СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

КИМ ОУД. 03 Иностранный (английский) язык технический проф. (плотники, отделочники, электромонтажники, сварщики, автомеханики, водолазы) и ест.-научн. проф. (лаборанты экологи, растениеводы)

Нажмите, чтобы узнать подробности

Комплект контрольно-измерительных материалов по учебной дисциплине ОУД.03 Иностранный язык образовательной программы среднего (полного) общего образования, реализуемой в пределах основных профессиональных образовательных программ (ОПОП) по профессиям СПО 08.01.05 Мастер столярно-плотничных и паркетных работ, 08.01.08 Мастер отделочных строительных работ, 08.01.18 Электромонтажник электрических сетей и электрооборудования, 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)), 18.01.02 Лаборант-эколог, 23.01.17 Мастер по ремонту и обслуживанию автомобилей, 26.01.13 Водолаз, 35.01.09 Мастер растениеводства, разработан на основе примерной программы по дисциплине «Иностранный язык» для профессиональных образовательных организаций, реализующих основную профессиональную образовательную программу СПО на базе основного общего образования с одновременным получением среднего общего образования, ФФГУ «ФИРО» Минобранауки России, 2015 год, в соответствии с рабочей программой учебной дисциплины, ОУД.03 Иностранный язык 08.01.08 Мастер отделочных строительных работ, 08.01.18 Электромонтажник электрических сетей и электрооборудования, 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)), 18.01.02 Лаборант-эколог, 23.01.17 Мастер по ремонту и обслуживанию автомобилей, 26.01.13 Водолаз, 35.01.09 Мастер растениеводства.

Просмотр содержимого документа
«КИМ ОУД. 03 Иностранный (английский) язык технический проф. (плотники, отделочники, электромонтажники, сварщики, автомеханики, водолазы) и ест.-научн. проф. (лаборанты экологи, растениеводы)»

Министерство образования и науки Архангельской области

государственное автономное профессиональное образовательное учреждение Архангельской области

«Архангельский политехнический техникум»

(ГАПОУ АО «АПТ»)





УТВЕРЖДАЮ

Директор ГАПОУ Архангельской

области «АПТ»

______________ Д. П. Ермолин.

«______»______________20____ г.



Комплект

контрольно-измерительных материалов

для проведения промежуточной аттестации по учебной дисциплине

ОУД. 03 Иностранный (английский) язык

образовательной программы среднего (полного) общего образования,

реализуемой в пределах основных профессиональных

образовательных программ (ОПОП) по профессиям СПО


08.01.05 Мастер столярно-плотничных и паркетных работ

08.01.08 Мастер отделочных строительных работ

08.01.18 Электромонтажник электрических сетей и электрооборудования

15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки))

18.01.02 Лаборант-эколог

23.01.17 Мастер по ремонту и обслуживанию автомобилей

26.01.13 Водолаз

35.01.09 Мастер растениеводства





Архангельск

2019

Комплект контрольно-измерительных материалов по учебной дисциплине ОУД.03 Иностранный язык образовательной программы среднего (полного) общего образования, реализуемой в пределах основных профессиональных образовательных программ (ОПОП) по профессиям СПО 08.01.05 Мастер столярно-плотничных и паркетных работ, 08.01.08 Мастер отделочных строительных работ, 08.01.18 Электромонтажник электрических сетей и электрооборудования, 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)), 18.01.02 Лаборант-эколог, 23.01.17 Мастер по ремонту и обслуживанию автомобилей, 26.01.13 Водолаз, 35.01.09 Мастер растениеводства, разработан на основе примерной программы по дисциплине «Иностранный язык» для профессиональных образовательных организаций, реализующих основную профессиональную образовательную программу СПО на базе основного общего образования с одновременным получением среднего общего образования, ФФГУ «ФИРО» Минобранауки России, 2015 год, в соответствии с рабочей программой учебной дисциплины, ОУД.03 Иностранный язык 08.01.08 Мастер отделочных строительных работ, 08.01.18 Электромонтажник электрических сетей и электрооборудования, 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)), 18.01.02 Лаборант-эколог, 23.01.17 Мастер по ремонту и обслуживанию автомобилей, 26.01.13 Водолаз, 35.01.09 Мастер растениеводства.





Разработчики:

Пантелеева Л. Г., преподаватель ГАПОУ АО «Архангельский политехнический техникум»





Рассмотрено и рекомендовано к утверждению

на заседании предметной (цикловой) комиссии

общеобразовательных и гуманитарных дисциплин

протокол № ___ от « ____» ___________ 2019 года.

Председатель П(Ц)К ____________ Н. Г. Васильева

СОДЕРЖАНИЕ

1. Паспорт комплекта контрольно-измерительных материалов 5

1.1. Область применения 5

1.2. Результаты освоения дисциплины, подлежащие проверке 5

1.2.1. Общие компетенции (ОК) 5

1.2.2. Умения (У) 6

1.2.3. Знания (З) 7

2. Система контроля и оценки освоения программы учебной дисциплины 8

2.1. Форма промежуточной аттестации при освоении учебной дисциплины 8

2.2. Организация контроля и оценки освоения программы учебной дисциплины 8

2.2.1. Условия выполнения задания в рамках дифференцированного зачета 8

2.2.2. Критерии оценивания заданий 8

3. Комплект материалов для оценки уровня освоения умений и знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 Иностранный язык 10

3.1. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 08.01.05 Мастер столярно-плотничных и паркетных работ 10

