СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Физика. Электростатика. Основные понятия.

Категория: Физика

Нажмите, чтобы узнать подробности

Первое знакомство человечества с электрическими явлениями привело к зарождению раздела науки о природных явлениях - ЭЛЕКТРОСТАТИКИ.  

Электростатика — это раздел физики, где изучаются свойства и взаимодействия неподвижных относительно инерциальной системы отсчета электрически заряженных тел или частиц, которые имеют электрический заряд.

Электрический заряд — это физическая величина, характеризующая свойство тел или частиц входить в электромагнитные взаимодействия и определяющая значения сил и энергий при этих взаимодействиях. В Международной системе единиц единицей измерения электрического заряда является кулон (Кл).

Различают два вида электрических зарядов:

  • положительные;
  • отрицательные.

Тело является электрически нейтральным, если суммарный заряд отрицательно заряженных частиц, входящих в состав тела, равен суммарному заряду положительно заряженных частиц.

Стабильными носителями электрических зарядов являются элементарные частицы и античастицы.

Носители положительного заряда — протон и позитрон, а отрицательного — электрон и антипротон.

Полный электрический заряд системы равен алгебраической сумме зарядов тел, входящих в систему, т. е.: 

Закон сохранения заряда: в замкнутой, электрически изолированной, системе полный электрический заряд остается неизменным, какие бы процессы ни происходили внутри системы.

Изолированная система — это система, в которую из внешней среды через ее границы не проникают электрически заряженные частицы либо какие-нибудь тела.

Закон сохранения заряда — это следствие сохранения числа частиц, совершается перераспределение частиц в пространстве.

Проводники — это тела, имеющие электрические заряды, которые могут свободно перемещаться на значительные расстояния. Примеры проводников: металлы в твердом и жидком состояниях, ионизированные газы, растворы электролитов.

 

 

 

Диэлектрики — это тела, имеющие заряды, которые не могут перемещаться от одной части тела к другой, т. е. связанные заряды. Примеры диэлектриков: кварц, янтарь, эбонит, газы в нормальных условиях.

Электризация — это такой процесс, вследствии которого тела приобретают способность принимать участие в электромагнитном взаимодействии, т. е. приобретают электрический заряд.

Электризация тел — это такой процесс перераспределения электрических зарядов, находящихся в телах, в результате которого заряды тел становятся противоположных знаков.

Виды электризации:

  • Электризация за счет электропроводности. Когда два металлических тела соприкасаются, одно заряженное и другое нейтральное, то происходит переход некоторого числа свободных электронов с заряженного тела на нейтральное, если заряд тела был отрицательным, и наоборот, если заряд тела положителен.

    В итоге этого в первом случае, нейтральное тело получит отрицательный заряд, во втором — положительный.

  • Электризация трением. В результате соприкосновения при трении некоторых нейтральных тел электроны передаются от одного тела к другому. Электризация трением есть причина возникновения статического электричества, разряды которого можно заметить, например, если расчесывать волосы пластмассовой расческой или снимая с себя синтетические рубашку или свитер.
  • Электризация через влияние возникает, если заряженное тело поднести к концу нейтрального металлического стержня, при этом в нем случается нарушение равномерного распределения положительных и отрицательных зарядов. Их распределение происходит своеобразным образом: в одной части стержня возникает избыточный отрицательный заряд, а в другой — положительный. Такие заряды называются индуцированными, возникновение которых объясняется движением свободных электронов в металле под действием электрического поля поднесенного к нему заряженного тела.

Точечный заряд — это заряженное тело, размерами которого в данных условиях можно пренебречь.

Точечный заряд — это материальная точка, которая имеет электрический заряд. Заряженные тела взаимодействуют друг с другом следующим образом: разноименно заряженные притягиваются, одноименно заряженные отталкиваются.

Закон Кулона: сила взаимодействия двух точечных неподвижных зарядов q1 и q2 в вакууме прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними

Главное свойство электрического поля — это то, что электрическое поле оказывает влияние на электрические заряды с некоторой силой. Электрическое поле является частным случаем электромагнитного поля.

Электростатическое поле — это электрическое поле неподвижных зарядов. Напряженность электрического поля — векторная величина, характеризующая электрическое поле в данной точке. Напряженность поля в данной точке определяется отношением силы, воздействующей на точечный заряд, помещенный в данную точку поля, к величине этого заряда: 

 

Напряженность — это силовая характеристика электрического поля; она позволяет рассчитывать силу, действующую на этот заряд: F = qE.

В Международной системе единиц единицей измерения напряженности является вольт на метр Линии напряженности — это воображаемые линии, необходимые для использования графического изображения электрического поля. Линии напряженности проводят так, чтобы касательные к ним в каждой точке пространства совпадали по направлению с вектором напряженности поля в данной точке.

