СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Как люди научились считать время

Категория: Математика

Нажмите, чтобы узнать подробности

Как люди научились считать время. Разработка для внеклассного мероприятия

Просмотр содержимого документа
«Как люди научились считать время»

Министерство образования и науки Республики Дагестан

ГПОБУ «Республиканский педагогический колледж

им. З.Н. Батырмурзаева»













Индивидуальный проект



«Как люди научились считать время?»







Выполнила:

Зайнулабидова Сувайбат

студентка « 1СДО » курса Руководитель:

Пезуева Мадина Бекмурзена

Дата защиты:_________

Оценка:_______









Хасавюрт,2016г.



ОГЛАВЛЕНИЕ

Введение …………………………………………………………………………3

Глава 1. Как люди научились считать время………………..…………………5

Глава 2. Разнообразие расчета времени………………………………………6

Глава 3. Общие свойства времени…………………………...…………………15

Заключение ………………………………………………………………………19

Список использованной литературы …………………………………….…….20
































Введение

Актуальность темы: без знания прошлого нельзя понять настоящее.

Предмет исследования: процесс изучения истории происхождения счёта времени.

 Объект: люди так часто пользуются временем, что трудно даже представить себе, что когда то люди обходились без часов и счёта времени.

Гипотеза: в повседневной жизни счёт времени нам необходим, поэтому интересно выяснить, когда появились первые часы и история их развития.

Цель исследования: доказать, что люди научились считать время в давние времена.    

Задачи исследования: 

1.установить где, когда и кто впервые начал считать время;

 2. выявить какие бывают виды часов;

3.научиться изображать время различными способами, как это делали в давние времена

Научная новизна: определенные представления о времени наряду с представлениями о пространстве и движении во многом определяют картину мира. Вообще, понятие времени обычно кажется столь очевидным, что любые попытки его исследовать представляются безнадежными. Оно принимается как некая интуитивно очевидная данность.

      Практическая значимость исследования: в школах и высших учебных заведениях математических направлений и не только активно используются данные о исчислении времени для обучения.

Методы исследования: Я буду с помощью анализа литературы изучать историю возникновения счёта времени.

Структура исследования: данное исследование состоит из 3 глав . В данном исследовании были использованы научные труды следующих ученных: Рейхенбах Г. Эйнштейн А., Инфельд Л.

Время, наряду с пространством, является категорией, недоступной для наших органов чувств, ощутить, притронуться к нему нельзя, подобная загадочность и неоднозначность для понимания всегда привлекала исследователей. Потребность в учете времени возникла вместе с формированием первых цивилизаций и была актуальна всегда. Определенные представления о времени наряду с представлениями о пространстве и движении во многом определяют картину мира. Вообще, понятие времени обычно кажется столь очевидным, что любые попытки его исследовать представляются безнадежными. Оно принимается как некая интуитивно очевидная данность. Обычно под временем понимают условную меру движения материи, течение, внутри которого происходят все процессы бытия. Философский словарь так определяет этот термин: «форма протекания всех механических, органических и психических процессов, условие возможности движения, изменения, развития».1 Философов, изучающих проблемы времени, в первую очередь волнуют вопросы о том, реально ли время или оно является лишь выдумкой и абстракцией, живущей лишь в сознании человека.











Глава I. Как люди научились считать время?

На протяжении тысячелетий люди придумывали разные приспособления для измерения и слежения за временем. Использование шестидесятеричной системы счисления для измерения времени придумано в Шумере приблизительно 2000 до н. э. В Древнем Египте сутки делили на два 12-часовых периода, используя большие обелиски для слежения за Солнцем.

В Персии водяные часы регулярно использовались с 2500 году до н. э. на протяжении дня и ночи, чтобы сообщать точное время и продолжительность орошения земли. Также для измерения времени использовались свечные часы. Они были известны в Китае, Японии, Англии и Ираке. В Индии и Тибете широко использовалась разновидность солнечных часов в виде палки.