3.2. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 08.01.08 Мастер отделочных строительных работ 13

3.3. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии и 08.01.18 Электромонтажник электрических сетей и электрооборудования 17

3.4. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии и 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)) 21

3.5. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 18.01.02 Лаборант-эколог 24

3.6. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 23.01.17 Мастер по ремонту и обслуживанию автомобилей 27

3.7. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 26.01.13 Водолаз 30

3.8. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 35.01.09 Мастер растениеводства 34

4. Литература для проходящих дифференцированный зачет 37

4.1. Основная литература для проходящих дифференцированный зачет 37

4.2. Дополнительная литература для проходящих дифференцированный зачет 37

4.2.1. Дополнительная литература для проходящих дифференцированный зачет для всех профессий 37

4.2.2. Дополнительная литература для проходящих дифференцированный зачет для профессии 08.01.05 Мастер столярно-плотничных и паркетных работ 38

4.2.3. Дополнительная литература для проходящих дифференцированный зачет для профессии 08.01.08 Мастер отделочных строительных работ 39

4.2.4. Дополнительная литература для проходящих дифференцированный зачет для профессии 08.01.18 Электромонтажник электрических сетей и электрооборудования 39

4.2.5. Дополнительная литература для проходящих дифференцированный зачет для профессии 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)) 40

4.2.6. Дополнительная литература для проходящих дифференцированный зачет для профессии 18.01.02 Лаборант-эколог 40

4.2.7. Дополнительная литература для проходящих дифференцированный зачет для профессии 23.01.17 Мастер по ремонту и обслуживанию автомобилей 41

4.2.8. Дополнительная литература для проходящих дифференцированный зачет для профессии 35.01.09 Мастер растениеводства 42




1. Паспорт комплекта контрольно-измерительных материалов


1.1. Область применения


Комплект контрольно-измерительных материалов предназначен для проверки результатов освоения учебной дисциплины (далее – УД) ОУД.02 Иностранный язык образовательной программы среднего (полного) общего образования, реализуемой в пределах основных профессиональных образовательных программ (ОПОП) по профессиям СПО 08.01.05 Мастер столярно-плотничных и паркетных работ, 08.01.08 Мастер отделочных строительных работ, 08.01.18 Электромонтажник электрических сетей и электрооборудования, 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки)), 18.01.02 Лаборант-эколог, 23.01.17 Мастер по ремонту и обслуживанию автомобилей, 26.01.13 Водолаз, 35.01.09 Мастер растениеводства.


1.2. Результаты освоения дисциплины, подлежащие проверке


1.2.1. Общие компетенции (ОК)


ОК.1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

ОК.2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

ОК.03. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность

ОК.4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

ОК.5. Владеть информационной культурой, анализировать и оценивать информацию с использованием информационно-коммуникационных технологий.

ОК.6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.

ОК.7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.

ОК.8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

ОК.09. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.


1.2.2. Умения (У)


У 1. Осуществлять речевой самоконтроль; оценивать устные и письменные высказывания.

У 2. Анализировать языковые единицы с точки зрения правильности, точности и уместности их употребления.

У.3. Участвовать в беседе/дискуссии на знакомую тему; осуществлять запрос информации; обращаться за разъяснениями; выражать свое отношение к высказыванию партнера, свое мнение по обсуждаемой теме.

У.4. Делать сообщения, содержащие наиболее важную информацию по теме; кратко передавать содержание полученной информации; рассказывать о себе, своем окружении, своих планах; рассуждать о фактах, событиях, приводя примеры и аргументы, описывать особенности жизни и культуры своей страны и стран изучаемого языка.

У.5. Понимать основное содержание текстов монологического и диалогического характера; отделять главную информацию от второстепенной; выявлять наиболее значимые факты.

У.6. Выделять основные факты при чтении текста; раскрывать причинно-следственные связи между фактами; извлекать необходимую информацию; определять свое отношение к прочитанному.

У.7. Писать личное и деловое письмо; заполнять анкеты, бланки; излагать сведения о себе в форме, принятой в англоязычных странах (автобиография/резюме).

У.8. Использовать приобретенные знания и умения в практической и повседневной жизни для:

- развития интеллектуальных и творческих способностей, навыков самостоятельной деятельности; самореализации, самовыражения в различных областях человеческой деятельности;

- увеличения словарного запаса;

- совершенствования коммуникативных способностей; развития готовности к речевому взаимодействию;

- самообразования и активного участия в производственной, культурной и общественной жизни государства.

1.2.3. Знания (З)


З.1. Знать связь русского языка и стран изучаемого языка, культуры русского и других народов.

З.2. Знать основные единицы и уровни языка, их признаки и взаимосвязь.

З.3. Знать, лексические, грамматические, орфографические, идиоматические и пунктуационные классического английского языка; нормы речевого поведения в социально-культурной, учебно-научной, официально-деловой сферах общения.

З.4. Значения новых лексических единиц, связанных с тематикой данного этапа обучения и соответствующими ситуациями общения, в том числе оценочной лексики, реплик-клише речевого этикета, отражающих особенности культуры страны/стран изучаемого языка.

З.5. Значение изученных грамматических явлений в расширенном объеме (видовременные, неличные и неопределенно-личные формы глагола, формы условного наклонения, косвенная речь/косвенный вопрос, побуждение и др. согласование времен).

