СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Доказательство неравенств во внеклассной работе со школьниками

Категория: Алгебра

Нажмите, чтобы узнать подробности

 

В моей методической разработке рассмотрены следующие виды задач:

1. Доказательство неравенств с помощью рассмотрения разности его частей и алгебраических преобразований. 2. Задачи на доказательства с использованием уже доказанных неравенств (неравенство Коши, Коши-Буняковского, Йенсена и др.) 3. Метод математической индукции. 4. Метод  «оценка  +  пример».

Просмотр содержимого документа
«Доказательство неравенств во внеклассной работе со школьниками»


Методическая разработка


«Доказательство неравенств во внеклассной работе со школьниками»















Автор: Морозова В.А.,

учитель математики

МБОУ «СОШ-ДС № 37 им. И.Г.Генова»




























Симферополь, 2022

Содержание
Введение…………………………………………………………………………...3
1.Свойства и основные методы доказательства неравенств…………………...6
2.Доказательство неравенств с помощью рассмотрения разности частей и алгебраических преобразований………………………………………………....8
3.Использование известных неравенств………………………………………10
3.1 Неравенство Евклида (8-9 класс)…………………………………………10
3.2 Неравенство Коши (9-10 класс)…………………………………………..13
3.3 Неравенство Бернулли (9-10 класс)…………………………..………….18
3.4 Неравенство Коши- Буняковского (10-11 класс)……………………..…22
3.5 Неравенство Йенсена (11 класс)……………………………………….....25
4.Метод математической индукции ( 8-9 класс)…………………………...….27
5.Метод «оценка+ пример» (8-11класс)……………………………………......29
6.Самостоятельно составленные задачи…………………………………….....33
Заключение……………………………………………………………………….36

















ВВЕДЕНИЕ

Задачи на доказательство неравенств занимают очень важное место для математической подготовки учеников. Учащиеся знакомятся с понятием неравенство еще в младшей школе , изучая отношения "больше", "меньше", "равно" и учатся записывать результаты сравнения с помощью знаков , а так же читать полученные неравенства. Далее школьники встречаются с понятием неравенство в 5-6 классах. Они встречаются с такими заданиями:

  • Какая из точек лежит левее на координатном луче …

  • Запишите с помощью двойного неравенства.

  • Я задумала число, оканчивающееся на 5. Оно больше 210 и меньше 220. Назовите его…

Ближе всего знакомятся с доказательством неравенств учащиеся в 8 классе. В рабочей программе по алгебре для 8 класса особое внимание уделяют на следующие темы: «Числовые неравенства и их свойства», «Линейные неравенства с одной переменной», «Системы неравенств с одним неизвестным». Все приобретенные учащимися навыки находят применение при изучении тем «Решение квадратичных неравенств».
Обучающиеся должны знать, хотя бы три способа для решения квадратичных неравенств:

1. На основе разложения квадратного трехчлена на множители, построение эскиза графика квадратного трехчлена и написать ответ.

2. На основе разложения квадратного трехчлена на множители, использовать метод интервалов.

3. Графический метод решения неравенства: ах2 + вх +с0 ; ах2  - вх – с.

После детального изучения школьной программы , в части на доказательства неравенств ,учащиеся могут узнать намного больше интересных и познавательных задач на внеурочной деятельности.

Неравенства данной темы решаются алгебраическим способом, который является одним из лучших средств саморазвития , логического мышления. Благодаря специально подобранным задачам, которые способны заинтересовать учащихся своей кажущейся простотой и тем, что их решение не сразу дается в руки, можно показать учащимся красоту, простоту и изящество логического рассуждения. Задачи на обычно решаются способами. Это повод привлечь любопытство найти , как самый простой , но и на такие , которые часто используются при решении самых разных задач.

разрешают воплощать в развитие изучения темы таких заданий: формирование навыков составления алгоритма выполнения; определение последовательности промежуточных целей с учетом конечного результата, помогают выполнять простейшие преобразования, излагать выводы; мысли.

В моей методической разработке рассмотрены следующие виды задач:

1. Доказательство неравенств с помощью рассмотрения разности его частей и алгебраических преобразований.
2. Задачи на доказательства с использованием уже доказанных неравенств (неравенство Коши, Коши-Буняковского, Йенсена и др.)
3. Метод математической индукции.
4. Метод «оценка + пример».

