Математика. Задачи и упражнения для развития логического мышления младших школьников.

Категория: Математика

Особенности логического мышления младшего школьника

К началу младшего школьного возраста психическое развитие ребенка дос­тигает достаточно высокого уровня. Все психические процессы: воспри­ятие, память, мышление, воображение, речь – уже прошли достаточно дол­гий путь развития, так как любознательность ребенка постоянно направлена на по­знание окружающего мира и построение окружающего мира. Ребенок, играя, экспериментирует, пытается установить причинно – следственные связи. Он сам, например, может дознаться, какие предметы тонут, а какие будут пла­вать.

Различные познавательные процессы, обеспечивающие мно­гообразные виды деятельности ребенка, функционируют не изолированно друг от друга, а представляют сложную систему, каждый из них связан со всеми остальными. Эта связь не остается неизменной на протяжении дет­ства: в разные периоды ведущее значение для общего психического разви­тия приобретает какой-либо один из процессов.

В зависимости от того, в какой степени мыслительный процесс опирается на восприятие, представление или понятие, различают три основных вида мышления:

1. Предметно-действенное (наглядно-действенное).

2. Наглядно-образное.

3. Абстрактное (словесно-логическое).

Предметно-действенное мышление – мышление, связанное с практиче­скими, непосредственными действиями с предметом; наглядно-образное мышление – мышление, которое опирается на восприятие или представле­ние (характерно для детей раннего возраста). Примером может послужить игра «Почтальон», используемый на уроке математики: В игре участвуют три ученика – почтальона. Каждому из них нужно доставить письмо в три дома. На каждом доме изображена одна из геометрических фигур. В сумке почтальона находятся письма – 10 геометрических фигур, вырезанные из картона. По сигналу учителя почтальон ищет письмо и несет его в соответствующий дом. Выигрывает тот, кто быстрее доставит все письма в дома – разложит геометрические фигуры.

Наглядно-образное мышление даёт возможность решать задачи в непосредственно данном, наглядном поле. Дальнейший путь развития мышления заключается в переходе к сло­весно-логическому мышлению – это мышление понятиями, лишёнными не­посредственной наглядности, присущей восприятию и представлению. Пе­реход к этой новой форме мышления связан с изменением содержания мышления: теперь это уже не конкретные представления, имеющие наглядную основу и отражающие внешние признаки предметов, а понятия, отражающие наиболее существенные свойства предметов и явле­ний и соотношения между ними. Это новое содержание мышления в млад­шем школьном возрасте задаётся содержанием ведущей деятельности учеб­ной. Например, можно использовать задания такие как: сделай из 7 палочек 2 квадрата; продолжить узор и другие.

Словесно-логическое, понятийное мышление формируется постепенно на протяжении младшего школьного возраста. В начале данного возрастного периода доминирующим является наглядно-образное мышление, поэтому, если в первые два года обучения дети много работают с наглядными образ­цами, то в следующих классах объём такого рода занятий сокращается. По мере овладения учебной деятельностью и усвоения основ научных знаний, школьник постепенно приобщается к системе научных понятий, его умст­венные операции становятся менее связанными с конкретной практической деятельностью или наглядной опорой. Словесно-логическое мышление по­зволяет ученику решать задачи и делать выводы, ориентируясь не на на­глядные признаки объектов, а на внутренние, существенные свойства и от­ношения. В ходе обучения дети овладевают приёмами мыслительной дея­тельности, приобретают способность действовать «в уме» и анализировать процесс собственных рассуждений. У ребёнка появляются логически вер­ные рассуждения: рассуждая, он использует операции анализа, синтеза, сравнения, классификации, обобщения. Развивая словесно-логическое мышление через решение логических задач, необходимо подбирать такие задачи, которые бы требовали индуктивного (от единичного к общему), дедуктивного (от общего к единичному) и традуктивного (от единичного к единичному или от общего к общему, когда посылки и заключение являются суждениями одинаковой общности) умозаключения. Традуктивное умозаключение можно использовать в качестве первой ступени обучения умению решать логические задачи. Это задачи, в которых по отсутствию или присутствию одного из двух возможных признаков у одного из двух обсуждаемых объектов следует вывод о, соответственно, присутствии или отсутствии этого признака у другого объекта. Например, "у Наташи собачка маленькая и пушистая, у Иры - большая и пушистая. Что в этих собачках одинаковое? разное?"