З.6. Страноведческую информацию из аутентичных источников, обогащающую социальный опыт обучающихся: сведения о стране/странах изучаемого языка, из науке и культуре, исторических и современных реалиях, общественных деятелях, месте в мировом сообществе и мировой культуре, взаимоотношениях с нашей страной, языковые средства и правила речевого и неречевого поведения в соответствии со сферой общения и социальным статусом партнера.

З.7. Знать лингвострановедческую, страноведческую и социокультурную информацию, расширенную за счет новой тематики и проблематики речевого общения.

2. Система контроля и оценки освоения программы учебной дисциплины


2.1. Форма промежуточной аттестации при освоении учебной дисциплины


Промежуточный контроль по дисциплине ОУД.03 Иностранный язык осуществляется при проведении дифференцированного зачета.


2.2. Организация контроля и оценки освоения программы учебной дисциплины


2.2.1. Условия выполнения задания в рамках дифференцированного зачета


Условием допуска к дифференцированному зачету является положительная оценка по всем устным темам, практическим работам, проверочным и контрольным работам.

Место выполнения заданий в рамках дифференцированного зачета – кабинет иностранного языка.

Дифференцированный зачет по учебной дисциплине проводится в смешанной (устной и письменной) форме.

Максимальное время выполнения задания в рамках дифференцированного зачета 1 час 30 минут.

Источники информации, разрешенные к использованию на дифференцированном зачете, оборудование: англо-русский и русско-английский словари, тематические глоссарии, электронные словари, стенды с тематической лексикой.

Уровень подготовки обучающегося в ходе дифференцированного зачета оценивается в баллах: «5» (отлично), «4» (хорошо), «3» (удовлетворительно), «2» (неудовлетворительно).


2.2.2. Критерии оценивания заданий


Балл

Критерии

«5» (отлично)

Чтение: содержание полностью понятно в соответствии с заданиями, чтение соответствует требованиям к знаниям и умениям.

Говорение: точно выражены мысли на английском языке, правильно оформлены в языковом отношении. Отсутствуют грамматические ошибки, влияющие на понимание речи, эмоциональность, спонтанность ответа.

Лексика и грамматика: все задания выполнены правильно.

«4» (хорошо)

Чтение: не понятны детали, чтение соответствует программным требованиям.

Говорение: мысли выражены верно, но с отклонением от языковых норм. Имеется несколько неточностей в грамматическом оформлении предложений, например, неверное употребление глагольных времен, местоимений, артиклей.

Лексика и грамматика: одно-два задания выполнены неправильно.

«3» (удовлетворительно)

Чтение: понятно только основное содержание прочитанного текста. Произношение не соответствует нормам английского языка.

Говорение: мысли выражены со значительным отклонением от норм английского языка. Слабое владение техникой общения, что проявляется в отсутствии спонтанности речевого высказывания, самостоятельности и активности в диалоге, наличие грамматических ошибок в высказываниях, создающих трудности в восприятии текста.

Лексика и грамматика: три задания выполнены неверно.

«2» (неудовлетворительно)

Чтение: отклонение от языковых норм настолько значительно, что невозможно понять смысл.

Говорение: неумение самостоятельно начать и поддержать разговор, слабая реакция на вопросы, узкий лексический кругозор, простые фразы и не владение навыками аргументированно излагать свою точку зрения.

Лексика и грамматика: четыре и более заданий выполнено неправильно.

3. Комплект материалов для оценки уровня освоения умений и знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 Иностранный язык


Комплект материалов для оценки уровня освоений умений и знаний, сформированности общих компетенций представляет собой перечень заданий к профессионально ориентированным текстам:

1. Прочитать текст и составить его краткий пересказ.

2. Задать к тексту 6 вопросов (2 общих, 2 специальных, 2 разделительных).

3. Из первых пяти предложений текста выписать грамматические основы.

4. У выписанных сказуемых определить залог и время глаголов.

5. Выписать из текста 3 предложения с причастиями Participle I и Participle II, перевести предложения и определить функцию причастий в предложении.

6. Найти в тексте предложения со сложным дополнением, выписать их и перевести.

7. Найти в тексте предложения со сложным подлежащим, выписать их и перевести.

8. Найти в тексте предложения с независимым причастным оборотом, выписать их и перевести.

9. Найти в тексте предложения с модальными глаголами can, may, выписать их и перевести.

10. Найти в тексте предложения с модальными глаголами must, ought, should, выписать их и перевести.


3.1. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 08.01.05 Мастер столярно-плотничных и паркетных работ


FORMS AND FUNCTIONS OF ARCHITECTURE

Architecture is the art and the science of building. Without consideration of structural principles, materials, and social and economic requirements a building cannot take form, but unless aesthetic quality also is inherent in its form the building cannot be considered as a work of architecture.

From the very beginning of architecture many skills, systems, and theories have been evolved for the construction of the buildings that have nations and generations of men in all their essential activities, and writing on architecture is almost as old as writing itself. The oldest book we have that sets forth principles upon within buildings should be designed and aims to guide the architect is the work of Marcus Vitrusius Pollio written in the first century B. C.

Architecture is an art; its contemporary expression must be creative and consequently new. The heritage of the past cannot be ignored, but must be expressed in contemporary terminology.


BIOCLIMATIC ARCHITECTURE

Bioclimatic architecture is a way of designing buildings and manipulating the environment within buildings by working with natural forces around the building rather than against them. Thus it concerns itself with climate as a major contextual generator, and with environments using minimal energy as its target.