Например, доказывать неравенства с помощью математической индукции и Неравенством Евклида можно ученикам 8 класса на внеклассных занятиях.
Неравенства Коши и Неравенства Бернулли рассматривать уже в 9 классе, когда учащиеся владеют достаточными знаниями по данной теме.
С Неравенством Коши-Буняковского можно познакомить учащихся в 10 классе на внеклассной работе. А с Неравенством Йенсена в 11 классе, так как понятие производной в школьном курсе алгебры вводится только в 11 классе. Все вышеперечисленные виды неравенств играют большую роль в курсе алгебры.

Данная разработка рассчитана на учащихся, которые имеют довольно-таки высокий уровень знаний в области математики, причем как в пределах, так и вне школьной программы, но все равно хотят его повысить.










1. и методы .
неравенств:

  1. К неравенства или отнять

f(x) ) ) + h(x) )+ )

  1. Неравенства можно :

f(x) )
p(x) h(x) ) + p(x) g(x)+ )

  1. разных почленно :

  ) g(x)
) g(x)- )

  1. Можно умножать и делить на одно и тоже положительное число обе части неравенста:
     ) g(x) a·f(x) a·g(x) , a 0

  2. В случае, когда обе  неравенства  , либо умножить на и тоже , неравенства изменится на :

) g(x) a·f(x) a·g(x) , a











О доказательства :
Доказать неравенство - это значит обосновать его истинность при всех допустимых значениях переменных.

Существуют различные методы доказательства неравенств:
1. Рассмотрение разности левых и правых частей.

2. Рассмотрение частного и сравнение с единицей.

3. Метод от противного.

4. Использование уже доказанных неравенств.



























2. Доказательство неравенств с помощью рассмотрения разности его частей и алгебраических преобразований.

Задача 1. (Окружной этап всероссийской олимпиады для 9 класса 1992-1993 учебный год)

Докажите, что верно неравенство x2 + xy + y2 ≥ 3(x + y − 1), для любых действительных чисел x и y.

Доказательство:
Разберем данное выражение как квадратный трехчлен относительно x:
x2 + xy + y2 - 3(x + y − 1) = x2 + (y − 3)x + (y2 – 3y + 3)
Посчитаем дискриминант и получим:

−3(y− − 1)2
Итак, дискриминант отрицателен.

Трехчлен допускает только положительные значения и показатель 0, следовательно x2 +xy+y2 ≥ 3(x+y−1) при любых x и y. Равенство верно, когда x = y = 1.

Задача 2. (Белорусская республиканская олимпиада, 9 класс 1962-1963 учебный год )

Докажите, что наибольшая площадь треугольника равна 1, стороны которого a, b, c заключены в пределах: 0x 1y2z3 ?
Доказательство:
Площадь треугольника находим по формуле: S = xy·sin𝝰
Среди треугольников со сторонами x, y, удовлетворяющими условию задачи наибольшую площадь имеет прямоугольный треугольник с катетами x = 1 и y = 2. Третья сторона z  удовлетворяет условию задачи, следовательно указанный треугольник имеет наибольшую площадь среди всех рассматриваемых. Следовательно площадь треугольника равна 1.

Задача 3.
F(x) — квадратный трехчлен с показателями больше нуля.
Докажите, верно неравенство: (F(xy))2 ≤ F(x)2 F(y)2.
Доказательство:
Пусть F(x)= ax2+bx+c. Тогда (F(xy))2-F(x2)F(y2)= (ax2y2+bxy+c)2- (ax4+bx2+c)(ay4+by2+c)= a2x4y4+b2x2y2+c2+2abx3y3+2acx2y2+2bcxy-a2x4y4-b2x2y2-b2x2y2-c2-abx2y2(x2+y2)-ac(x4+y4)-bc(x2+y2)=abx2y2(2xy-x2-y2)+ac(2x2y2-x4-y4)+bc(2xy-x2-y2)=-abx2y2(x-y)2-ac(x2-y2)2-bc(x-y)2
При a ≥ 0, b ≥ 0, c ≥ 0 данные слагаемых отрицательны, следовательно неравенство (F(xy))2 ≤ F(x)2 F(y)2.





