Младшие школьники в результате обучения в школе, когда необходимо ре­гулярно выполнять задания в обязательном порядке, учатся управлять своим мышлением, думать тогда, когда надо.

Во многом формированию такого произвольного, управляемого мышле­ния способствует задания учителя на уроке, побуждающие детей к раз­мышлению.

При общении в начальных классах у детей формируется осознанное крити­ческое мышление. Это происходит благодаря тому, что в классе обсужда­ются пути решения задач, рассматриваются различные варианты решения, учитель постоянно просит школьников обосновывать, рассказывать, дока­зывать правильность своего суждения. Младший школьник регулярно ста­новится в систему, когда ему нужно рассуждать, сопоставлять разные суж­дения, выполнять умозаключения.

В процессе решения учебных задач у детей формируются такие операции логического мышления как анализ, синтез, сравнение, обобщение и класси­фикация.

 

Овладением анализом начинается с умения ребёнка выделять в предметах и явлениях различные свойства и признаки. Как известно, любой предмет можно рассматривать с разных точек зрения. В зависимости от этого на первый план выступают та или иная черта, свойства предмета. Умения вы­делять свойства даётся младшим школьникам с большим трудом. И это по­нятно, ведь конкретное мышление ребёнка должно проделывать сложную работу абстрагирования свойства от предмета. Как правило, из бесконеч­ного множества свойств какого-либо предмета первоклассники могут выде­лить всего лишь два-три. По мере развития детей, расширения их кругозора и знакомства с различными аспектами действительности такая способность, безусловно, совершенствуется. Однако это не исключает необходимости специально учить младших школьников видеть в предметах и явлениях раз­ные их стороны, выделять множество свойств.

 

В процессе классификации дети осуществляют анализ предложенной си­туации, выделяют в ней наиболее существенные компоненты, используя операции анализа и синтеза, и производит обобщение по каждой группе предметов, входящих в класс. В результате этого происходит классифика­ция предметов по существенному признаку.

Как видно из вышеизложенных фактов все операции логического мышле­ния тесно взаимосвязаны и их полноценное формирование возможно только в комплексе. Только взаимообусловленное их развитие способствует разви­тию логического мышления в целом. Приёмы логического анализа, синтеза, сравнения, обобщения и классификации необходимы учащимся уже в 1 классе, без овладения ими не происходит полноценного усвоения учебного материала.

Эти данные показывают, что именно в младшем школьном возрасте необ­ходимо проводить целенаправленную работу по обучению детей основным приёмам мыслительной деятельности.

В истории использования задач можно выделить такие этапы:

  • изучение теории осуществляется с целью обучения решению задач;

  • обучение предмету сопровождается решением задач;

  • обучение через решение задач;

  • решение задач как основа образовательного процесса

Комплекс заданий по развитию логического мышления младших школьников

2.1. Задачи – шутки, на смекалку

  1. На одном дереве сидело 40 сорок. Проходил охотник, выстрелил и убил 6 сорок. Сколько сорок осталось на дереве? (Ни одной (сороки испугались выстрела и улетели)).

  2. Сколько концов у палки? – Два. А сколько концов у двух с половиной палок? (Шесть)

  3. Двое подошли к реке. У берега всего одна лодка. Как им переправиться на другой берег, если лодка может взять только одного человека? (Путешественники подошли к противоположным берегам реки).

  4. Сколько концов у тридцати с половиной палок? (62 конца)

  5. Один пятиклассник написал о себе так: "Пальцев у меня двадцать пять на одной руке, столько же на другой, да и на обеих ногах 10". Как это так? Нужно правильно расставить знаки препинания: "Пальцев у меня двадцать: пять на одной руке, столько же на другой, да на обоих ногах 10".