Самые ранние часы напрямую зависели от солнечной тени, что делало их бесполезными в пасмурную погоду и ночью, кроме того, если гномон не был ориентирован параллельно земной оси, они нуждались в настройке при смене времён года. Самое раннее упоминание часов с водяным спусковым механизмом, который преобразовывал вращательную энергию в прерывистое движение, датируется III веком до н. э. в Древней Греции. Позднее, в X веке, в Китае были изобретены часы с ртутным спусковым механизмом, а затем арабские инженеры улучшили водяные часы, впервые использовав механические передачи для преобразования крутящих моментов

Механические часы, применяющие штыревой спусковой механизм, были созданы в XIV веке и стали стандартным инструментом для измерения времени вплоть до появления пружинных часовых механизмов и карманных часов в XVI веке. Следом появились маятниковые часы и на протяжении трёх веков они были наиболее точным устройством измерения времени. В ХХ веке были созданы кварцевые часы и следом атомные. Последние дают погрешность порядка 10−14 (1 мс за 3000 лет) и используются для синхронизации всех остальных часовых механизмов, ложась в основу Всемирного координированного времени.

Глава 2. Разнообразие расчета времени

Солнечные часы — прибор для определения времени по изменению длины тени от гномона и её движению по циферблату. Появление этих часов связано с моментом, когда человек осознал взаимосвязь между длиной и положением солнечной тени от тех или иных предметов и положением Солнца на небе.

Простейшие солнечные часы показывают солнечное время, а не местное, то есть, не учитывают деление Земли на часовые пояса. Кроме того, простейшие солнечные часы не учитывают летнего времени. Пользоваться солнечными часами можно только днём и при наличии Солнца.

В настоящее время солнечные часы по прямому назначению практически не используются, и уступили место различным видам других часов.

Водяные часы — известный со времён ассиро-вавилонян и древнего Египта  прибор для измерения промежутков времени в виде цилиндрического сосуда с истекающей струёй воды. Был в употреблении до XVII века.

Механи́ческие часы́ — часы, использующие гиревой или пружинный источник энергии. В качестве колебательной системы применяется маятниковый или балансовый регулятор. Мастера, изготавливающие и ремонтирующие часы, называются часовщиками. В искусстве механические часы являются символом времени.

Механические часы по точности хода уступают  электронным  и кварцевым (1-й класс точности механических часов — от +40 до −20 секунд в сутки; погрешность кварцевых часов находится в пределах от 10 секунд в день до 10 секунд в год). Поэтому в настоящее время из незаменимого инструмента механические часы превращаются в символ престижа.

Прототипом первых механических часов можно считать Антикитерский механизм, обнаруженный археологами в начале XX века среди обломков античного торгового судна и датируемый II веком до н.э.

Первые механические часы с анкерным механизмом были изготовлены в Танском Китае в 725 году нашей эры мастерами И Сином и Лян Линцзанем. Из Китая секрет устройства, по-видимому, попал карабам.

Первые маятниковые часы изобретены в Германии около 1000 года аббатом Гербертом — будущим папой Сильвестром II, но широкого распространения не получили. Первые башенные часы в Западной Европе построены были в 1288 году английскими мастерами в Вестми нстере. Примерно в это же время о колесных часах с боем рассказывает Данте Алигьери в своей «Божественной комедии».

Первые в Западной Европе механические часы, устанавливаемые на башнях для того, чтобы можно было разместить гиревой движитель их механизма, имели всего одну стрелку — часовую. Минутытогда не измерялись вообще; зато такие часы нередко отмечали церковные праздники. Маятника в таких часах также не было.

