как в 1896 году А. Беккерель занимался люминесценцией и исследованием рентгеновских лучей.

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он случайно взял одну из солей урана, фосфоресцирующего жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом. В конце февраля 1896 г. на заседании Французской Академии наук он сделал сообщение о рентгеновском излучении фосфоресцирующих веществ.

Через некоторое время в лаборатории Беккереля была случайно проявлена не облучённая Солнцем пластинка, на которой лежала урановая соль. Она, естественно, не фосфоресцировала, но отпечаток на пластинке получился! Тогда Беккерель стал испытывать разные соли урана (в том числе годами лежащие в темноте). Пластинка неизменно засвечивается. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. То есть это свойство присуще не соединениям, а химическому элементу — урану.

Своим открытием Беккерель делится с учёными, с которыми он сотрудничал. В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.


Радиоактивный распад -

(от лат. radius «луч» и āctīvus «действенный») — спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и некоторые более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, например индия, калия или кальция, одни природные изотопы стабильны, другие же радиоактивны).

Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.

Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.

Рис. 1

Энергетические спектры α-частиц и γ-квантов, излучаемых радиоактивными ядрами, прерывистые («дискретные»), а спектр β-частиц — непрерывный.

Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом. Гамма-излучение часто сопровождает другие типы распада.

В настоящее время, кроме альфа-, бета- и гамма-распадов, обнаружены распады с эмиссией нейтрона, протона (а также двух протонов), кластерная радиоактивность, спонтанное деление. Электронный захват, позитронный распад (или -распад), а также двойной бета-распад (и его виды) обычно считаются различными типами бета-распада.

Некоторые изотопы могут испытывать одновременно два или более видов распада. Например, висмут-212 распадается с вероятностью 64 % в таллий-208 (посредством альфа-распада) и с вероятностью 36 % в полоний-212 (посредством бета-распада).

Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. В частности, для радиоактивных рядов, начинающихся с урана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.

Закон радиоактивного распада

В любом образце радиоактивного вещества содержится огромное число радиоактивных атомов. Так как радиоактивный распад имеет случайный характер и не зависит от внешних условий, то закон убывания количества N(t) нераспавшихся к данному моменту времени t ядер может служить важной статистической характеристикой процесса радиоактивного распада.

Пусть за малый промежуток времени Δt количество нераспавшихся ядер N(t) изменилось, где N0 – начальное число радиоактивных ядер при t = 0. Время τ называют средним временем жизни радиоактивного ядра.


Для практического использования закон радиоактивного распада удобно записать в виде:

N(t) = N0 · 2–t/T

Величина T называется периодом полураспада. За время T распадается половина первоначального количества радиоактивных ядер.


Рис. 2 Иллюстрирует закон радиоактивного распада.



Изотопы

ИЗОТОПЫ - разновидности атомов химического элемента, имеющие одинаковое число протонов, но разное число нейтронов в ядре. У изотопов данного элемента одинаковый атомный номер (равный числу протонов) и почти одинаковые химические свойства, но разные массовые числа (определяемые числом протонов и нейтронов) и немного различающиеся физические свойства. Изотопы были открыты независимо Б.Болтвудом в 1906 и Г.Мак-Коем и В.Россом в 1907 при изучении радиоактивности тяжелых элементов, а термин «изотоп» предложил английский химик Ф.Содди в 1910. Слово образовано из двух греческих слов, означающих «одинаковый» (isos) и «место» (topos), т.к. данные разновидности атомов каждого элемента занимают одно и то же место в периодической системе элементов Менделеева. Изотопы обозначают по-разному. Например, изотоп углерода, содержащий 6 протонов и 6 нейтронов, можно представить одним из следующих способов: углерод-12, С-12, 12С, где 12 – массовое число. Иногда указывают также число протонов, например 126С.