3. Использование известных неравенств.
Основные неравенства, на которые опираются при доказательстве других неравенств:

3.1 Неравенство Евклида (8-9 класс)

, при ≥ 0

- = = ≥ 0

Следовательно,

Равенство достигается, тогда и только тогда, когда числа равны.

Рассмотрим задачи на неравенство Евклида:

Задача 1.
Доказать, что + для a, b 0

Доказательство:

Возведем обе части в квадрат:

+ +

Далее, приведем к общему знаменателю и раскроем скобки, получим:

2(1 + a2 + b2 + a2b2) −(1 + b2 + ab + ab3) −(1 + a2 + ab + a3b) = (1 −ab)(a − b)2 ≥ 0

Из неравенства Евклида о средних для двух чисел имеем:

+

Сложив полученные неравенства, получаем что что +



Задача 2.
Доказать, что для положительных чисел а, b и с:
(a+b)(b+c)(c+a) 8abc
Доказательство:
Согласно тому, что .
Если мы перемножим оба неравенства, то получим, что (a+b)(b+c)(c+a) 8abc

Задача 3.
Доказать, что если x 0, y 0, z 0, то + + ≥ 3

Доказательство:
Введем замену переменных:
a= y+z
b= x+z
c= y+x;

Выразим переменные:
2x = − + +
2y = +
2z = + .

Получаем неравенство

+ + ≥ 3

+ + ≥ 6

Мы видим, что все три скобки больше или равны двум. Следовательно , левая часть неравенства больше или равна шести.







































3.2 Неравенство Коши (9-10 класс)

К числу наиболее часто встречающихся в математике числовых неравенств относится неравенство: «среднее арифметическое двух или более неотрицательных чисел больше или равно их среднему геометрическому», которое носит название Неравенство Коши:


, , ≥ 0

Рассмотрим задачи на Неравенство Коши:

Задача 1.

Доказать неравенство: (1+a)(1+b)(1+c) ≥ 8(1-a)(1-b)(1-c), при этом a+b+c=1

Доказательство:
Так как, по условию a+b+c=1, значит 1+a=(1-b)+(1-c).
Далее, применим неравенство Коши между средним арифметическим и средним геометрическим x + y ≥2  , получим:

1+ a ≥ 2 .

1+b ≥ 2 .

1+c ≥ 2 .

Теперь, если мы перемножим данные неравенства, то увидим ,что (1+a)(1+b)(1+c) ≥ 8(1-a)(1-b)(1-c).





Задача 2.
Докажите, что для любого натурального n 2 имеют место неравенства n +…+ n +1
Доказательство :

Применим неравенство между средним арифметическим и средним геометрическим для чисел 2, , ,.., . В результате получим:

, т.е
Применим неравенство между средним арифметическим и средним геометрическим для чисел 2, , ,.., . В результате получим :
, т.е

Задача 3.
Доказать, что для любых четырех действительных чисел a, b, c, d выполняется неравенство:

≥ 4abcd
Доказательство :
Применим неравенство Коши между средним арифметическим и средним геометрическим, получим:


Следовательно, ≥ 4abcd

Задача 4.
Для положительных чисел a, b, c доказать неравенство:

+ + ≥ 3

Доказательство :
Перепишем данное неравенство в виде: ≥ 1

Выражение в левой части – это среднее арифметическое трех чисел , , .
Среднее геометрическое этих чисел равно:

Наше неравенство сводится к неравенству для среднего арифметического и среднего геометрического трех указанных чисел.
Следовательно, + + ≥ 3

Задача 5.
Докажите, что ≥ 2, если a + b = 2.
Доказательство:
Введем замену переменных a: a = 1 − x, тогда , b = 1 + х.
Следовательно, = 2 + 12 + 2 ≥ 2.
А значит ≥ 2.