The idea of designing and building structures that are environmentally friendly has become widespread throughout the community of architects and builders in developed nations.

What is integrated bioclimatic architecture? It is the architecture that arises out of the landscape, with the site determining the orientation and construction of a building, not just aesthetically, but also mechanically, determining its heating, cooling, and lighting. Thus, it is an architecture that respects nature and its resources and provides its occupants with the most comfortable and pleasing environment possible. However, this architectural approach need not be a restrictive one for imaginative practitioners. As integrated bioclimatic architecture encompasses examples of vernacular architecture, like the typical “white stucco Mediterranean fishing village”, as well as mimetic architecture, which draws on the materials, textures, even the plants of the surrounding landscape for its inspiration. Indeed, good integrated bioclimatic architecture should exist in harmony with the site.


WOOD

Materials to be used for structural purposes should meet several requirements depending upon their practical uses. In most cases it is important that they should be hard, durable, fire-resistant and easily fastened together. We determine whether a material is good for building purposes judging by its qualities.

Wood is a product of trees, and sometimes other fibrous plants, used for construction purposes when cut or pressed into lumber and timber, such as boards, planks and similar materials. It is a generic building material and is used in building any type of structure in most climates. Wood can be very flexible under loads, keeping strength while bending, and is incredibly strong when compressed vertically. There are many differing qualities to the different types of wood, even among the same tree species. This means that specific species are better for various uses than others. And growing conditions are important for deciding quality.

Historically, wood for building large structures was used in its unprocessed form as logs. The trees were just cut to the needed length, sometimes stripped of bark, and then notched or lashed in to place. With the invention of mechanizing saws came the mass production of dimensional lumber. This made buildings quicker to put up and more uniform. Thus the modern western style home was made.


ENGINEERED WOOD

In today’s sustainably built environment, engineered wood products play a major role, both in interior and exterior applications. Engineered wood is sometimes referred to as composite, as it is comprised of wood veneers, lumber, panels, fibers or strands bound together with an adhesive to make the product. Engineered products are also made with shredded wood which is glued together, and can include other plant materials such as rice stalks.

Engineered wood products are produced all over the world, and can be found in use as flooring, structural supports, cladding, and a number of other components of a structure. They offer a high performance, dimensionally stable and environmentally responsible option for any building project, however large or small, residential or commercial. And structural engineered wood products offer incredible design versatility for architects.

One advantage to engineered wood is that it is very strong and durable, and can be stronger than regular wood of the same size. This can be an advantage when people want to increase the strength of a structure without making it heavy or bulky.


WOOD-FRAME CONSTRUCTION

Framing, in construction known as light-frame construction, is a building technique based around structural members, usually called studs, which provide a stable frame to which interior and exterior wall coverings are attached, and covered by a roof comprising horizontal ceiling joists and sloping rafters (together forming a truss structure) or manufactured pre-fabricated roof trusses – all of which are covered by various sheathing materials to give weather resistance.

Modern light-frame structures usually gain strength from rigid panels used to form all or part of wall sections, but until recently carpenters employed various forms of diagonal bracing (called wind braces) to stabilize walls. Diagonal bracing remains a vital interior part of many roof systems, and in-wall wind braces are required by building codes in many municipalities or by individual state laws in the United States.

Light frame construction using standardized dimensional lumber has become the dominant construction method in North America and Australia because of its economy. Use of minimal structural materials allows builders to enclose a large area with minimal cost, while achieving a wide variety of architectural styles. The ubiquitous platform framing and the older balloon framing are the two different light frame construction systems used in North America.


WOOD SIDING

Wood siding in overlapping horizontal rows or “courses” is called clapboard. In colonial times, Eastern white pine was the most common material. Wood siding can also be made of naturally weather-resistant woods such as redwood or cedar. Jointed horizontal siding may be shiplapped.

Vertical horizontal siding may have a cover over the joint: board and batten, popular in American wooden Carpenter Gothic houses; or less commonly behind the joint – batten and board.

Wood shingles or irregular cedar “shake” siding was used in early New England construction, and was revived in Single Style and Queen Anne style architecture in the late 19th century.

Wood siding is very versatile in style and can be used on a wide variety of homes in any color palette desired.

Though installation and repair is relatively simple, wood siding requires more maintenance than other popular solutions, requiring treatment every four to nine years depending on the severity of the elements to which it is exposed. Ants and termites are a threat to many types of wood siding, such that extra treatment and maintenance that can significantly increase the cost in some pest-infested areas.


3.2. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 08.01.08 Мастер отделочных строительных работ


INTERIOR DESIGN TRENDS. MATERIALS

Beautiful combination of traditional, contemporary and exotic materials, various ethnic styles and colors, inspired by African, Asian and Middle Eastern decorating ideas, offer warm, cheerful and stylish interior design. Dark and warm colors, yellow and brown tones, deep color shades of precious and semi-precious stones are modern color design trends.

Asian style interior design takes its cue from Japanese, Chinese, Korean, Thai, Vietnamese and other Eastern cultures. Asian design influences contemporary interiors with Zen spaces for relaxation, feng shui furniture arrangements, Asian-style bedding, lacquered boxes or silk Chinoiserie wallpaper. A room could hint at an Eastern influence with a Buddha sculpture and prayer beads, or completely recreate the feel of a traditional Asian room. Asian-style furniture and accessories such as tatami mats, futons, tansu style cabinets, and shoji screens create a Japanese aesthetic, while red lacquer, foo dogs, and paper lanterns add Chinese style.