Принцип суперпозиции полей: напряженность поля от нескольких источников равна векторной сумме напряженностей полей каждого из них.

Электрический диполь — это совокупность двух равных по модулю разноименных точечных зарядов (+q и –q), располагающихся на некотором расстоянии друг от друга.

Дипольный (электрический) момент — это векторная физическая величина, являющаяся основной характеристикой диполя. В Международной системе единиц единицей измерения дипольного момента является кулон-метр (Кл/м).

Виды диэлектриков:

  • Полярные, в состав которых входят молекулы, у которых центры распределения положительных и отрицательных зарядов не совпадают (электрические диполи).
  • Неполярные, в молекулах и атомах которых центры распределения положительных и отрицательных зарядов совпадают.

Поляризация — это процесс, который происходит при помещении диэлектриков в электрическое поле.

Поляризация диэлектриков — это процесс смещения связанных положительных и отрицательных зарядов диэлектрика в противоположные стороны под действием внешнего электрического поля.

Диэлектрическая проницаемость — это физическая величина, которая характеризует электрические свойства диэлектрика и определяется отношением модуля напряженности электрического поля в вакууме к модулю напряженности этого поля внутри однородного диэлектрика.

Диэлектрическая проницаемость — величина безразмерная и выражается в безразмерных единицах.

Сегнетоэлектрики — это группа кристаллических диэлектриков, которые не имеют внешнего электрического поля и вместо него возникает спонтанная ориентация дипольных моментов частиц.

Пьезоэлектрический эффект — это эффект при механических деформациях некоторых кристаллов в определенных направлениях, где на их гранях возникают электрические разноименные заряды.

Потенциал электрического поля. Электроемкость

 

Потенциал электростатический — это физическая величина, характеризующая электростатическое поле в данной точке, она определяется отношением потенциальной энергии взаимодействия заряда с полем к значению заряда, помещенного в данную точку поля: 

В Международной системе единиц единицей измерения является вольт (В). Потенциал поля точечного заряда определяется: 

При условиях если q > 0, то k > 0; если q < 0, то k < 0. Потенциальная энергия взаимодействия двух точечных зарядов определяется: 

Принцип суперпозиции полей для потенциала: если электростатическое поле создается несколькими источниками, то его потенциал в данной точке пространства определяется как алгебраическая сумма потенциалов: 

Разность потенциалов между двумя точками электрического поля — это физическая величина, определяемая отношением работы электростатических сил по перемещению положительного заряда из начальной точки в конечную к этому заряду: 

Эквипотенциальные поверхности — это геометрическая область точек электростатического поля, где значения потенциала одинаковы.

Электрическая емкость — это физическая величина, которая характеризует электрические свойства проводника, количественная мера его способности удерживать электрический заряд.

Электрическая емкость уединенного проводника определяется отношением заряда проводника к его потенциалу, при этом будем предполагать, что потенциал поля проводника принят равным нулю в бесконечноудаленной точке: 

Закон Ома

 

Однородный участок цепи — это участок цепи, который не имеет источника тока. Напряжение на таком участке будет определяться разностью потенциалов на его концах, т. е.: 

В 1826 г. немецкий ученый Г. Ом открыл закон, который определяет соотношение между силой тока в однородном участке цепи и напряжением на нем: сила тока в проводнике прямо пропорциональна напряжению на нем. , где G — коэффициент пропорциональности, который называется в этом законе электропроводностью или проводимостью проводника, которая определяется формулой.

Электропроводность проводника — это физическая величина, которая является обратной его сопротивлению.

В Международной системе единиц единицей измерения электропроводности является сименс (См).

Физический смысл сименса: 1 См — это проводимость проводника сопротивлением 1 Ом. Чтобы получить закон Ома для участка цепи, необходимо подставить в формулу, приведенную выше, вместо электропроводности сопротивление R, тогда: 

Закон Ома для участка цепи: сила тока в участке цепи прямо пропорциональна напряжению на нем и обратно пропорциональна сопротивлению участка цепи.

Закон Ома для полной цепи: сила тока в неразветвленной замкнутой цепи, включающая источник тока, прямо пропорциональна электродвижущей силе этого источника и обратнопропорциональна сумме внешнего и внутреннего сопротивлений данной цепи: 

Правила знаков:

  • Если при обходе цепи в выбранном направлении ток внутри источника идет в направлении обхода, то ЭДС этого источника считается положительной.
  • Если при обходе цепи в выбранном направлении ток внутри источника идет в противоположном направлении, то ЭДС этого источника считается отрицательной.