Задача 6. ( Сборник ЕГЭ профильный уровень 2018 год)
Доказать неравенство:



Доказательство:

В данном неравенстве мы видим формулы квадрата суммы и квадрата разности, введем замену переменных : a = ,b = .
Тогда получим:

a+b= =

Данное неравенство принимает вид: 

+ , откуда + - 2ab ≤ 0

Неравенство верно, при условии, если a=b.
Следовательно:

=

Выполним умножение крест-накрест и получим:

x =

Ответ: x =

Задача 7. ( Сборник ЕГЭ профильный уровень 2018 год)
Доказать неравенство:

Доказательство:

Избавимся от знаменателя до множив обе части на 4, получим:

2 + 8

Далее раскроим скобки и формулы квадрата суммы и квадрата разности:

2 - 4x+2+8 + 16x+8 ≤ 9 +6x+1



Приведем подобные слагаемые:

+6x+9≤ 0

Отсюда видно, что дискриминант равен 0, следовательно неравенство имеет один единственный корень:

x= -3

Ответ: -3.































3.3 (9-10 )

, записанное в :

≥ 1+ nx

 неравенством . Это  выполняется при x ≥ -1 и для n ≥ 1. Доказательство на методе .

Очевидно, что при n=1 выполняется. выполняется при n1. Проверим неравенства при n+1:

= (1+) ≥ (1+ x)(1++ ≥1+(n+1)x

выполняется и   значениях n,   чем 1. При положительных n,  меньше чем 1, неравенство:

≥ 1+ nx, 10.

Рассмотрим задачи на неравенство Бернулли:

1.

Решить :

+ = 2

Решение:
Используя неравенство Бернулли получаем:

+ ≤ 1+ + 1- = 2
Решение неравенства достигается тогда и только тогда, когда   , то есть

x = 1, x = -1.
Ответ: 1,-1.

2.

: (1 + 𝝰)n ≥ 1 + n𝝰, где 𝝰 -1, n – число. 

методом . 
При n = 1 получаем : 
1 + α ≥ 1 + α. 
Предположим, что неравенство: 
(1 + α)n ≥ 1 + nα. 
 (1 + α)n+1 ≥ 1 + (n + 1)α. 
Мы видим, что 𝝰 -1 и 𝝰 +1 0.
Умножим левую и правую часть неравенства на (a + 1) , получим:
(1 + 𝝰)n (1 + 𝝰) ≥ (1 + 𝝰)(1 + 𝝰) 
Так как n ≥ 0, то
(1 + 𝝰)n+1 ≥ 1 + (n + 1)𝝰 + n𝝰 ≥ 1 + (n + 1)𝝰. 
Следовательно, (1 + 𝝰)n ≥ 1 + n𝝰.

3.
Дано: a1 + a2 + . . . + an  , где a1, a2, . . . , an - положительные числа.
 Доказать, что  (1 + a1)(1 + a2) . . . (1 + an)

(способ 1):

Итак, для начала раскроем скобки в левой части неравенства, получим:
1 + (a1 + . . . + an) + (a1a2 + . . . + an-1an) + (a1a2a3 + ...+ an-2 an-1an) + . .+ a1a2 . . +an.

Мы видим, что во второй скобке неравенства ,сумма чисел не превосходит:
( + . . . + )2, аналогично и в не превосходит ( +….+ )3.
Отсюда следует, что 1 + + + + . . . + = 2 –

2.

Методом докажем, что для n неравенство:

(1 + a1) . . . (1 + an) 1 + . . . + an).

При n = 1 :  1 + a1 1.

при n = k имеет :  (1 + a1) ….(1 + ak) 1 +….+ ak). 

случай n = k +1 + a1) . . . (1 + ak)(1 + ak+1)

+ 2(a1 + . . . + ak)) ·(1 + ak+1)  ≤ 1 + 2·(a1 + . . . + ak) + ak+1 ·(1 + 2 · ) =

= 1 + 2·(a1 + . . . + ak + ak+1).

В математической доказано.

4.
, что если то неравенство

:
Из , что , следует, что с очевидным :

:

Возведя обе неравенства в , : Сложив с неравенством:


Сложив эти с неравенством



5. (Окружной олимпиады для 9 19945 учебный год)

Докажите, :

+

Доказательство:
Из неравенства видно, что
+ 2 a.

+

Задача 6. (Окружной олимпиады для 9 19945 учебный год)

Доказать: + + x + y + z.