African interior styles range from rustic to modern. Depending on the region you choose for your interior design inspiration, you can expect to use unique textiles and hand-carved furniture to add an exotic touch to your home. As relationships between man and nature are primitive, therefore among the main elements of the decor are fur, wood and floral motifs. The colors of an African theme room must be based on a safari or jungle motif. Black brown, cream and burnt orange colors make great base.


DESIGN TRENDS. COLOURS AND TEXTURES

Glorious colors, like emerald, ruby, amethyst and sapphire, golden yellow tones and exotic coral shades, vivid turquoise and luscious cream colors, combined with tender ivory, comfortable brown, elegant silver, light gray and warm whites are modern interior design trends. Layers of silky fabrics and luxurious wool, the combination of velvet and brick, stainless steel and wood design ideas create attractive contrasts. Mixing decor accessories, made of natural stone and shiny plastic, metal, wood and fabrics are interesting home decorating ideas that add charm and unique character to contemporary interior design.

Warm and comfortable materials and luxurious finishes are among modern interior design trends. Marble and wood, leather and glass, wool and high quality plastic designs create light, relaxing and gender neutral home interiors that feel luxurious, inviting and comfortable.

Large mirrors, mirrored tiles, beautiful wallpapers with Swarovski crystals or silver details, that reflect more light into the room, are modern interior design trends. Modern paint colors and wallpaper patterns, inspired by natural plants, and beautiful wallpapers, made of leaves add branches, flowers and leaves textures to decorating ideas, offering natural light colors and chic of interior design in ecostyle.

PORCELAIN TILES

Porcelain tiles, as decoration material became widespread relatively recently. Up to 70 years of the last century, ceramics produced by some European, mostly Italian companies in a small range, non-glazed version and has been used almost exclusively for the finishing of technical facilities, which are important to have moisture resistance and increased strength.

Porcelain tile has a very low porosity and, consequently – low water absorption. Therefore, porcelain tiles are now widely used in exterior cladding of buildings every climatic zone.

Porcelain tile has the highest degree of resistance to aggressive media and wear. Porcelain tile does not lose its color over time and does not fade in the sun. Modern public buildings, stations, airports, shops prefer it for these reasons.

Porcelain tile is resistant to shock loads and pressure. This property of the porcelain tile is frequently used in its application as a floor covering industrial premises.

Huge selection of porcelain tile on the market today makes it suitable for construction or repair of virtually all types of buildings and premises.


WATER-DISPERSION PAINTS (ACRYLIC PAINT)

Water-dispersion paint materials (acrylic paint) – the materials of the present and future.

The industry coating materials, many years developing in Russia first of all, has been directed on manufacture of an industrial paint on organic solvents. Using a dye associated with certain inconveniences: the smell, toxicity, flammability and fragility of the coating.

Today we offer domestic consumers new, environmentally friendly and very high quality good – water-dispersion acrylic paints and coating materials.

Water-based paints – a product of the XXI century. Acrylic paints are among the most cost-effective and user-friendly application. The share of consumption in Western Europe, according to different estimates of up to 80 %.

Acrylic paints are the most significant part of all water-dispersion paints. The main advantage of acrylic paints is that the link included in their composition, dispersed in the form of fine particles in water and insoluble in the more expensive, toxic or flammable organic solvents.

Domestic consumer has little acquaintance with the water-dispersion paints, and, unfortunately, does not trust them. Though this type of painting has many advantages: it’s environmentally friendly; it can be applied by brush, roller or spray; it dries quick and almost without smell, etc. All these properties of water-dispersion paints allow relating these compounds to the category of clean and safe materials.


WALLPAPER

Wallpaper is a material used in interior decoration to decorate the interior walls of domestic and public buildings. It is usually sold in rolls and is applied onto a wall using wallpaper paste. Wallpapers can come plain as “lining paper” (so that it can be painted or used to help cover uneven surfaces and minor wall defects thus giving a better surface), textured, with a regular repeating pattern design, or, much less commonly today, with a single non-repeating large design carried over a set of sheets. The smallest rectangle that can be tiled to form the whole pattern is known as the pattern repeat.

Wallpaper, using the printmaking technique of woodcut, gained popularity in Renaissance Europe amongst the emerging gentry. The social elite continued to hang large tapestries on the walls of their homes, as they had in the Middle Ages. These tapestries added color to the room but were extremely expensive and so only the very rich could afford them. Early wallpaper featured scenes similar to those depicted on tapestries, and large sheets of the paper were sometimes hung loosely on the walls, in the style of tapestries, and sometimes pasted as today. Prints were very often pasted to walls, instead of being framed and hung, and the largest sizes of prints, which came in several sheets, were probably mainly intended to be pasted to walls.


PLASTER

Plaster is a building material used for the protective or decorative coating of walls and ceilings and for moulding and casting decorative elements. In English “plaster” usually means a material used for the interiors of buildings, while “render” commonly refers to external applications. Another imprecise term used for the material is stucco, which is also often used for plasterwork that is worked in some way to produce relief decoration, rather than flat surfaces.

Plaster may be used to create complex detailing for use in room interiors. These may be geometric (simulating wood or stone) or naturalistic (simulating leaves, vines, and flowers). These are also often used to simulate wood or stone detailing found in more substantial buildings.