  6. Пастух гнал гусей. Один впереди трех идет, один трех подгоняет и два посередине идут. Сколько у него было гусей? (Четыре)

  7. Пастуха спросили, сколько у него гусей. Он ответил: "Один впереди двух идет, один двух подгоняет, один посередине идет". Сколько гусей пас пастух? (Три)

  8. Есть месяцы, которые кончаются числом 30 или 31. А в каких месяцах встречается число 28? (Во всех)

  9. Упряжка из трех лошадей проделала путь в 60 км. Сколько километров проскакала каждая лошадь? (60 км)

  10. Самолет пролетает расстояние от города А до города В за 1 час 20 минут. Однако обратный перелет он совершает за 80 минут. Как вы это объясните? (80 мин. = 1 час 20 мин)

  11. Одновременно из Ленинграда и Москвы выехали два поезда. Скорость ленинградского в 2 раза больше московского. Какой поезд будет дальше от Москвы, когда они встретятся? (Оба поезда будут на одинаковом расстоянии от Москвы).

  12. Когда человек может мчаться со скоростью гоночного автомобиля? (Когда он находится в этом автомобиле)

  13. Можно ли бросить мяч так, чтобы он, пролетев некоторое время, остановился и начал движение в обратном направлении? (Мяч нужно бросить вверх)

  14. Два отца и два сына разделили между собой три апельсина так, что каждому досталось по одному апельсину. Как это могло случиться? (Это были дед, отец и внук)

  15. У мальчика столько сестер, сколько и братьев, а у его сестры вдвое меньше сестер, чем братьев. Сколько братьев и сестер в этой семье? (1 сестра и 2 брата)

  16. Сколько концов у 72 с половиной палок? (146 концов)

  17. Из города в деревню, расстояние между которыми 32 км, выехал велосипедист со скоростью 12 км/ч. Из деревни в город одновременно с ним вышел пешеход со скоростью 4 км/ч. Кто из них будет дальше от города через 2 часа? (Через 2 часа они будут на одном расстоянии от города)

  18. Некто решил проникнуть на охраняемую территорию и для этого стал наблюдать за привратником. Первому посетителю был задан вопрос: "Двадцать два?" Тот ответил: "Одиннадцать", –  и был пропущен в ворота. Второго спросили: "Двадцать восемь?" После ответа: "Четырнадцать" и его пропустили. "Как просто", – подумал некто и подошел к воротам. Его спросили: "Сорок восемь?" Он сказал: "Двадцать четыре", – и был арестован. Как он должен был ответить, чтобы его пропустили? (Он должен ответить: «Одиннадцать», так как ответным паролем служило количество букв в числе, которое задавал привратник).

2.1. Задачи в стихах, простые – составные

Задачи в стихах

  1. Яблоки с ветки на землю упали.

Плакали, плакали, слезы роняли  Таня в лукошко их собрала.  В подарок друзьям своим принесла  Два Сережке, три Антошке,  Катерине и Марине,  Оле, Свете и Оксане,  Самое большое - маме.  Говори давай скорей,  Сколько Таниных друзей? (7 друзей)

  1. С неба звездочка упала,  В гости к детям забежала. Две кричат во след за ней:  «Не забудь своих друзей!»  Сколько ярких звезд пропало,  С неба звездного упало? (1 звездочка)

  2. Расставил Андрюшка  В два ряда игрушки.  Рядом с мартышкой – Плюшевый мишка. Вместе с лисой – Зайка косой. Следом за ними – Ёж и лягушка. Сколько игрушек Расставил Андрюшка? (6 игрушек выставил Андрюшка)

  3.  

- При каких значениях d цена будет выражаться в копейках? (77, 62, 123, 67).

  1. Две мухи соревнуются в беге. Они бегут от пола к потолку и обратно. Первая муха бежит в обе стороны с одинаковой скоростью. Вторая бежит вниз вдвое быстрее, чем первая, а вверх вдвое медленнее, чем первая. Которая из мух победит?

Ответ: Первая муха достигает потолка, когда вторая на половине пути к нему; первая возвращается к полу, когда вторая достигает потолка. Побеждает первая.