Так, башенные часы, установленные в 1354 году в Страсбурге, не имели маятника, зато отмечали: часы, части суток, праздники церковного календаря, Пасху и зависящие от неё дни. В полдень перед фигуркой Девы Марии склонялись фигурки трех волхвов, а позолоченный петух кукарекал и бил крыльями; специальный механизм приводил в движение маленькие цимбалы, отбивавшие время. К настоящему времени от Страсбургских часов уцелел только петух. Наиболее ранний из сохранившихся до наших дней башенный часовой механизм находится в соборе английского города Солсбери, и относится к 1386 году.

Лишь в XVII веке знаменитый  Галилео Галилей  усовершенствовал  маятник — изобретение Герберта, но лишь спустя много времени его изобретение стали использовать в часах.

В России первые башенные часы, сконструированные  сербским  мастером Лазарем, появляются на княжеском дворе Московского Кремля в начале XV векаНа данный момент старейшие башенные часы Европы находятся в Гродно, Белоруссия. Они находятся в рабочем состоянии уже на протяжении более 500 лет.

Позже появились карманные часы, запатентованные в 1675 году Х. Гюйгенсом, а затем — много позже — и часы наручные. Вначале наручные часы были только женские, богато украшенные драгоценными камнями ювелирные изделия, отличающиеся низкой точностью хода. Ни один уважающий себя мужчина того времени не надел бы часы себе на руку. Но войны изменили порядок вещей и в 1880 году массовое производство наручных часов для армии начала фирма Girard-Perregaux.

Маятник

Исторически первой колебательной системой был маятник. Как известно, при одинаковой амплитуде и постоянном ускорении свободного падения частота колебания маятника неизменна.

В состав маятникового механизма входят:

Маятник;

Анкер, соединённый с маятником;

Храповое колесо (храповик).

Точность хода настраивается изменением длины маятника.

У классического маятникового механизма есть три недостатка. Во-первых, частота колебаний маятника зависит от амплитуды колебаний (этот недостаток преодолел Гюйгенс, заставив маятник колебаться по циклоиде, а не по дуге окружности). (Галилей опубликовал исследование колебаний маятника и заявил, что период колебаний не зависит от их амплитуды, что приблизительно верно для малых амплитуд.) Во-вторых, маятниковые часы должны быть установлены неподвижно; на движущемся транспорте их применять нельзя. В-третьих, частота зависит от ускорения свободного падения, поэтому часы, выверенные на одной широте, будут отставать на более низких широтах и уходить вперёд на более высоких.

Баланс

Балансирный механизм наручных часов

Голландец Христиан Гюйгенс и англичанин Роберт Гук независимо друг от друга разработали другой колебательный механизм, который основан на колебаниях подпружиненного тела.

В состав балансирного механизма входят:

Балансирное колесо;

Спираль;

Вилка;

Градусник — рычаг регулировки точности;

Храповик.

Точность хода регулируется градусником — рычагом, который выводит из работы некоторую часть спирали. Баланс чувствителен к колебаниям температуры, поэтому колесо и спираль делают из сплавов с небольшим коэффициентом температурного расширения. Второй вариант, более старый — делать колесо из двух разных металлов, чтобы оно изгибалось при нагреве (биметаллический баланс).

Для повышения точности хода баланс снабжался винтами, которые позволяют точно сбалансировать колесо. Появление прецизионных станков-автоматов избавило часовщиков от балансировки, винты на балансе стали чисто декоративным элементом.

Балансирный механизм применяется преимущественно в переносных часах, так как, в отличие от маятниковых, может эксплуатироваться в разных положениях. Однако вследствие нечувствительности к колебаниям температуры, а также благодаря большей долговечности в башенных и некоторых видах напольных и настенных часов всё равно применяется маятник.

Циферблаты часов на Башне Зиммера

Кукушка, бой. Через фиксированные промежутки времени (обычно через полчаса или час) часы отбивают колоколами текущее время. Как вариант: играет мелодия, или фигурки-жакемары разыгрывают какую-то сценку.

Интересно, что до появления механических часов время узнавали по звуку церковных колоколов. Поэтому в первых механических часах был только бой, без циферблата. В некоторых языках башенные часы и колокол называются одним и тем же словом, например по-нидерландски и то, и другое будет klok.