In modern days, this material is also used for False Ceiling. In this, the powder form is converted in a sheet form and the sheet is then attached to the basic ceiling with the help of fasteners. It is done in various designs containing various combinations of lights and colors. The common use of this plaster can be seen in the construction of houses. After the construction, direct painting is possible, but elsewhere plaster is used. The walls are painted with the plaster, which (in some countries) is nothing but calcium carbonate. After drying the calcium carbonate plaster turns white and then the wall is ready to be painted. Elsewhere in the world, such as the UK, ever finer layers of plaster are added on top of the plasterboard (or sometimes the brick wall directly) to give a smooth brown polished texture ready for painting.


3.3. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии и 08.01.18 Электромонтажник электрических сетей и электрооборудования


POWER ENGINEERING

Volta made his experimental cell in 1800, producing for the first time a steady reliable electric current. During the nineteenth century, the development of practical applications of electrical energy advanced rapidly. The first major uses of electricity were in the field of communications – first for the telegraph and the telephone. They used not only electric current but also electromagnetic effects.

Thomas Edison’s invention of the electric light bulb was perhaps the most momentous development of all, but because it was such a unique invention. It was momentous because it led to the creation of an electric power system, which has since reached, into nearly every corner of the world. Actually, other people were working simultaneously on the same problem, and Edison’s claim to the invention was disputed. Perhaps Edison’s most important claim to fame is his pioneering work in engineering, which helped to provide for New York City in 1882.

The application of electricity has grown to the point where most of us lead electrified life, surrounded by a variety of devices that use electric energy. Less visible, but probably more important, are the thousands of ways industry has put electric energy to work. The direct-current machine is one of the most important ways.


TURBINES

The turbine is a machine for generating mechanical power from the energy of the energy of the stream of fluid. Steam, hot air or gaseous products of combustion, and water are the most widely used working fluids.

A steam turbine may be defined as a form of heat engine in which the energy of the stem is transformed into kinetic energy. It consists of the following fundamental parts: a) a casing or shell containing stationary blades; b) a set of bearing: c) a governor and valve system for regulating the speed and power of the turbine. The main types of steam turbines are axial flow turbines and radial-stage turbines.

The reciprocating steam engine came into its own during the 19th century, when it found greatest use in mills, locomotives and pumping systems. The modern steam turbine developed last century is rapidly replacing the reciprocating engine for large installations. Gas is used as the working fluid in gas turbines. The basic theory underlying their design and their operating characteristics is identical with that for steam turbines. The energy of water is converted into mechanical energy of a rotating shaft in hydraulic turbines. Power may be developed from water by three fundamental processes: by action of its weight, of its pressure or of its velocity; or by a combination of any or all three.


BOILERS

A boiler is a closed vessel in which water under pressure is transformed into steam by the application of heat. Open vessels and those generating steam at atmospheric pressure are not considered to be boilers. The furnace converts the chemical energy of the fuel into heat. The function of the boiler is to transfer this heat to the water in the efficient manner.

Progress in steam-boiler development has been rapid. The first boilers were very crude affairs, as constructed with our present-day standards. The greatest numbers of constructions have been made in the last half century. The field of application is diversified. Boilers are used for heating, supplying steam for processes, furnishing steam to operate engines, etc.

Maintaining the correct boiler water level is the most important duty of the boiler operator. It is of the utmost importance that the manufacturer supply suitable and reliable devices for indicating the water level. Coal as well as liquid and gaseous fuels are used for boiler firing. The ideal boiler must be of correct design, sufficient steam and water space, and good water circulation.


ELECTRIC MOTORS

There is a wide variety of d. c. motors. There are shunt motors, series motors, synchronous motors, induction motors, single-, two-, and three-phase motors. They are used to drive various machines.

Directed-current motors are of three principal kinds, and are named according to the manner in which their field coils are connected to the armature. They are named respectively: series, shunt, and compound.

In the series motors the field windings and armature are connected in series with each other. All the current which passes through the field coils. The field windings are therefore composed of a few turns of thick wire. Starting under heavy load a series motor will take a large current to provide the huge torque required.

The field coils of shunt motors are connected direct across the brushes, hence they have the full voltage of the mains applied to them. The shunt motor may be called a constant speed motor, and a suitable for driving machine tools, lathes, wood-working machines and any machines requiring a steady speed.

A compound motor has both shunt and series field windings and therefore partakes of the nature of both types and motors.


A. C. ELECTRIC MOTOR

Motors for alternating-current circuits may by either single-phase or polyphaser (two- or three-phase). They may again be divided into two kinds, named respectively: 1. Synchronous; 2. Non- or asynchronous, ordinarily called induction motors.

The most widely used a. c. motors is he induction motor. It has two main parts: a) the stationary winding or stator, which sets up a rotating magnetic field, and b) the rotating part of the motor, i. e. rotor. The rotor of a commercial a. c. motor consists of an iron core with large copper bars placed in sets around the circumference and connected at both ends to copper rings. This is called a squirrel-cage rotor. When a rotor is placed in a rotating magnetic field, a large current is induced in it.

A. c. motors are exactly similar in construction to a. c. generators and may be called inverted alternators, since the same machine may be used as either a generator or motor.

Synchronous motors are very suitable for large powers, where the machine can be started up without load, and once started run for long periods.

For supplying direct-current power networks, the supply comes first from an alternating-current source and is converted to direct current by synchronous convertors or motor-generator sets.


