СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Организация проектно-исследовательской деятельности на уроках физики»

Категория: Физика

Нажмите, чтобы узнать подробности

Специалисты четко отделяют проектную деятельность от исследовательской. «Исследование – процесс поиска неизвестного, новых знаний, один из видов познавательной деятельности человека…», «Проектирование – это не творчество в полной мере, это творчество по плану в определенных контролируемых рамках» [2]. На практике учителя чаще всего создают с учениками работы, которые называют проектно-исследовательскими или исследовательскими проектами, так как деятельность учащихся связана с решением творческой, исследовательской задачей с заранее неизвестным решением, но содержит элементы проектирования, поскольку необходимо выдвигать какие-либо гипотезы, т.е. предполагать, проектировать. Исследовательская работа школьника, как правило, не вносит новизну в науку, а повышает уровень знаний самого исследователя.

Просмотр содержимого документа
«Организация проектно-исследовательской деятельности на уроках физики»»

Использование ИКТ на уроках физики


Важнейшей задачей школы, в том числе, и преподавания физики, является формирование личности, способной ориентироваться в потоке информации в условиях непрерывного образования. Осознание общечеловеческих ценностей возможно только при соответствующем познавательном, нравственном, этическом и эстетическом воспитании школьника. В связи с этим главную цель обучения можно конкретизировать более частными целями: воспитание у школьников в процессе деятельности положительного отношения к науке вообще и к физике в частности; развитие интереса к физическим знаниям, научно - популярным статьям, жизненным проблемам. Физика является основой естествознания и современного научно - технического прогресса, что определяет следующие конкретные цели обучения: осознание учащимися роли физики в науке и производстве, воспитание экологической культуры, понимание нравственных и этических проблем, связанных с физикой[14].

На современном этапе развития школы выдвигается задача преобразования традиционной системы обучения в качественно новую систему образования – задача воспитания грамотного, продуктивно мыслящего человека, адаптированного к новым условиям жизни в обществе. Естественной в учебно-воспитательном процессе становится установка на самостоятельное получение знания обучаемыми, на их самообразование и на самопознание [1].

В связи с этим в настоящее время особое внимание уделяется индивидуальному (ориентированному на личность) подходу при обучении учащихся, созданию условий, для того чтобы ребёнок овладел многообразными способами самостоятельного получения и усвоения знаний, развивал свой творческий потенциал. Одним из важнейших направлений, решающих эту задачу является внедрение информационных средств, в процесс обучения [6].

Целью моей работы является обобщение опыта по использованию информационно-коммуникационных технологий на уроках физики. Свою задачу вижу в том, чтобы помочь учащимся через использование информационно – коммуникационных технологий создать условия для овладения общеучебными навыками, знаниями по предмету и для формирования интереса к физике. Конечным результатом организации данной деятельности вижу повышение качества обучения по предмету физика как одного из приоритетных направлений Концепции модернизации российского образования.

Наиболее ценными результатами образования считается гибкость и широта мышления, способность и стремление учиться. Но на практике школьное обучение дает в основном некоторую сумму знаний, интересы учащихся при этом развиваются недостаточно. Это связано в первую очередь с преобладанием пока в большинстве школ объяснительно-иллюстративного метода обучения.

В настоящее время актуальной проблемой образования является творческое усвоение знаний школьниками. Именно оно может обеспечить развитие и саморазвитие личности ученика исходя из его индивидуальных особенностей. Основная задача педагога при этом заключается в том, чтобы сделать приобретаемые знания личностно значимыми для учащегося. Это можно достичь формированием у школьников положительного отношения к учению, организацией обучения таким образом, чтобы оно максимально способствовало развитию у них активности, самостоятельного творческого мышления, но для этого необходимо сделать акцент в организации учебного процесса на увеличение самостоятельной работы учащихся[11].

В деятельности учителя максимальную роль должна играть работа по организации познавательной деятельности учащихся, а не сообщение им информации. Учитель же не всегда может сочетать свою деятельность по изложению учебного материала с необходимой долей деятельности по организации самостоятельной работы учащихся над этим материалом. Из основ дидактики хорошо известно, что только самостоятельная индивидуальная учебная деятельность способна привести к образованию прочных и глубоких знаний, устойчивых навыков[12].