Репетир

От фр. répéter - повторять, воспроизводить. Более сложный механизм, позволяющий при нажатии на кнопку отбить время звуком. Изначально был разработан для моряков, которым надо было в тёмное время суток узнать текущее время, не разжигая огонь.

Существует несколько видов репетиров:

Минутный — отбивает часы, четверти, минуты.

Пятиминутный — Отбивает часы и количество пятиминут после часов.

Получетвертной — Отбивает часы и количество получетвертей после часов.

Децимальный — Отбивает часы и количество десятиминут после часов.

Четвертной — Отбивает часы и количество четвертей после часов.

Кварцевые часы

Гибридные часы — циферблат со стрелками + цифровой дисплей

Кварцевые часы — часы, в которых в качестве колебательной системы применяется кристалл кварца. Хотя электронные часы также являются кварцевыми, выражение «кварцевые часы» обычно применяется только к электромеханическим часам (электронным часам со стрелками).

Качественные бытовые кварцевые часы имеют точность ±15 секунд/месяц (в специально спроектированных хронометрах до 0,3 секунд/месяц). Таким образом, выставлять их надо дважды в год. Однако кристалл кварца подвержен старению, и со временем часы начинают, как правило, спешить.

История

Первые кварцевые часы были выпущены в 1957 году, компанией Hamilton. В 1978 году американская компания «Хьюлетт Паккард» впервые выпустила кварцевые часы с микрокалькулятором. На нём можно было совершать математические операции с шестизначными числами. Его клавиши нажимали шариковой ручкой. Размер этих часов составлял несколько квадратных сантиметров.

Электронные часы

Современные электронные часы-будильник с термометром.

Электро́нные часы́ — часы, в которых для отсчёта  времени  используются периодические колебания электронного генератора, преобразованные в дискретные сигналы, повторяющиеся через 1 с, 1 мин, 1 ч и т. д.; сигналы выводятся на цифровое табло, показывающее текущее время, а в некоторых моделях также число, месяц, год, день недели.

Устройство

Наручные часы марки «Электроника-5», СССР, конец 1980-х годов.

Основа электронных часов — кварцевый генератор стабилизированных электрических колебаний, с микросхемой, предназначенной для вычисления времени и вывода сигналов на цифровой дисплей. Часы с питанием от сети переменного тока могут не иметь собственного генератора и использовать частоту сети.

Время на дисплее отображается в виде цифр (например, 13:20 или 1:20 PM).

Питание — от сети переменного тока или химических элементов питания, в том числе миниатюрных (в наручных электронных часах).

Существуют электронные часы, конструктивно объединённые (на базе общей микросхемы) с микрокалькулятором, а также электронные часы-будильник, и другими техническими устройствами.

Некоторые модели наручных кварцевых часов (со стрелками) имеют цифровой дисплей электронных часов (так называемые гибридные часы).

Часы с радиоприемником имеют ручку регулятора громкости, ручку настройки и переключателя диапазонов AM\MW\FM, который одновременно является выключателем.

Поправки электронных часов

Различают два вида поправок в электронных часах:

Поправка показаний электронных часов, когда часы отстают или спешат, в некоторых часах вносят поправку в показания часов, точность хода самих часов при этом остаётся прежней;

Применение

Достаточно высокая точность электронных часов по сравнению с механическими часами и дальнейшее развитие микроэлектроники привели к почти полному вытеснению механических стрелочных часов к концу XX века из жизни человека. Постепенно электронные часы-будильник стали встраиваться в различные бытовые приборы и устройства, позволяя управлять ими (включать, выключать) при наступлении определённого времени. Электронные часы стали обязательным элементом таких устройств как видеомагнитофоны, компьютеры, сотовые телефоны, мультиварки. Цифровые фотоаппараты и телевизоры имеют встроенные часы, но они обычно не предназначены для индикации показаний времени.