:
По │x-y│x2 -2xy+ y2 x2 +2xy+y2 xy), следовательно x+y , так как x и y . , y+z , z+x , следовательно x + y + z + + .
7. ( этап для 11 класса 1993-1994.)
, что при всех x, 0 , sin2x + 1.
Доказательство:
Используем следующие тригонометрические тождества:
1- cosx = 2 sin2 , sin2x = 4sin cos ,
Данное неравенство приведем к следующему виду: 2 tg .
Отсюда следует, что 2 2 cos = 1 , а значит tg Таким образом sin2x + 1.


3.4 Неравенство Коши- Буняковского (10-11 класс)

Теорема. Для любых наборов чисел: , ,
, ,

Верно неравенство:

+ │ ≤ · (1)

Рассмотрим функцию:

f (t) = +
t – переменная , остальные-параметры.
f(t) = + = A – 2Ct + B.
A = 0 тогда и только тогда, когда = = = 0 и неравенство (1) очевидно.
A ≠ 0 тогда и только тогда, когда A 0 и f – квадратичная функция с графиком возрастающим вверх.
Так как , f(t) ≥ 0, то уравнение f(t) = 0 имеет не более одного корня и дискриминант меньше или равен нулю.
D = 4 – 4 AB = 4 ≤ 0 , то есть ≤ AB.
Замечание. Во многих задачах , важным является несколько само неравенство Коши-Буняковского, сколько условие равенства в этом неравенстве.
Равенство в неравенстве (1) может достигаться тогда и только тогда, когда существует : f ( ) = 0.
+ + ….+ = 0.
= = =
Так же можно сказать ,что равенство будет соблюдаться , если хотя бы один из двух числовых наборов является вырожденным:
= = = 0
= = = 0

Задача 1.

Дано: x+y+z = 1.

Доказать, что x2 + y2 + z2

Доказательство:

Согласно неравенству Коши-Буняковского:

1 = 1·x + 1·y + 1·z ≤ · =

Следовательно x2 + y2 + z2 .

Задача 2.

Доказать, что                                 

Доказательство: 

На основе применения неравенства можно записать, что

Так как =55, то ≤ 550

 Или   .

Задача 3.
Известно, что + = 1.
Найти: min ( 3x + 4y+5z)
max( 3x + 4y+5z)


Решение:
│( 3x + 4y+5z)│ ≤ = = 5
- 5 ≤ 3x + 4y+5z ≤ 5 .
Чтобы сделать вывод, что - 5 и 5 искомые значения , необходимо найти x, y, z для которых они достигаются. Это можно сделать с помощью условий неравенства Коши-Буняковского:
= =
+ = 1.

y = x
z = x
+ + = 1

=
Отсюда, x = ±
Если выбирать знак «+» , то будет достигаться max значение, если знак «-» , то min значение.
Ответ: min - 5 , max 5 .














3.5 Неравенство Йенсена (11 класс)

Рассмотрим еще такой общий подход к доказательству неравенств с использованием свойств выпуклости ( вогнутости) функций. Хорошо известно , что для всякой выпуклой (вогнутой) функции f : [a;b] R будет верно неравенство Йенсена:


f ( +..+ ) ≤ +…+ (1)
f ( +..+ ) ≥ +…+
, ,…, € [a;b];
+…+ = 1
0
Выпуклость (вогнутость) функций удобно проверять с помощью второй производной f, если f достаточно гладкая:
f ′′ (x) 0
f ′′ (x) x € [a;b];
Проверить выпуклость (вогнутость) f, можно на базе (1).
Задача.
Доказать неравенство:

Доказательство:
Пусть f(x) = ln sin .
Для проверки вогнутости f , найдем f ′′ (x):
f ′′ (x) = ′ = ·

, ,ɤ- углы треугольника.
Т.е + +ɤ=180◦

f (f( )+f( )+f( ))
ln sin 60◦ ln sin sin sin

3ln ≥ln..
ln ≥ ln sin

sin sin sin

= 3 ≥ ln
Следовательно, .



























