СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 12.05.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Галуа Эварист. �Разработка �теории групп.

Категория: Математика

Нажмите, чтобы узнать подробности

Разработка теории групп, которая применима в современной алгебре.

Просмотр содержимого документа
«Галуа Эварист. �Разработка �теории групп.»

   Галуа Эварист,  Разработка  теории групп. Базуева Анна, Гр.Б-4051, СурГПУ, ноябрь, 2016

Галуа Эварист, Разработка теории групп.

Базуева Анна,

Гр.Б-4051,

СурГПУ, ноябрь, 2016

ЭВАРИСТ ГАЛУА французский математик, свою первую работу, посвященную периодическим непрерывным дробям, Галуа опубликовал в 1828, еще будучи учеником лицея. Галуа с энтузиазмом занялся революционной деятельностью, и в конце концов попал в тюрьму, где пробыл несколько месяцев. Уже в мае 1832 его бурная жизнь подошла к концу: он был убит на дуэли, в которую его вовлекла какая-то любовная история. Накануне дуэли он написал резюме своих открытий и передал записку одному из друзей с просьбой сообщить о них ведущим математикам. Записка заканчивалась словами: «Ты публично попросишь Якоби или Гаусса дать заключение не о справедливости, а о значении этих теорем. После этого, я надеюсь, найдутся люди, которые сочтут нужным расшифровать всю эту путаницу».

ЭВАРИСТ ГАЛУА

  • французский математик, свою первую работу, посвященную периодическим непрерывным дробям, Галуа опубликовал в 1828, еще будучи учеником лицея. Галуа с энтузиазмом занялся революционной деятельностью, и в конце концов попал в тюрьму, где пробыл несколько месяцев. Уже в мае 1832 его бурная жизнь подошла к концу: он был убит на дуэли, в которую его вовлекла какая-то любовная история. Накануне дуэли он написал резюме своих открытий и передал записку одному из друзей с просьбой сообщить о них ведущим математикам. Записка заканчивалась словами: «Ты публично попросишь Якоби или Гаусса дать заключение не о справедливости, а о значении этих теорем. После этого, я надеюсь, найдутся люди, которые сочтут нужным расшифровать всю эту путаницу».
Насколько известно, письмо Галуа не попало ни к Якоби, ни к Гауссу. Математические круги узнали о нем лишь в 1846, когда Лиувилль напечатал большую часть трудов ученого в своем журнале. Все они занимали лишь 60 страниц небольшого формата! А содержали изложение теории групп – ключ к современной алгебре и современой геометрии - первая классификация иррациональностей, определяемых алгебраическими уравнениями, – учение, которое сейчас кратко называется теорией Галуа; проблемы, о которых мы теперь говорим как об абелевых интегралах. В теории Галуа прояснялись такие старые вопросы, как трисекция угла, удвоение куба, решение кубических и биквадратных уравнений и уравнений любых степеней в радикалах. Им установлены условия сводимости решения таких уравнений к решению системы других алгебраических уравнений более низких степеней.

Насколько известно, письмо Галуа не попало ни к Якоби, ни к Гауссу. Математические круги узнали о нем лишь в 1846, когда Лиувилль напечатал большую часть трудов ученого в своем журнале. Все они занимали лишь 60 страниц небольшого формата! А содержали изложение теории групп – ключ к современной алгебре и современой геометрии - первая классификация иррациональностей, определяемых алгебраическими уравнениями, – учение, которое сейчас кратко называется теорией Галуа; проблемы, о которых мы теперь говорим как об абелевых интегралах. В теории Галуа прояснялись такие старые вопросы, как трисекция угла, удвоение куба, решение кубических и биквадратных уравнений и уравнений любых степеней в радикалах. Им установлены условия сводимости решения таких уравнений к решению системы других алгебраических уравнений более низких степеней.

Разработка теории групп Тео́рия Галуа́ — раздел алгебры, позволяющий переформулировать определенные вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми. Эварист Галуа сформулировал основные утверждения этой теории в терминах перестановок корней заданного многочлена (с рациональными коэффициентами); он был первым, кто использовал термин «группа» для описания множества перестановок, замкнутого относительно композиции и содержащего тождественную перестановку. Более современный подход к теории Галуа заключается в изучении автоморфизмов расширения произвольного поля при помощи группы Галуа , соответствующей данному расширению.

Разработка теории групп

Тео́рия Галуа́ — раздел алгебры, позволяющий переформулировать определенные вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми.

Эварист Галуа сформулировал основные утверждения этой теории в терминах перестановок корней заданного многочлена (с рациональными коэффициентами); он был первым, кто использовал термин «группа» для описания множества перестановок, замкнутого относительно композиции и содержащего тождественную перестановку.

Более современный подход к теории Галуа заключается в изучении автоморфизмов расширения произвольного поля при помощи группы Галуа , соответствующей данному расширению.

Симметрии корней Симметрии корней — такие перестановки на множестве корней многочлена, для которых любому алгебраическому уравнению с рациональными коэффициентами (с несколькими переменными), которому удовлетворяют корни, удовлетворяют и переставленные корни.

Симметрии корней

Симметрии корней — такие перестановки на множестве корней многочлена, для которых любому алгебраическому уравнению с рациональными коэффициентами (с несколькими переменными), которому удовлетворяют корни, удовлетворяют и переставленные корни.

Пример: квадратное уравнение У многочлена второй степени a  x ² + b  x + c имеются два корня x 1 и x 2 , симметричных относительно точки x =- b /2 a . Возможны два варианта: Если эти корни рациональны, то уравнению x - x 1 =0 удовлетворяет только один корень, и группа уравнения тривиальна. Если корни иррациональны, то группа содержит один нетривиальный элемент x 1 ⇔ x 2 .

Пример: квадратное уравнение

У многочлена второй степени

a x ² + b x + c имеются два корня x 1 и x 2 , симметричных относительно точки

x =- b /2 a . Возможны два варианта:

Если эти корни рациональны, то уравнению x - x 1 =0 удовлетворяет только один корень, и группа уравнения тривиальна.

Если корни иррациональны, то группа содержит один нетривиальный элемент x 1 ⇔ x 2 .


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!

Закрыть через 5 секунд
Комплекты для работы учителя