Электронные часы могут быть со своим собственным дисплеем (в основном ЖК — в моделях с автономным питанием от гальванических элементов, или вакуумно-люминесцентный индикатор — в моделях, питающихся от электросети) или могут выводить данные на экран устройства, в состав которого они входят. В компьютерах электронные часы входят в состав материнской платы и могут настраиваться через BIOS или ОС; для бесперебойной работы в то время, когда компьютер выключен, они используют элемент питания, установленный на материнской плате (батарейка, аккумулятор или ионистор).

Электронные часы также используются в транспортных средствах. Такие часы имеют светящийся дисплей, который видно в любое время суток, и часто питаются от аккумуляторной батареи самого средства передвижения.

Существуют также специализированные электронные часы для мусульман. Они подают сигналы начала молитв пятикратного намаза, которые рассчитываются устройством в зависимости от положения Солнца с помощью даты и координат местности по одной из пяти программ.

Атомные часы

А́томные часы́ (молекулярные, квантовые часы) — прибор для измерения времени, в котором в качестве периодического процесса используются собственные колебания, связанные с процессами, происходящими на уровне атомов или молекул.

Атомные часы важны в навигации. Определение положения космических кораблей, спутников, баллистических ракет, самолетов, подводных лодок, а также передвижение автомобилей в автоматическом режиме по спутниковой связи (GPS, ГЛОНАСС, Galileo) немыслимы без атомных часов. Атомные часы используются также в системах спутниковой и наземной телекоммуникации, в том числе в базовых станциях мобильной связи, международными и национальными бюро стандартов и службами точного времени, которые периодически транслируют временные сигналы по радио.

С 1967 года международная система единиц СИ определяет одну  секунду  как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Согласно этому определению, атом цезия-133 является стандартом для измерений времени и частоты. Точность определения секунды определяет точность определения других основных единиц, таких как, например, вольт или метр, содержащих секунду в своём определении.

Стабильность атомных часов  (где  — отклонение частоты  часов за некоторый период времени) обычно лежит в пределах 10−14—10−15, а в специальных конструкциях достигает 10−17, и является наилучшей среди всех существующих типов часов.

Кварцевый генератор представляет собой автогенератор, в качестве резонансного элемента которого используются пьезоэлектрические моды кварцевого кристалла. Генерируемые им электромагнитные колебания имеют фиксированную частоту, равную, как правило,[2] 10 МГц, 5 МГц или 2,5 МГц, с возможностью перестройки в небольших пределах (±10−6, например, изменением температуры кристалла). Обычно долговременная стабильность кварцевого резонатора мала и составляет около . С целью повышения его стабильности используют колебания атомов или молекул, для чего колебания кварцевого генератора с частотой  постоянно сравниваются c помощью частотно-фазового компаратора с частотой атомной линии , регистрируемой в квантовом дискриминаторе. При появлении разницы в фазе и частоте колебаний схема обратной связи подстраивает частоту кварцевого генератора до требуемого значения, повышая тем самым стабильность и точность часов до уровня 

Миниатюрные цезиевые атомные часы

Ведутся активные разработки компактных атомных часов для использования в повседневной жизни (наручные часы, мобильные устройства) В начале 2011 американская компания Symmetricom объявила о коммерческом выпуске цезиевых атомных часов размером с небольшую микросхему. Часы работают на основе эффекта когерентного пленения населенности. Их стабильность — 5 · 10-11 за час, масса — 35 г, потребляемая мощность — 115 мВт


Глава 3. Общие свойства времени

1. Длительность - выступает  как последовательность сменяющих друг друга моментов или состояний, возникновение за каждым данным интервалом времени последующих. Длительность предполагает возможность прибавления к каждому данному моменту времени другого, а также возможность  деления любого отрезка времени на меньшие интервалы. Длительность обусловлена сохранением материи и ее атрибутов, единством устойчивости и изменчивости в мире. Никакой процесс в природе не может происходить сразу, мгновенно, он обязательно длится во времени, что обусловлено конечной скоростью распространения взаимодействий и изменения состояний. Аналогично протяженности пространства длительность относиться к метрическим свойствам.