Решение возникших трудностей, возможно, многими путями, остановимся на одном из них. Преодолеть существующие трудности учителю во многом может помочь компьютер, операционные возможности которого несут огромный дидактический потенциал. Поэтому многие педагоги и возлагают на электронно-вычислительные машины большие надежды, полагая, что их применение может сократить разрыв между знаниями, которые действительно сейчас дает школа и которых требует от подрастающего поколения современное общество[4].

Быстрое развитие вычислительной техники и расширение её функциональных возможностей позволяет широко использовать компьютеры на всех этапах учебного процесса: во время лекций, практических и лабораторных занятий, при самоподготовке и для контроля и самоконтроля степени усвоения учебного материала. Использование компьютерных технологий значительно расширило возможности лекционного эксперимента, позволяя моделировать различные процессы и явления, натурная демонстрация которых в лабораторных условиях технически очень сложна либо просто невозможна.

Большие возможности содержатся в использовании компьютеров при обучении физике. Эффективность применения компьютеров в учебном процессе зависит от многих факторов, в том числе, и от уровня самой техники, и от качества используемых обучающих программ, и от методики обучения, применяемой учителем[5].

Физика - наука экспериментальная, её всегда преподают, сопровождая демонстрационным экспериментом. В современном кабинете физики (как, впрочем, и в любом другом кабинете естественно-научной специализации) должны использоваться не только различные установки и приборы для проведения демонстрационных экспериментов, но и вычислительная техника с мультимедиа проектором или демонстрационным экраном[15].

Разнообразный иллюстративный материал, мультимедийные и интерактивные модели поднимают процесс обучения на качественно новый уровень. Нельзя сбрасывать со счетов и психологический фактор: современному ребенку намного интереснее воспринимать информацию именно в такой форме, нежели при помощи устаревших схем и таблиц. При использовании компьютера на уроке информация представляется не статичной неозвученной картинкой, а динамичными видео- и звукорядом, что значительно повышает эффективность усвоения материала[16].

Интерактивные же элементы обучающих программ позволяют перейти от пассивного усвоения к активному, так как учащиеся получают возможность самостоятельно моделировать явления и процессы, воспринимать информацию не линейно, с возвратом, при необходимости, к какому-либо фрагменту, с повторением виртуального эксперимента с теми же или другими начальными параметрами.

В качестве одной из форм обучения, стимулирующих учащихся к творческой деятельности, можно предложить создание одним учеником или группой учеников мультимедийной презентации, сопровождающей изучение какой-либо темы курса. Здесь каждый из учащихся имеет возможность самостоятельного выбора формы представления материала, компоновки и дизайна слайдов. Кроме того, он имеет возможность использовать все доступные средства мультимедиа для того, чтобы сделать материал наиболее зрелищным[13].

Рассмотрим некоторые способы применения информационно-коммуникационных технологий на уроках физики:

компьютерное моделирование;

компьютерные демонстрации;

лабораторно – компьютерный практикум;

решение задач в электронной таблице Excel;

компьютерное тестирование.

Для использования информационно-коммуникационных технологий в обучении в образовательном процессе в школе имеются необходимые условия. Кабинет физики оснащён 11 компьютерами для учеников и автоматизированным местом учителя, объединённых локальной сетью с выходом в Интернет, а так же мультимедийным проектором, лазерным принтером и сканером.

Применение в преподавании физики информационных технологий позволяет мне более успешно решать следующие задачи:

развивать образное мышление учащихся благодаря использованию широких возможностей представления визуальной информации;

развивать творческое мышление путём использования динамичных методов обработки и предъявления информации;

осуществлять воспитание коллективизма и коммуникативности в процессе обмена данными между учащимися при обсуждении или создании совместных видеопроектов;

воспитать познавательный интерес, опираясь на естественную тягу школьников к компьютерной технике;

разрабатывать новые методы обучения, ориентированные на индивидуальные познавательные потребности личности.

Решение этих задач становится возможным вследствие использования вместе с видеокомпьютерными средствами таких методов обработки информации, как математическое моделирование, компьютерная графика, мультимедиа, компьютерная обработка результатов лабораторных экспериментов.