Различают стабильные изотопы, которые существуют в неизменном виде неопределенно долго, и нестабильные (радиоизотопы), которые со временем распадаются. Стабильные изотопы открыл в 1919 английский физик Ф.Астон с помощью созданного им масс-спектрографа. Радиоизотопы многих элементов получены искусственным путем в ядерных реакторах. Из первых 103 химических элементов 18 представлены только радиоизотопами. 20 элементов не имеют изотопов, т.е. представлены стабильными атомами одного типа. У остальных 65 элементов существует по два и более стабильных изотопов. Атомные массы элементов в периодической системе – это средние массовые числа природных смесей изотопов. Изотопный состав природных элементов практически постоянен. Так, у природного углерода два стабильных изотопа, 12С и 13С, и соотношение между ними равно 98,89:1,11.

Радиоизотопы широко применяются в научных исследованиях в качестве изотопных индикаторов (меток) и в самых разных областях науки и техники в качестве источников радиоактивных излучений. Они используются в медицине (диагностика, лучевая терапия).


Биологическое действие радиоактивных излучений

Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели.

Радиоактивное излучение всех видов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма. Поэтому при работе с любым источником радиации необходимо принимать все меры по радиационной защите людей, которые могут попасть в зону действия излучения.

Однако человек может подвергаться действию ионизирующей радиации и в бытовых условиях. Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон Как видно из схемы, изображенной на рис. 6.7.5, радон является продуктом α-распада радия и имеет период полураспада T = 3,82 сут. Радий в небольших количествах содержится в почве, в камнях, в различных строительных конструкциях. Несмотря на сравнительно небольшое время жизни, концентрация радона непрерывно восполняется за счет новых распадов ядер радия, поэтому радон может накапливаться в закрытых помещениях. Попадая в легкие, радон испускает α-частицы и превращается в полоний который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана (рис. 6.7.5).

По данным Американской комиссии радиационной безопасности и контроля, человек в среднем получает 55 % ионизирующей радиации за счет радона и только 11 % за счет медицинских обслуживаний. Вклад космических лучей составляет примерно 8 %. Общая доза облучения, которую получает человек за жизнь, во много раз меньше предельно допустимой дозы (ПДД), которая устанавливается для людей некоторых профессий, подвергающихся дополнительному облучению ионизирующей радиацией.


Критерии оценки:

Оценка «5» - на поставленный вопрос студент дал полный развернутый ответ и ответил на дополнительный вопрос;

Оценка «4» - на поставленный вопрос студент дал полный развернутый ответ, но не ответил на дополнительный вопрос;

Оценка «3» - на поставленный вопрос студент дал неполный ответ и не смог ответить на дополнительный вопрос;

Оценка «2» - не ответил на поставленный вопрос.



ПРИЛОЖЕНИЕ №2

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ И СИСТЕМАТИЗАЦИИ НОВЫХ ЗНАНИЙ (письменно, не оценивается)

А1. Ядро, какого из элементов содержит 10 нейтронов?

А2. Чему равно число электронов в ядре?

А3. Протактиний подвергся двум a- и одному - распадам. Конечным продуктом реакции является…

А4. Период полураспада ядер атомов свинца составляет 3,3ч. Какое утверждение справедливо?

1) за 3,3 часа распадется примерно половина из имеющихся ядер

2) за 3,3 часа распадется в точности половина из имеющихся ядер

3) за 6,6 часа распадутся все имеющиеся ядра

4) каждые 3,3 часа распадется в среднем одно ядро


В. Найдите энергию связи (МэВ) между нуклонами для гелия масса ядра mя=4,00260 а.е.м.


Масса покоя протона mp = 1,007276 а.е.м., масса покоя нейтрона mn = 1,008665 а.е.м.


С. Какое количество урана-235 расходуется в сутки на атомной электростанции мощностью 50 МВт? При распаде одного ядра урана выделяется энергия 200 МэВ, КПД электростанции 17%?