NEW ENERGY FROM OLD SOURCES

The resources of fossil fuel which made the industrial revolution possible and have added to the comfort and convenience of modern life were formed over a period of 600-million years. We will consume them in a few hundred years are current rates.

But energy is available to use in practically unlimited quantities from other sources. Large amounts of energy can be received from ocean tides and currents, from huge underground steam deposits, from the power of wind and from the heat of the Sun.

Most solar-heating systems coming on the market use a black surface to absorb the Sun’s heat. Engineers cover the surface with glass, which lets in the ray, but holds heat. The heat is transferred to water that runs through small pipes. The hot water is then circulated through the house. It is estimated that 40 million new buildings will be heated by solar energy by the year 2000.

The solar cell is another way to produce power from the Sun. It converts sunlight directly into electricity. These cells are used with great success in the space programme, but remain far too expensive for widespread application.

Putting the wind to work researchers are showing great interest in the age-old windmill. Several big companies are now studying windmills ranging from 100 to 2000 kilowatts. The smallest would provide sufficient electricity to power several homes; the largest could provide electricity to a small village.


JAPAN STORES SUNLIGHT IN CRYSTALS

Japan has managed to store the Sun’s energy for 61 days in an important development in the use of solar power. Scientists have produced a stable chemical compound to store the energy. The new compound takes the form of the yellow crystal. It changes its molecular structure when exposed to sunshine. When a small catalyst of silver was applied to it the substance reverted to its original molecular structure, generating heat at any required moment.

If produced in liquid form, the compound would retain the energy for 61 days without a boost of sunshine.

The temperature of the compound does not rise when solar energy is stored. The energy takes the form of molecular change at normal temperatures. In this way energy is not lost through the dissipation of heat.

Initial test showed that 2.2 lb of the substance would conserve 92000 calories. The research team said a solar heater with a surface of a square metre could store 85 million calories of energy a year. The compound could also be transformed while it stored energy.

If the compound was produced in solid form, it could store energy for indefinite periods if the silver catalyst was not applied. However, it would have to be produced in a more impure liquid for practical use.

The new compound could be used to store energy for heating, cooling and eventually the generation of electrical power. There was little wastage and no pollution.

3.4. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии и 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки))


THE HISTORY OF WELDING

Welding is a technique used for joining metallic parts usually through the application of heat. This technique was discovered during efforts to manipulate iron into useful shapes. Welded blades were developed in the first illennium AD, the most famous being those produced by Arab armourers at Damascus, Syria. The process of carburization of iron to produce hard steel was known at this time, but the resultant steel was very brittle.

Gas welding, arc welding, and resistance welding all appeared at the end of the 19th century. The first real attempt to adopt welding processes on a wide scale was made during World War I. By 1916 the oxyacetylene process was well developed, and the welding techniques employed then are still used. Arc welding, using a consumable electrode, was also introduced in this period, but the bare wires initially used produced brittle welds. A solution was found by wrapping the bare wire with asbestos and an entwined aluminum wire. The modern electrode, introduced in 1907, consists of a bare wire with a complex coating of minerals and metals. Arc welding was not universally used until World War II, when the urgent need for rapid means of construction for shipping, power plants, transportation, and structures spurred the necessary development work. Resistance welding, invented in 1877 by Elihu Thomson, was accepted long before arc welding for spot and seam joining of sheet.


BASIC PRINCIPLES OF WELDING

A weld can be defined as a coalescence of metals produced by heating to a suitable temperature with or without the application of pressure, and with or without the use of a filler material.

In fusion welding a heat source generates sufficient heat to create and maintain a molten pool of metal of the required size. The heat may be supplied by electricity or by a gas flame. Electric resistance welding can be considered fusion welding because some molten metal is formed.

Solid-phase processes produce welds without melting the base material and without the addition of a filler metal. Pressure is always employed, and generally, some heat is provided. Frictional heat is developed in ultrasonic and friction joining, and furnace heating is usually employed in diffusion bonding.

The electric arc used in welding is a high-current, low-voltage discharge generally in the range 10-2,000 amperes at 10-50 volts. An arc column is complex but, broadly speaking, consists of a cathode that emits electrons, a gas plasma for current conduction, and an anode region that becomes comparatively hotter than the cathode due to electron bombardment.

Total energy input in all welding processes exceeds that which is required to produce a joint, because not all the heat generated can be effectively utilized. Efficiencies vary from 60 to 90 percent, depending on the process; some special processes deviate widely from this figure. Heat is lost by conduction through the base metal and by radiation to the surroundings.


PROPERTIES OF METALS DURING WELDING

Most metals, when heated, react with the atmosphere or other nearby metals. These reactions can be extremely detrimental to the properties of a welded joint. Most metals, for example, rapidly oxidize when molten. A layer of oxide can prevent proper bonding of the metal. Molten-metal droplets coated with oxide become entrapped in the weld and make the joint brittle. Some valuable materials added for specific properties react so quickly on exposure to the air that the metal deposited does not have the same composition as it had initially. These problems have led to the use of fluxes and inert atmospheres.

In fusion welding the flux has a protective role in facilitating a controlled reaction of the metal and then preventing oxidation by forming a blanket over the molten material. Fluxes can be active, help in the process or inactive, and simply protect the surfaces during joining.

Inert atmospheres play a protective role similar to that of fluxes. In gas-shielded metal-arc and gas-shielded tungsten-arc welding an inert gas – usually argon – flows from an annulus surrounding the torch in a continuous stream, displacing the air from around the arc. The gas does not chemically react with the met but simply protects it from contact with the oxygen in the air.