Составные задачи:

  1. Четверо хоббитов путешествовали по большому тракту. Каждый вез по 24 кг провизии. На сколько дней хватит этой провизии, если хоббиты ежедневно съедают по 6 кг?

(24 ∙ 4) : 6 = 16 (д.)

Ответ: провизии хватит на 16 дней.

  1. «Ах – ах, от Земли до Луны всего 384 400 км!» - воскликнул Заяц. Он погрузил на космический корабль 15800 кг снаряжения и начал полет на Луну. «Ну, погоди!» - сказал Волк. Он погрузил на космический корабль 6480 кг снаряжения меньше, чем заяц, и полетел вдогонку. Зайца он догнал на расстоянии 105 600 км от Земли. На какие из следующих вопросов можно ответить по условию задачи?

  2. Сколько килограмм весит Заяц?

  3. Сколько килограмм снаряжения погрузил Волк на космический корабль?

  4. На каком расстоянии от Луны Волк догнал Зайца?

  5. Сколько километров от Луны до Земли?

2) 15800 – 6480 = 9320 (кг.) – погрузил Волк

4) 384400 – 105600 = 278800 (км.) – от Луны

  1. Средний возраст восьми человек, находившихся в комнате 12 лет. Когда из комнаты вышел 1 человек, то средний возраст стал 11 лет. Сколько было человеку, вышедшему из комнаты?

  1. 12 ∙ 8 = 96 (л.) – было всем

  2. 11 ∙ 7 = 77 (л.) – стало оставшимся 7-ми

  3. 96 – 77 = 19 (л.) – было вышедшему.

Ответ: 19 лет было вышедшему.

2.3. Исторические задачи

  1. 4 октября 1956 года в Советском Союзе был запущен первый искусственный спутник Земли массой 84 кг. Вычисли массу второго спутника Земли вместе с аппаратурой и собакой Лайкой (который стартовал в СССР 3 ноября 1957 года), если его масса была на 425 кг больше массы первого спутника. Сколько полных лет, месяцев и дней прошло со дня запуска первого спутника в Советском Союзе до наших дней? (до 20 марта 2004г.)

  1. 84 + 425 = 509 (кг.) – масса второго спутника

  2. 2003 год 2 мес. 19 дн. (это 20 марта 2004г.)

1956г 9мес. 3 дн.

46 л. 5 мес. 16 дн

  1. Оренбург основан 30 апреля 1733 года. Сколько лет, месяцев и дней существует город Оренбург (на 20 марта 2004г.)

2003г. 2мес. 19 дн.

1742г. 3 мес. 29 дн.

260 л. 10 мес. 19 дн.

  1. Крестьянину нужно перевезти через реку волка, козу и капусту. Лодка небольшая: в ней может поместиться крестьянин, а с ним только коза, или только волк, или только капуста. Но если оставить волка с козой, то волк съест козу, а если оставить козу с капустой, то коза съест капусту. Как перевез свой груз крестьянин?

Ответ: Придется все начинать с козы. Крестьянин, перевезя козу, возвращается и берет волка, которого перевозит на другой берег, где его и оставляет, но зато берет и везет обратно козу на первый берег. Здесь он оставляет ее и перевозит к волку капусту. Вслед за этим, возвратившись, он перевозит козу, и переправа оканчивается благополучно.

  1. Говорят, что два отца и два сына нашли на дороге, ведущий на Бомбей, три рупии (серебряные монеты) и быстро поделили их между собой, причем каждому досталось по монете. Как им удалось справиться с задачей?

Ответ: Путники смогли разделить находку поровну, потому что их было трое: дед, отец и сын (или по-другому: два отца, два сына).

  1. Будучи проездом в маленьком городке, один купец зашел перекусить в ресторанчик, а потом решил постричься. В городке было всего две парикмахерские, и в каждой - только один мастер, он же хозяин. В одной парикмахер был неопрятно побрит и плохо пострижен, а в другой - чисто выбрит и с отличной стрижкой. Купец решил стричься в первой парикмахерской. Как по-вашему, он сделал правильный выбор?

Ответ: Купец верно рассудил, что раз в городе всего два парикмахера, то они наверняка стригут друг друга. Значит, идти стричься надо к тому, у кого плохая стрижка.