4.Метод математической индукции ( 8-9 класс)

Индукция – это рассуждение от частного к общему.
Метод математической индукции удобно применять ,если требуется доказать какую-то последовательность утверждений . И оказывается , что доказательство этой последовательности равносильно доказательству всего двух таких утверждений:

1) базис: .
2) для любого k из следует

В некоторых задачах шаг 2) заменяют на следующий: если верно , при l ≤ k , то верно .
шаг 1) называют базисом индукции.
шаг 2) индуктивным переходом.
С методом математической индукции учащихся знакомят в 9-10 классе.
Докажем несколько неравенств методом математической индукции:
Задача 1.
Найдите все n € N : , n= 1,2,3…
Докажем, при n ≥ 5 , ;
1. Базис = 32 = 25
2. Пусть при n=k :
3. Докажем, при n = k+1 :
= 2·
= – 2k -1 = – 2k-1= - 2k + 1- 2= – 2.
Так как k ≥ 5, то ≥ 16 2.
Следовательно, .
Ответ: при n=1, а так же n ≥ 5.
Задача 2.
Доказать, что для любого n € N, n ≥2 : ab ≥ 0.
+
Доказательство :
1. Базис : n=2:
2( ) ≥ – верно.
2. Пусть n=k:
( ) ≥
3. Докажем, что n=k+1:
( ) ≥
= (a+b) · (a+b) · ( ) = · ( +a + + · – (a + ) = - + - a = (a-b) + (b-a) = (a-b) ).
При ab , следует, что , значит (a-b) ) 0.
При ab , следует, что , значит (a-b) ) 0.
a + .




















5.« плюс » класс)

« пример» — это рассуждение, используется в для определения наибольших и . Смысл метода «оценка плюс пример» заключается в том , что требуется не только установить неравенство , но еще и показать его неулучшаемость и привести пример , когда достигается равенство.

Данный метод осуществляется следующим образом:

1. Оценка. Убеждаемся , что данное неравенство выполняется: B ≥ 𝝰

2. . Показываем пример, при котором равенство B = 𝝰

Задача 1.
100 . Со всех аэродромов взлетает самолет и на к нему . Все различны. , что ни на аэродром не шесть . 

:
Предположим, что из M и N прилетели в P , расстояние MN- треугольника MPN и MPN 60◦. Так же , что в P прилетели из ,…. . Отсюда , что из углов P не . 60◦ , получаем .

2.
В конкурсе « » участвовало 7 . кондитер по два . В конце , что призов не и все держав в по два бросили их в . Какое кондитеров с «незапятнанной »?

:
Выберем между расстояние. Они по два в соседей. Так как , то кондитеры в друга по . Поскольку еще по одному , то эти попали в еще из . Итак, не кондитеров .
возможна , все торты в кондитеров. произойти , кондитера в виде , а трое находиться прямоугольника собой . данного :

5



6 7

1 2





3 4



на рисунок , что четверо , находятся прямоугольник с « репутацией».

3.
x+ x = 1
, что x ≤ x
x ≤ x
Доказательство:
1= x + x ≤ x+ x=1
x = x
x = x

cos x = 0 или cos x =1, k€Z x= +2π , k€
sin x = 0 или cos x = 0
cos x =1 sin x =1
Следовательно, x ≤ x
x ≤ x

Задача 4. (Сборник ЕГЭ профильный уровень)

Имеется более 40, но 48 чисел. этих –3, среднее положительных из них 4, а арифметическое из них равно –8.

а) имеется?

б) чисел : положительных или ?

в) наибольшее чисел среди ?

:
Начнем задачи с : пусть x, отрицательных y, а z. найдем чисел: , всех их количеству , умноженному на . Определим :
4x −8y+ 0⋅z = − 3(x + y +z)

пункт а):
Мы , что в равенстве каждое из на 4, следовательно x+y+z будет делиться на 4. По условию число удовлетворяет :

40 x + y + z

x + y + z = 44, т.к. единственное между 40 и 48, на 4- это 44.
Ответ на а) : 44 написано на .

пункт б):
Для каких больше: или приведем :
4x −8y = − 3(x + y +z) его:
5x = 7y + 3z.

Рассмотрим в):
наибольшее чисел среди ?
Мы , что 5x ≥ 7y,x y. Следовательно записано , чем . Далее 44 вместо в :
4x −8y = − 3(x + y+ z).
4x −8y = − 3 · 44

4x −8y = − 132
x= 2y – 33

Видно, что x+y ≤ 44, :
3y − 33 ≤ 44
3y ≤ 77
y = 25

Значит x= 2y - 33 ≤ 17. количество 17.