Компьютерные модели легко вписываются в традиционный урок, позволяя продемонстрировать почти «живьём» многие физические эффекты, которые обычно мучительно и долго объясняются «на пальцах». Кроме того, компьютерные модели позволяют организовывать новые, нетрадиционные виды учебной деятельности.

Приведу в качестве примеров два вида такой деятельности, опробованные на практике:

1. Урок-исследование в 11 классе по теме «Фотоэффект». Учащимся предлагается самостоятельно провести исследование зависимости фототока от частоты падающего света, используя компьютерную модель, и получить необходимые результаты. Компьютерная программа «Физика в картинках» позволяет буквально за считанные минуты провести такое исследование. В этом случае урок приближается к идеалу, так как ученики получают знания в процессе самостоятельной творческой работы, ибо знания необходимы им для получения конкретного, видимого на экране компьютера, результата. Я в этом случае являюсь лишь помощником в творческом овладении знаниями.

2. Урок решения задач с последующей компьютерной проверкой. В 10 классе при решении задач по теме «Движение тел, брошенных под углом к горизонту», я предлагаю учащимся для самостоятельного решения в классе или в качестве домашнего задания индивидуальные задачи, правильность решения которых они могут проверить, поставив затем компьютерные эксперименты. Возможность последующей самостоятельной проверки в компьютерном эксперименте полученных результатов усиливает познавательный интерес, делает работу учащихся творческой, а зачастую приближает её по характеру к научному исследованию. В результате многие учащиеся начинают придумывать свои задачи, решать их, а затем проверять правильность своих рассуждений, используя компьютерные модели. Для эффективного вовлечения учащихся в учебную деятельность с использованием компьютерных моделей готовлю индивидуальные раздаточные материалы с заданиями и вопросами различного уровня сложности. Эти материалы могут содержать следующие виды заданий:

1. Ознакомительное задание. (Назначение модели, управление экспериментом, задания и вопросы по управлению моделью).

2. Компьютерные эксперименты. (Провести простые эксперименты по данной модели по предложенному плану, вопросы к ним и результаты измерений).

3. Экспериментальное задание. (Спланировать и провести ряд компьютерных экспериментов).

4. Тестовые задания. (Выбрать правильный ответ, используя модель)

5. Исследовательское задание. (Провести эксперимент, доказывающий некоторую предложенную закономерность, или опровергающий её; самостоятельно сформулировать ряд закономерностей и подтвердить их экспериментом).

6. Творческое задание. (Придумать задачу, решить её, поставить эксперимент для проверки полученных ответов).

Значительное число компьютерных моделей, охватывающих почти весь школьный курс физики, содержится в учебных электронных изданиях: “Физика в картинках”, “Открытая физика”, “Живая физика”. Существуют большие возможности моделирования физических задач в среде Microsoft Excel. Программной средой компьютерного моделирования являются языки программирования.

Разумеется, компьютерная лаборатория не может полностью заменить настоящую физическую, но этого и не требуется. Не секрет, что учащиеся с огромным удовольствием и старанием выполняют практические, экспериментальные и лабораторные работы, где идёт непосредственное соприкосновение с приборами, механизмами.

Так, в 8 классе при изучении математического маятника, сначала выполняем лабораторную работу «Исследование зависимости периода и частоты свободных колебаний математического маятника от его длины», а затем проводим компьютерное исследование этой же зависимости. Разность значений, полученных при реальном и компьютерном эксперименте, позволяет говорить о погрешностях измерения не как об отвлечённых математических величинах, а как об обязательном факторе проведения реального компьютерного эксперимента.

В компьютерной модели «Превращение энергии при колебаниях» (тема, рассматриваемая в 8 и 10 классах) графически показано соотношение между потенциальной и кинетической энергией в любой момент времени. В компьютерном эксперименте можно изменять массу тела, совершающего колебательные движения, жёсткость и полную энергию системы. И здесь опять открываются широкие возможности по совершенствованию структуры урока: возможность проведения урока с классами разных ступеней обучения.

В 11 классе при изучении темы «Изопроцессы» компьютерные модели позволяют моделировать процессы сжатия и расширения идеального газа при фиксированном значении одного из параметров: давления, температуры, объёма. При этом на графике, приведённом рядом с анимационной моделью процесса, наблюдается изменение двух остальных параметров и, следовательно, внешнего вида самого графика. Тут же выводится энергетическая диаграмма, и учащиеся могут видеть, как изменяются количество теплоты, произведённая работа и внутренняя энергия данного процесса. Идёт практическая проверка первого закона термодинамики. Данные модели изопроцессов я также использую при проведении зачётов после завершения темы.