  1. Крестьянка пришла на базар продавать яйца. Первая покупательница купила у нее половину всех яиц и еще пол-яйца. Вторая покупательница приобрела половину оставшихся яиц и еще пол-яйца. Третья купила всего одно яйцо. После этого у крестьянки не осталось ничего. Сколько яиц она принесла на базар?

Ответ: После того как вторая покупательница приобрела половину оставшихся яиц и еще пол-яйца, у крестьянки осталось только одно яйцо. Значит, полтора яйца составляют вторую половину того, что осталось после первой продажи. Ясно, что полный остаток составляет три яйца. Прибавив пол-яйца, получим половину того, что имелось у крестьянки первоначально. Итак, число яиц, принесенных ею на базар, семь.

2.4. Ребусы, кроссворды, шарады

Ребусы

  1. Разгадайте 4 имени:

(Сева, Серёжа, Настя, Вова)

  1. Что закрыл вопросик?

(Цифру 1, т.к. верхние рыбки – уменьшаемое, нижние – вычитаемое, а цифра – разность полученных чисел)

Кроссворды

Кроссворд №1

По вертикали:

1. Компонент действия деления. (Делимое)

2. Наибольший остаток при делении на пять. (Четыре)

3. Чтобы узнать во сколько раз одно число больше чем другое, нужно выполнить действие …? (Вычитание)

4. Компонент действия умножения. (Множитель)

По горизонтали:

5.Делимое, которое нацело делится на какое-нибудь число.

Кроссворд №2

По горизонтали:

  1. В одном метре десять … (Дециметр)

  2. В этой единице массы измеряется вес человека. (Килограмм)

  3. В одном дециметре десять … (Сантиметр)

  4. Запись, составленная из чисел, букв и знаков арифметических действий. (Выражение)

  5. Приспособление, выполненное из прозрачного материала, с помощью которого можно измерить площадь фигуры. (Палетка)

По вертикали:

Прочитайте ключевое слово. Что оно обозначает? (Тонна - наименование различных единиц массы).

Шарады

  1. Вы меру площади  Припомните вначале -  Ее вы в школе,  Несомненно, изучали.  Пятерка букв,  Идущих следом - вдохновенны,  Им не прожить  Без танца, музыки и сцены.  На экспонаты  Оружейные глазея,  Ответ найдете  В историческом музее. (Ар - балет)

  2. Число и нота рядом с ним,

Да букву припиши согласную,

А в целом – мастер есть один,

Он мебель делает прекрасную. (Сто – ля - р)

  1. Вначале - двойка. Далее - мужчина,

Высокого он титула и чина.

А слово целиком - обозначенье,

Дробящее на дозы обученье. (Пара - граф)

В танце первый слог найдете,

Цифра это новый слог,

Ну, а дальше вы возьмете

И приставите предлог.

В целом – тот, кто защищает

Славу, честь страны родной,

Страха он в бою не знает

И в труде – труда герой. (Па – три – от).

2.5. Геометрические задачи

  1. Царица Математика очень любит из спичек делать головоломки. Она принесла спички и сказала:

"Дружок! Тебе дана фигура из 5-ти квадратов: 4-х маленьких и одного большого. Надо убрать несколько спичек так, чтобы осталось 2 квадрата (любого размера)". Как ты думаешь, сколько, самое маленькое, надо убрать спичек, чтобы вместо пяти квадратов стало два? (2 спички нужно будет убрать).

  1. Пять Маленьких Поварят решили разделить между собой большую прямоугольную шоколадку.

Но она упала на пол и когда они развернули ее, то увидели, что шоколадка разбилась на 7 кусков. Николай съел самый большой кусок. Света и Маша съели одно и тоже количество шоколада, но Света съела три куска, а Маша только один кусок. Белла съела 1/7 часть целой шоколадки, и Катя съела все остальное. Какой кусок шоколадки достался Кате? (Николай съел шестой. Света съела 7, 5, 4, а Маша съела третий. Белла съела первый. Значит, Катя съела вторую.)


Скачать

Рекомендуемые курсы ПК и ППК для Вас