Ответ: а) 44; б) ; в) 17.





6.Самостоятельно составленные задачи

Задача1.
Решить уравнение:
+ = +
· + · 4 ≥ +
Ведем замену:
x - 2 = t
2 – x = -t
Получим:
= +
= 2
+ = 2
x - 1 + 3 – x + 2 = 4
2 = 2
= 1
(x-1)(3-x) = 1
3x - – 3 + x – 1= 0
- + 4x – 4 = 0
– 4x + 4 = 0
= 0
x = 2, следовательно t=0.
Ответ: x = 2.
Задача 2.
1 + πx = +
1 ≤ 1 + πx ≤ 2
+ · = 2
3 ≤ x ≤ 6
При x = 4 ( Из условия равенства в неравенстве Коши-Буняковсекого для корней)
Получаем:
1 + 4π = 2
+ = 2.
Ответ: 2.
Задача 3.
Доказать неравенство:
10 + 2 + 5 ≥ 2xy + 4yz + 6xz
– 2xy + + – 4yz + 4 + – 6xz + 9 ≥ 0
Свернем данное неравенство в квадрат разности, получим:
+ + ≥ 0
Следовательно , 10 + 2 + 5 ≥ 2xy + 4yz + 6xz.
Задача 4.
Решить уравнение:
+ = │x - 2│ + │x - 4│
Решение:
ОДЗ x € [ 2;4 ]
Докажем, что левая часть меньше или равна 2:
+ ≤ 2
Из неравенства Коши-Буняковского, получаем:
+ 1 · + = 2 (*)
Докажем, что правая часть больше или равна 2:
│x - 2│ + │x - 4│= │2 - x│ + │x - 4│≥ │2 – x + x - 4│= 2
Так как, │a + b│ ≤ │a│ + │b│ для любых a и b.
Итак, левая часть не больше 2, а правая – не меньше 2. Поэтому + = │x - 2│ + │x - 4│= 2. Это означает, что в (*) достигается равенство , что возможно только при x – 2 = 4 – x = 1 или x = 3.
Проверка показывает, что x = 3 подходит.
Ответ: x = 3.
































Заключение

В результате проделанной работы был подобран материал по теме «Доказательство неравенств во внеклассной работе со школьниками», а именно: теоретические сведения по неравенствам Йенсена, Коши, Коши-Буняковского и Бернулли, задачи, в решениях которых используются эти неравенства.

На основании выбранной учебной и методической литературы были выделены основные моменты, связанные с проведением школьных математических олимпиад. Подробно раскрыты цели и структура олимпиад по математике в школе. Сделан вывод, что математические олимпиады являются достаточно популярной формой организацией внеурочной работы в школе. Раскрыто содержание теоретических вопросов, связанных с понятиями и методами решений неравенств, также рассмотрены основные классические неравенства, которые используются при решении задач математических олимпиад. Все это было собрано и оформлено в виде электронного учебника. Учебник позволяет самостоятельно изучать эту тему, получая знания на достаточном уровне, а также помогает строить логические цели рассуждения; делать выводы о выборе решения, анализировать и оценивать полученные результаты.















Список литературы

1. Выгодский М.Я. Справочник по элементарной математике. – М.: Наука, 1972. – 416 с.

2. Ижболдин О., Курляндчик Л. Неравенство Йенсена. – Научно-популярный физико-математический журнал «Квант», №4, 1990. – 95с.

3. Конюшков А. Неравенство Коши-Буняковского. – Научно-популярный физико-математический журнал «Квант», №8, 1987. – 110с.

4. Супрун В.П. Избранные задачи повышенной сложности по математике. – Мн.: Полымя, 1998. – 108 с. – («В помощь абитуриентам и студентам»)

5. Соловьев Ю.П. Неравенства (Серия: «Библиотека «Математическое просвещение»») М.: МЦНМО, 2005. — 16 с.:

6. ЕГЭ 2018, Математика, Большой сборник тематических заданий, Профильный уровень, Ященко И.В



8



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!