Принципы применения компьютерной модели на уроке:

1. Модель явления необходимо использовать лишь в том случае, когда невозможно провести эксперимент или когда это явление протекает очень быстро и за ним невозможно проследить детально.

2. Компьютерная модель должна помогать разбираться в деталях изучаемого явления или служить иллюстрацией условия решаемой задачи.

3. В результате работы с моделью ученики должны выявить как качественные, так и количественные зависимости между величинами, характеризующими явление.

При работе с моделью учитываю индивидуальные особенности каждого ученика и предлагаю им дифференцированные задания разного уровня сложности, содержащие элементы самостоятельного творчества.

Физика - наука экспериментальная. Изучение физики трудно представить без лабораторных работ. Победа школы в приоритетном национальном проекте «Образование» и получение 1 миллиона рублей на инновационные процессы позволили улучшить материально-техническую базу кабинета физики: приобретено оборудование для проведения лабораторных работ и демонстрационного эксперимента. Но пришедший на помощь персональный компьютер позволяет проводить лабораторные работы, натурное проведение которых в рамках школы затруднено или невозможно. В них ученик может по своему усмотрению изменять исходные параметры опытов, наблюдать, как изменяется в результате само явление, анализировать увиденное, делать соответствующие выводы.

В работе я обобщила опыт по использованию информационно-коммуникационных технологий в обучении физики и пришла к выводу, что наряду с многообразием технологий, форм, методов, приёмов обучения, информационно – коммуникационные технологии в обучении позволили добиться гарантированного педагогического результата.

Литература:

1. Бордовская Н.А., Реан А.А. Педагогика. Санкт-Петербург: Питер, 2000.

2. Варламов С.Д., Эминов П.А.. Сурков В.А.Использование Microsoft Office в школе. Учебно-методическое пособие для учителей. Физика. М: ИМА-пресс, 2003.

3. Вильямс Р., Маклин К. Компьютеры в школе. М.: Прогресс, 1998.

4. Высоцкий И. Р., Компьютер в образовании, //Информатика и образование,2000,№ 1.

5. Дьячук П.П., Лариков Е.В. Применение компьютерных технологий обучения в средней школе. Красноярск: Изд-во КГПУ, 1996.

6. Игнатова И.Г., Н.Ю. Соколова. Информационные коммуникационные технологии в образовании// Информатика и образование- М.: 2003-№3.

7. Кавтрев А. Ф., Компьютерные модели в школьном курсе физики. Журнал «Компьютерные инструменты в образовании», № 2, Санкт-Петербург, Информатизация образования, 1998.

8. Кавтрев А. Ф., Опыт использования компьютерных моделей на уроках физики в школе. «Дипломат», Сб. РГПУ им. А. И. Герцена «Физика в школе и вузе», Санкт-Петербург, Образование, 1998.

9. Львовский М. Б., Львовская Г. Ф. Преподавание физики с использованием компьютера. // Информатика и образование — М.1999, № 5.

10. Плотникова И.А. Методика тестового контроля в старших классах// Информатика и образование- М.: 2000- №1.

11. Подласый И. П.,Педагогика. Новый курс: Учебник для студентов пед. вузов: В 2 кн.-М.: Гуманит. изд. центр ВЛАДОС, 2000-Кн. 2.: Процесс воспитания.

12. Подласый И. П.,Педагогика. Новый курс: Учебник для студентов пед. вузов: В 2 кн.-М.: Гуманит. изд. центр ВЛАДОС, 2000- Кн. 1: Общие основы. Процесс обучения.

13. Полат Е. С. Информационные технологии в системе образования. М.,1999.

14. Усова А.В., Бобров А.А.Формирование учебных навыков на уроках физики. – М.: Просвещение, 1988.

15. Хорошавин С.А.Физический эксперимент в средней школе: 6-7 кл.-ил.: Просвещение. 1988.

16. Шоломий К. М., Психология и компьютер, //Информатика и образование,1999,№ 6.



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!