СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Математика. Тригонометрические уравнения и способы их решения. Примеры + решения.

Категория: Математика

Нажмите, чтобы узнать подробности

Чтобы решить тригонометрическое уравнение, надо попытаться:

1. привести все функции входящие в уравнение к «одинаковым углам»; 2. привести уравнение к «одинаковым функциям»; 3. разложить левую часть уравнения на множители и т.п.

Рассмотрим основные методы решения тригонометрических уравнений.

I. Приведение к простейшим тригонометрическим уравнениям

Схема решения

Шаг 1. Выразить тригонометрическую функцию через известные компоненты.

Шаг 2. Найти аргумент функции по формулам:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1)n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Шаг 3. Найти неизвестную переменную.

Пример.

2 cos(3x – π/4) = -√2.

Решение.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Замена переменной

Схема решения

Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.

Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).

Шаг 3. Записать и решить полученное алгебраическое уравнение.

Шаг 4. Сделать обратную замену.

Шаг 5. Решить простейшее тригонометрическое уравнение.

Пример.

2cos2 (x/2) – 5sin (x/2) – 5 = 0.

Решение.

1) 2(1 – sin2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin2 (x/2) + 5sin (x/2) + 3 = 0.

2) Пусть sin (x/2) = t, где |t| ≤ 1.

3) 2t2 + 5t + 3 = 0;

t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Ответ: x = π + 4πn, n Є Z.

III. Метод понижения порядка уравнения

Схема решения

Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:

sin2 x = 1/2 · (1 – cos 2x);

cos2 x = 1/2 · (1 + cos 2x);

tg2 x = (1 – cos 2x) / (1 + cos 2x).

Шаг 2. Решить полученное уравнение с помощью методов I и II.

Пример.

cos 2x + cos2 x = 5/4.

Решение.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

cos 2x = 1/2;

2x = ±π/3 + 2πn, n Є Z;    

x = ±π/6 + πn, n Є Z.

Ответ:  x = ±π/6 + πn, n Є Z.

IV. Однородные уравнения

Схема решения

Шаг 1. Привести данное уравнение к виду

a) a sin x + b cos x = 0 (однородное уравнение первой степени)

или к виду

б) a sin2 x + b sin x · cos x + c cos2 x = 0 (однородное уравнение второй степени).

Шаг 2. Разделить обе части уравнения на

а) cos x ≠ 0;

б) cos2 x ≠ 0;

и получить уравнение относительно tg x:

а) a tg x + b = 0;

б) a tgx + b arctg x + c = 0.

Шаг 3. Решить уравнение известными способами.

Пример.

5sin2 x + 3sin x · cos x – 4 = 0.

Решение.

1) 5sin2 x + 3sin x · cos x – 4(sin2 x + cos2 x) = 0;

5sin2 x + 3sin x · cos x – 4sin² x – 4cos2 x = 0;

sin2 x + 3sin x · cos x – 4cos2 x = 0/cos2 x ≠ 0.

2) tg2 x + 3tg x – 4 = 0.

3) Пусть tg x = t, тогда

t2 + 3t – 4 = 0;

t = 1 или t = -4, значит

tg x = 1 или tg x = -4.

Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.

Ответ:  x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод преобразования уравнения с помощью тригонометрических формул

Схема решения

Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.

Шаг 2. Решить полученное уравнение известными методами.

Пример.

sin x + sin 2x + sin 3x = 0.

Решение.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 или 2cos x + 1 = 0;

Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.

Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.

В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Ответ:  х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

 

Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.

С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.

Решение простейших тригонометрических уравнений

Пример 1. Найдите корни уравнения

 

  

принадлежащие промежутку 

Решение. Используем вторую формулу на рисунке. Здесь и далее полагаем  (на всякий случай, эта запись означает, что числа  и  принадлежат множеству целых чисел):

  

Арккосинус  есть число, заключенное в интервале от до , косинус которого равен .

Арксинус  есть число, заключенное в интервале от  до , косинус которого равен .

Другими словами, нам нужно подобрать такое число из промежутка  косинус которого был бы равен  Это число  Используя это, получаем:

  

Вообще, значения тригонометрических функций от основных аргументов нужно знать. Их совсем чуть-чуть:

Таблица значений тригонометрических функций

Хотя на самом деле запоминать их вовсе не обязательно. Существует очень простой алгоритм, используя который, можно в уме легко вычислять значения тригонометрических функций всех основных аргументов. Просто у каждого он свой. Придумайте его и для себя. Просто посмотрите на эту таблицу. Числа в ней расположены не случайным образом, определенная закономерность есть, постарайтесь ее найти.

Итак, вернемся к нашему заданию. Из полученных серий выбираем только те ответы, которые принадлежат промежутку Воспользуемся для этого методом двойных неравенств. Вы помните, что  и  — целые числа:

1)     

2)   

Решение линейных тригонометрических уравнений

Пример 2. Найдите корни уравнения

 

  

принадлежащие промежутку 

Решение. Подобные уравнения решаются один весьма интересным, на мой взгляд, способом. Разделим обе части на , уравнение тогда примет вид:

  

Подберем такое число, синус которого равен  а косинус равен Например, пусть это будет число . С учетом этого перепишем уравнение в виде:

  

Присмотревшись, слева от знака равенства усматриваем разложение косинуса разности  и  Это и есть ключ к решению. Имеем:

  

  

Осуществляем отбор решений, входящих в промежуток :

1)     

2)     

Задача для самостоятельного решения №2. Найдите корни уравнения  принадлежащие промежутку 

Показать ответ

Решение тригонометрических уравнений методом замены переменной

 

Пример 4. Решите уравнение:

 

  

Решение. Данное уравнение эквивалентно следующей системе:

  

Обратите внимание! Писать, что  нет никакой необходимости, поскольку по условию это выражение равно выражению  которое, в свою очередь, больше или равно нулю.

Решаем первое уравнение системы:

  

  

  

  

Нужно, чтобы  поразмыслив, понимаем, что поэтому из полученной серии ответов нам подходят только 

Ответ: 

Задача для самостоятельного решения №5. Решите уравнение: 

Показать ответ

Пример 6. Решите уравнение:

 

  

Решение. Данное уравение равносильно системе:

  

  

  

Тригонометрическая функция синус положительна в первой и второй координатной четвертях, поэтому из полученных серий выбираем только эту: 

Раз уж мы с этим столкнулись, не лишним будет повторить, какие знаки принимают тригонометрические функций в различных координатных четвертях:

Знаки функций, входящих в тригонометрические уравнения, по координатным четвертям

Ответ: 

Задача для самостоятельного решения №6. Решите уравнение: 

Показать ответ

Пример 7. Решите уравнение:

 

  

Решение. Область допустимых значения уравнения определяется условием:  то есть  Разобьем решение на два случая:

1) Пусть  тогда уравнение принимает вид:

  

  

Последнее равенство неверно, поэтому в данном случае решений у уравнения не будет.

2) Пусть  тогда уравнение принимает вид:

  

  

Условию  удовлетворяет только последняя серия.

Ответ: 

 


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!