2. Длительность бытия объектов во времени выступает как единство прерывного и непрерывного. Сохраняемость материи и непрерывная последовательность ее изменений, близкодействие в причинных отношениях определяют и общую непрерывность  времени, проявляющуюся в непрерывном переходе предшествующих состояний в последующие. Прежде чем произойдет какое-либо явление в будущем, должны осуществиться все предшествующие ему изменения, которые его вызывают. Но время как форма бытия материи складывается из множества последовательностей и длительностей существования конкретных объектов, каждый их которых существует конечный период. Поэтому время характеризуется прерывностью бытия конкретных качественных состояний. Но эта прерывность относительна, так как между всеми сменяющими друг друга качествами имеется внутренняя связь и непрерывный переход.

3. Всеобщим свойством времени является необратимость, означающая однонаправленное изменение от прошлого к будущему. Прошлое порождает настоящее и будущее, переходит в них. К прошлому относятся все те события, которые уже осуществились и превратились в последующие. Будущие события - это те, которые возникают из настоящих и непосредственно предшествующих им событий. Настоящее охватывает все те объекты, системы и процессы, которые реально существуют и способны к взаимоотношению между собой. Взаимодействие возможно лишь при одновременном сосуществовании объектов.

Для объективно существующих систем настоящее время охватывает тот интервал, в течение которого они физически могут взаимодействовать между собой путем обмена материей и энергией. Если бы скорость распространения воздействий была бесконечной, то это настоящее представляло бы собой сколь угодно малый миг, дающий мгновенное сечение всех событий во Вселенной - настоящих, прошлых и будущих. Но скорость распространения воздействий всегда конечна и не превышает скорости света в вакууме. Действие всегда происходит только в одном направлении: от прошлого к настоящему и от него к будущему, но никогда наоборот.

Необратимость времени, неэквивалентность прошлого и будущего во все большей мере осознаются различными науками. Раньше считалось, что все физические законы инвариантны относительно замены знака времени, поскольку время в уравнениях квантовой и классической механики берется в квадрате. Это наводило на мысль, что все физические процессы могут происходить одинаково как в прямом, так и в обратном направлении. Но за последние годы были открыты процессы, демонстрирующие необратимость изменений в микромире: распады неустойчивость частиц (нейтронов, мезонов) с излучением нейтрино. Установлено, что, и протоны могут распадаться за период времени порядка 1031 лет.

4. Одновременность времени проявляется и в линейной,  генетически связанной между собой, системе измерений. Если для определения положения тела в пространстве необходимо задать три координаты, то для определения времени достаточно одной. Если бы время имело не одно, а два, три и больше измерений, то это означало бы, что параллельно нашему миру существуют аналогичные и никак не связанные с ним миры - двойники, в которых те же самые события разворачивались бы в одинаковой последовательности.

Рассмотрим теперь специфические и локальные пространственно - временные свойства систем. К пространственным свойствам относятся:

1. Контрольные пространственные формы тел, их положение в пространстве по отношению друг к другу, скорость пространственного перемещения, размеры тел.

2. Наличие у них внутренней симметрии или асимметрии. Различные виды симметрии свойственны как макромиру, так и микромиру, являются фундаментальным свойством неживой природы. Живому веществу присуще свойство пространственной асимметрии, которым обладает молекула живого вещества.

3. Изотропность и неоднородность пространства. Изотропность означает отсутствие выделенных направлений (верха, низа и других), независимость свойств тел, движущихся по инерции, от направления их движения. Полная изотропность присуща лишь вакууму, а в структуре вещественных тел проявляется анизотропия в распределении сил связи. Они расщепляются в одних направлениях лучше, чем в других. Точно также полная однородность свойственна лишь абстрактному евклидному пространству и является идеализацией. Реальное пространство материальных систем неоднородно, различается метрикой и значениями в зависимости от распределения тяготеющих масс.