Эталоны ответов:

А4

В

С

1

27,3 МэВ

0,311 кг


ПРИЛОЖЕНИЕ № 3

ЗАДАНИЯ ДЛЯ ПРЕДВАРИТЕЛЬНОГО КОНТРОЛЯ ЗНАНИЙ

(Устно, не оценивается. Эталоны ответов к вопросам для предварительного контроля знаний содержатся в исходном материале)

Выберите все верные варианты ответа

1.В состав ядра атома входят

А) нуклоны

Б) протоны и нейтроны

В) позитроны и нейтроны

Г) протоны и электроны


2.Нейтрон….; протон….

А) - имеет массу порядка 1а.е.м., положительный заряд в 1 ед. заряда;

-имеет массу 2 а.е.м., не имеет заряда

Б) - имеет массу порядка 1а.е.м., не имеет заряда; - имеет массу 2 а.е.м., положительный заряд в 1 ед. заряда

В) - имеет массу порядка 1а.е.м., не имеет заряда; - имеет массу 1 а.е.м., положительный заряд в 1 ед. заряда

Г) - имеет массу порядка 1а.е.м., не имеет заряда; - имеет массу 1 а.е.м., отрицательный заряд в 1 ед. заряда


3. Числом… определяется заряд ядра

А) нуклонов

Б) протонов

В) нейтронов

Г) электронов

4. Изотопы отличаются друг от друга числом
А) электронов

Б) протонов и нейтронов

В) протонов

Г) нейтронов


5.Какое свойство не присуще ядерным силам

А) притяжение

Б) короткодействие

В) насыщение

Г) отталкивание


6.Энергия связи

А) одинакова для всех ядер

Б) может быть больше энергии нуклонов

В) показывает энергию, необходимую для деления ядра на нуклоны

Г) равна произведению дефекта масс на квадрат скорости света


7. Альфа-излучение - это поток

А) электронов

Б) протонов

В) ядер атомов гелия

Г) квантов электромагнитного излучения.


8.Бета-излучение - это поток

А) электронов

Б) протонов

В) ядер атомов гелия

Г) квантов электромагнитного излучения.


9.Гамма-излучение - это поток

А) электронов

Б) протонов

В) ядер атомов гелия

Г) квантов электромагнитного излучения.

10.Порядковый номер элемента, который получается в ре­зультате электронного бета-распада ядра, равен

A) Z + 2

Б) Z+1

В) Z

Г) Z - 2


11.Не отклоняется магнитными и электрическими полями излучение типа

А) α

Б) β

В) γ

Г) n


12.Наименьшей проникающей способностью обладает излучение типа
А) α

Б) β

В) γ

Г) n


13.Какие из ядерных реакций возможны

А) 14 7N + 4 2Не =17 8О + 1 1H

Б) 24 12Мg + 1 1H = 22 11Na + 4 2He


Эталоны ответов:

1

2

3

4

5

6

7

8

9

10

11

12

13

АБ

В

Б

Г

Г

ВГ

В

А

Г

Б

ВГ

А

А






ПРИЛОЖЕНИЕ №4

КОНТРОЛИРУЮЩИЙ МАТЕРИАЛ (письменно)


1. Каков состав ядер


2. Имеется 109 атомов радиоактивного изотопа цезия. Период его полураспада 26 лет. Какое количество ядер изотопа останется через 52 года?


3. При облучении ядер бора - 11 протонами образовались ядра бериллия-8. Какие еще ядра получаются в этой реакции. Напишите уравнение ядерной реакции. Сколько энергии выделяется или поглощается в этой реакции?


4. Чему равна электрическая мощность АЭС, имеющей КПД 25%, если она расходует 235г урана-235 в сутки. При делении одного ядра выделяется 3,2*10-11Дж энергии





Эталоны ответов к заданиям контролирующего материала:

№1

№2

№3

№4

p=12 n=13

p=9 n=11


2,5*108


8,6 МэВ


56 МВт


Критерии оценки:

2 правильных ответа – «3» балла;

3 правильных ответа – «4» балла;

4 правильных ответа – «5» баллов.





ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ ВНЕАУДИТОРНОЙ РАБОТЫ СТУДЕНТОВ

Цель: Определить объем информации для самостоятельной работы студента, обратить внимание на значимые моменты.


Время для выполнения задания: 45 минут.

Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Соцкий, Физика. 11 класс. Учебник для общеобразовательных учреждений (с приложением на электронном носителе). Базовый и профильный уровни - М.: Просвещение, 2011 г., с. 306-312, параграфы 104, 105, 106 прочитать, конспект выучить. Подготовить сообщение по теме: «Цепная ядерная реакция», «Создание ядерного оружия», «Работа атомной электростанции: преимущества и недостатки» и др. (по желанию студента).

Критерии оценки:

  • студент выучил конспект – «3» балла;

  • студент прочитал параграфы и выучил конспект, не ответил на дополнительный вопрос по теме – «4» балла;

  • студент выучил конспект, владеет информацией из учебника, ответил на дополнительный вопрос по теме – «5» баллов.

  • Студент подготовил сообщение, соответствующий требованиям, ответил на дополнительный вопрос - «5» баллов.



ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ СООБЩЕНИЯ


1. Сообщение оформляется на компьютере, сдается преподавателю в мультифоре.

2. Шрифт Times New Roman, 14 пт, межстрочный интервал – одинарный, поля по 1,5 см справа и слева, текст выравниваются по ширине, заголовок – посредине. Ф.И. автора – по правому краю.

3. Объем сообщения – 2-3 страницы формата А4; время выступления – не более 5 минут.

4. В сообщении не выделяются главы; недопустимы орфографические ошибки, опечатки, записи и исправления ручкой или карандашом.

5. В конце сообщения указывается список информационных источников.

6. Сообщение может сопровождаться мультимедийной презентацией (по желанию автора).



Например,

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ


Иванов Максим, студент 219 группы

отделения Сестринское дело


Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой. Тепловой двигатель – устройство, превращающее внутреннюю энергию топлива в механическую энергию….

Информационные источники:

  1. Применение двигателей внутреннего сгорания [Электронный ресурс]/ nsportal// Режим доступа: http://nsportal.ru/shkola/mezhdistsiplinarnoe-obobshchenie/library/2011/12/07/ultrazvuk-i-ego-primenenie-v-meditsine

  2. Устройство двигателя внутреннего сгорания [Электронный ресурс]/ rasteniya-lecarstvennie// Режим доступа: http://www.rasteniya-lecarstvennie.ru/20218-primenenie-ultrazvuka-v-medicine-i-tehnike-kratko.html

  3. Физика вокруг нас – неизвестное об известном [Электронный ресурс]/ physicsaroundus.weebly// Режим доступа: http://physicsaroundus.weebly.com/1059108311001090108810721079107410911082.html

!!! Определите самостоятельно, соответствует ли Ваше сообщение требованиям к оформлению. Для этого внимательно прочтите их и подчеркните каждое выполненное требование. Проведите коррекцию работы по тем требованиям, которые не выполнены.




СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ



  1. Студопедия [Электронный ресурс]/ Studopedia // Режим доступа https://studopedia.ru/19_239572_delenie-tyazhelih-yader-i-tsepnaya-reaktsiya-deleniya.htm

  2. Физика. 11 класс [Текст]: учебник для общеобразоват. учреждений с прил. на электрон. носителе: базовый и профил. уровни / Г. Я. Мякишев, Б. Б. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 20-е изд. - М. : Просвещение, 2011. – 399 с.

  3. Энергия связи [Электронный ресурс]/ Wiki2 // Режим доступа https://wiki2.org/ru/Энергия_связи

  4. Физика. Задачник. 10-11 кл. [Текст]: пособие для общеобразоват. Учреждений / А. П. Рымкевич. – 9-е изд., стереотип. – М. : Дрофа, 2005. – 188, [4] с.




Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!