Электродвижущая сила (ЭДС) — это физическая величина, которая характеризует действие сторонних сил в источниках тока, это энергетическая характеристика источника тока. Для замкнутого контура ЭДС определяется как отношение работы сторонних сил по перемещению положительного заряда вдоль замкнутого контура к этому заряду: 

В Международной системе единиц единицей измерения ЭДС является вольт. При разомкнутой цепи ЭДС источника тока равна электрическому напряжению на его зажимах.

Закон Джоуля—Ленца: количество теплоты, выделяемое проводником с током, определяется произведением квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику: 

При перемещении электрическое поле заряда по участку цепи делает работу, которая определяется произведением заряда на напряжение на концах этого участка цепи: 

Мощность постоянного тока — это физическая величина, которая характеризует скорость совершения полем работы по перемещению заряженных частиц по проводнику и определяется отношением работы тока за время к этому промежутку времени: 

Правила Кирхгофа, которые применяются для расчета разветвленных цепей постоянного тока, суть которого заключается в отыскании по заданным сопротивлениям участков цепи и приложенным к ним ЭДС сил токов в каждом участке.

Первое правило — правило узлов: алгебраическая сумма токов, которые сходятся в узле, — это точка, в которой есть более двух возможных направлений тока,она равна нулю 

Второе правило — правило контуров: в любом замкнутом контуре, в разветвленной электрической цепи алгебраическая сумма произведений сил токов на сопротивление соответствующих участков этого контура определяется алгебраической суммой приложенных в нем ЭДС: 

Магнитное поле — это одна из форм проявления электромагнитного поля, специфика которой состоит в том, что это поле воздействует только на движущиеся частицы и тела, имеющие электрический заряд, а также на намагниченные тела независимо от состояния их движения.

Вектор магнитной индукции — это векторная величина, которая характеризует магнитное поле в любой точке пространства, определяющая отношение силы, действующей со стороны магнитного поля на элемент проводника с электрическим током, к произведению силы тока и длины элемента проводника, равная по модулю отношению магнитного потока сквозь поперечное сечение площади к площади этого поперечного сечения.

В Международной системе единиц единицей индукции является тесла (Тл).

Магнитная цепь — это совокупность тел или областей пространства, где сосредоточено магнитное поле.

Магнитный поток (поток магнитной индукции) — это физическая величина, которая определяется произведением модуля вектора магнитной индукции на площадь плоской поверхности и на косинус угла между векторами нормали к плоской поверхности / угол между вектором нормали и направлением вектора индукции.

В Международной системе единиц единицей магнитного потока является вебер (Вб). Теорема Остроградского—Гаусса для потока магнитной индукции: магнитный поток сквозь произвольную замкнутую поверхность равен нулю: 

Закон Ома для замкнутой магнитной цепи: 

Магнитная проницаемость — это физическая величина, которая характеризует магнитные особенности вещества, которая определяется отношением модуля вектора магнитной индукции в среде к модулю вектора индукции в той же точке пространства в вакууме: 

Напряженность магнитного поля — это векторная величина, которая определяет и характеризует магнитное поле и равна: 

Сила Ампера — это сила, которая действует со стороны магнитного поля на проводник с током. Элементарная сила Ампера определяется соотношением: 

Закон Ампера: модуль силы, воздействующей на небольшой отрезок проводника, по которому течет ток, со стороны однородного магнитного поля с индукцией, составляющей с элементом угол 

Принцип суперпозиции: когда в данной точке пространства многообразные источники формируют магнитные поля, индукции которых В1,В2, .., то результирующая индукция поля в этой точке равна: 

Правило буравчика или правило правого винта: если направление поступательного движения острия буравчика при ввинчивании совпадает с направлением тока в пространстве, то направление вращательного движения буравчика в каждой точке совпадает с направлением вектора магнитной индукции.

Закон Био—Савара—Лапласа: определяет величину и направление вектора магнитной индукции в любой точке магнитного поля, создаваемого в вакууме элементом проводника определенной длины с током: 

Движение заряженных частиц в электрическом и магнитном полях Сила Лоренца — это сила, влияющая на движущуюся частицу со стороны магнитного поля: 

Правило левой руки:

  1. Необходимо располагать левую руку так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца были сонаправлены с током, тогда отогнутый на 90° большой палец укажет направление силы Ампера.
  2. Необходимо располагать левую руку так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали с направлением скорости частицы при положительном заряде частицы или были направлены в сторону, противоположную скорости частицы при отрицательном заряде частицы, тогда отогнутый на 90° большой палец покажет направление силы Лоренца, действующей на заряженную частицу.

Если происходит совместное действие на движущийся заряд электрического и магнитного полей, то результирующая сила будет определяться: 

 


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!