По отношению ко времени специфическими являются такие свойства:

1. Конкретная длительность существования материальных систем от их возникновения до распада, ритмы процессов в них, соотношение между циклами изменений.

2. Скорость протекания процессов, темпы развития и соотношение между ними на разных этапах эволюции. С увеличением скорости движения тел и в мощных полях тяготения происходит относительное замедление всех процессов в телах, их собственное время как бы сокращается по отношению ко времени внешних систем. Конечность скорости распространения взаимодействий обусловливает относительность одновременности в различных системах. События, одновременные в одной системе, могут быть неодновременными по отношению к другой системе, движущейся относительно первой. Все это приводит к тому, что во Вселенной отсутствует единое время, как и одно единое пространство.

Некоторые авторы в качестве самостоятельных выделяют: биологическое и социальное пространство и время, индивидуальное, психологическое, художественное историческое и т.д.  Основания для этого есть.

В биологических системах есть специфические пространственно - временные свойства: асимметрия расположения атомов в молекулах белка и нуклеиновых кислот, собственные временные ритмы и темпы изменения внутриорганизменных и надорганизменных биосистем, взаимосвязь и синхронизация ритмов друг с другом, а также с вращением Земли вокруг оси и сменой времен года.

Так же и в обществе есть специфические пространственные отношения между его элементами, собственные ритмы и темпы изменения в различных сферах общественной жизни, проявляется ускорение темпов развития с прогрессом науки и техники.

Но во всех этих и других системах проявляются указанные выше всеобщие свойства пространства и времени и большинство их общих свойств.









Заключение

Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и пространство перестали рассматриваться независимо друг от друга и возникло представление о пространственно-временном четырехмерном континууме.

Направленность времени, связанная с эволюцией систем, в физических картинах мира следует из второго начала термодинамики. Направленность времени, определяющая принцип причинности, отличает временные координаты от пространственных, причем для одновременных событий нет симметрии между «правым» и «левым». В современной картине мира в основу положены необратимые процессы, и поэтому возможно единообразное описание живого и неживого миров.

Можно сделать вывод об основных результатах к которым приходит теория относительности:

- относительность свойств пространства-времени;

- относительность массы и энергии;

- эквивалентность тяжелой и инертной масс.

Изучение пространства и времени продолжается до сих пор. Есть интересные исследования о социальном и биологическом пространстве и времени, гипотезы о природе времени.

 

 

 

 

 



 

 

 

Список использованной литературы и источников

1. Садохин А.П. Концепции современного естествознания – М.: Омега–Л, 2007.

2. Еремеева А.И. Астрономическая картина мира и ее творцы. -М.: Наука, 1984.

3. Эйнштейн А., Инфельд Л. Эволюция физики. -М., 1965.

4. Рейхенбах Г. Философия пространства и времени. -М.: Наука, 1985.

5. Эйнштейн А. Сборник научных трудов. Т. II -М., 1966.

6. Горелов А.А. Концепция современного естествознания. - М.: Центр, 1998.

7. Дубнищева Т.Я. Концепция современного естествознания. – Новосибирск: ЮКЭА , 1997.

8. Концепция современного естествознания / под ред. Лавриненко В.Н. -М. 1997.

9. Моисеев Н.Н. Время в нас и вне нас. –Л.: Лениздат, 1994.

10. Пригожин И., Стенгерс И. Порядок из хаоса. -М.: Мир, 1986.

 



1 Новая философская энциклопедия: в 4 т. / Ин-т философии РАН; Нац. обществ.-науч. фонд; Предс. научно-ред. совета В. С. Степин. — М.: Мысль, 2000 — 2001

11



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!