Галуа Эварист, Разработка теории групп.
Базуева Анна,
Гр.Б-4051,
СурГПУ, ноябрь, 2016
ЭВАРИСТ ГАЛУА
- французский математик, свою первую работу, посвященную периодическим непрерывным дробям, Галуа опубликовал в 1828, еще будучи учеником лицея. Галуа с энтузиазмом занялся революционной деятельностью, и в конце концов попал в тюрьму, где пробыл несколько месяцев. Уже в мае 1832 его бурная жизнь подошла к концу: он был убит на дуэли, в которую его вовлекла какая-то любовная история. Накануне дуэли он написал резюме своих открытий и передал записку одному из друзей с просьбой сообщить о них ведущим математикам. Записка заканчивалась словами: «Ты публично попросишь Якоби или Гаусса дать заключение не о справедливости, а о значении этих теорем. После этого, я надеюсь, найдутся люди, которые сочтут нужным расшифровать всю эту путаницу».
Насколько известно, письмо Галуа не попало ни к Якоби, ни к Гауссу. Математические круги узнали о нем лишь в 1846, когда Лиувилль напечатал большую часть трудов ученого в своем журнале. Все они занимали лишь 60 страниц небольшого формата! А содержали изложение теории групп – ключ к современной алгебре и современой геометрии - первая классификация иррациональностей, определяемых алгебраическими уравнениями, – учение, которое сейчас кратко называется теорией Галуа; проблемы, о которых мы теперь говорим как об абелевых интегралах. В теории Галуа прояснялись такие старые вопросы, как трисекция угла, удвоение куба, решение кубических и биквадратных уравнений и уравнений любых степеней в радикалах. Им установлены условия сводимости решения таких уравнений к решению системы других алгебраических уравнений более низких степеней.
Разработка теории групп
Тео́рия Галуа́ — раздел алгебры, позволяющий переформулировать определенные вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми.
Эварист Галуа сформулировал основные утверждения этой теории в терминах перестановок корней заданного многочлена (с рациональными коэффициентами); он был первым, кто использовал термин «группа» для описания множества перестановок, замкнутого относительно композиции и содержащего тождественную перестановку.
Более современный подход к теории Галуа заключается в изучении автоморфизмов расширения произвольного поля при помощи группы Галуа , соответствующей данному расширению.
Симметрии корней
Симметрии корней — такие перестановки на множестве корней многочлена, для которых любому алгебраическому уравнению с рациональными коэффициентами (с несколькими переменными), которому удовлетворяют корни, удовлетворяют и переставленные корни.
Пример: квадратное уравнение
У многочлена второй степени
a x ² + b x + c имеются два корня x 1 и x 2 , симметричных относительно точки
x =- b /2 a . Возможны два варианта:
Если эти корни рациональны, то уравнению x - x 1 =0 удовлетворяет только один корень, и группа уравнения тривиальна.
Если корни иррациональны, то группа содержит один нетривиальный элемент x 1 ⇔ x 2 .