BASIC FEATURES OF A JOINT

The arc weld illustrates all the basic features of a joint. Three zones result from the passage of a welding arc: (1) the weld metal, or fusion zone, (2) the heat-affected zone, and (3) the unaffected zone. The weld metal is that portion of the joint that has been melted during welding. The heat-affected zone is a region adjacent to the weld metal that has not been welded but has undergone a change in micro structure or mechanical properties due to the heat of welding. The unaffected material is that which was not heated sufficiently to alter its properties.

Weld-metal composition and the conditions under which it freezes (solidifies) significantly affect the ability of the joint to meet service requirements. In arc welding, the weld metal comprises filler material plus the base metal that has melted. After the arc passes, rapid cooling of the weld metal occurs. A one-pass weld has a cast structure with columnar grains extending from the edge of the molten pool to the centre of the weld. In a multipass weld, this cast structure may be modified, depending on the particular metal that is being welded.


WELDABILITY OF METALS

Carbon and low-alloy steels are by far the most widely used materials in welded construction. Carbon content largely determines the weldability of plain carbon steels; at above 0.3 percent carbon some precautions have to be taken to ensure a sound joint. Low-alloy steels are generally regarded as those having a total alloying content of less than 6 percent. There are many grades of steel available, and their relative weldability varies.

Aluminum and its alloys are also generally weldable. A very tenacious oxide film on aluminum tends to prevent good metal flow, however, and suitable fluxes are used for gas welding. Fusion welding is more effective with alternating current when using the gas-tungsten arc process to enable the oxide to be removed by the arc action.

Copper and its alloys are weldable, but the high thermal conductivity of copper makes welding difficult. Refractory metals such as zirconium, niobium, molybdenum, tantalum, and tungsten are usually welded by the gas-tungsten arc process. Nickel is the most compatible material for joining, is weldable to itself, and is extensively used in dissimilar metal welding of steels, stainlesses, and copper alloys.


TYPES OF WELDING

There are a wide variety of welding processes. Several of the most important are discussed below.

Cold welding, the joining of materials without the use of heat, can be accomplished simply by pressing them together. Surfaces have to be well prepared, and pressure sufficient to produce 35 to 90 percent deformation at the joint is necessary, depending on the material. Lapped joints in sheets and cold-butt welding of wires constitute the major applications of this technique.

In friction welding two workpieces are brought together under load with one part rapidly revolving. Frictional heat is developed at the interface until the material becomes plastic, at which time the rotation is stopped and the load is increased to consolidate the joint. A strong joint results with the plastic deformation, and in this sense the process may be considered a variation of pressure welding.

Laser welding is accomplished when the light energy emitted from a laser source is focused upon a workpiece to fuse materials together. The limited availability of lasers of sufficient power for most welding purposes has so far restricted its use in this area. Another difficulty is that the speed and the thickness that can be welded are controlled not so much by power but by the thermal conductivity of the metals and by the avoidance of metal vaporization at the surface.


3.5. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 18.01.02 Лаборант-эколог


ECOSYSTEMS

A more useful way of looking at the terrestrial and aquatic landscapes is to view them as ecosystems, a word coined in 1935 by the British plant ecologist Sir Arthur George Tansley to stress the concept of each locale or habitat as an integrated whole. A system is a collection of interdependent parts that function as a unit and involve inputs and outputs. The major parts of an ecosystem are the producers (green plants), the consumers (herbivores and carnivores), the decomposers (fungi and bacteria), and the nonliving, or abiotic, components, consisting of dead organic matter and nutrients in the soil and water. Inputs into the ecosystem are solar energy, water, oxygen, carbon dioxide, nitrogen, and other elements and compounds. Outputs from the ecosystem include water, oxygen, carbon dioxide, nutrient losses, and the heat released in cellular respiration, or heat of respiration. The major driving force is solar energy.


DIVERSITY

The community has certain attributes, among them dominance and species diversity. Dominance results when one or several species control the environmental conditions that influence associated species. In a forest, for example, the dominant species may be one or more species of trees, such as oak or spruce; in a marine community, the dominant organisms frequently are animals such as mussels or oysters. Dominance can influence diversity of species in a community because diversity involves not only the number of species in a community, but also how numbers of individual species are apportioned.

The physical nature of a community is evidenced by layering, or stratification. In terrestrial communities, stratification is influenced by the growth form of the plants. Simple communities such as grasslands, with little vertical stratification, usually consist of two layers, the ground layer and the herbaceous layer. A forest has up to six layers: ground, herbaceous, low shrub, low tree and high shrub, lower canopy, and upper canopy. These strata influence the physical environment and diversity of habitats for wildlife. Vertical stratification of life in aquatic communities, by contrast, is influenced mostly by physical conditions: depth, light, temperature, pressure, salinity, oxygen, and carbon dioxide.


DEPLETION OF THE OZONE LAYER

The ozone layer, a thin band in the stratosphere (layer of the upper atmosphere), serves to shield Earth from the Sun’s harmful ultraviolet rays. In the 1970s, scientists discovered that chlorofluorocarbons (CFCs)-chemicals used in refrigeration, air-conditioning systems, cleaning solvents, and aerosol sprays-destroy the ozone layer. CFCs release chlorine into the atmosphere; chlorine, in turn, breaks down ozone molecules. Because chlorine is not affected by its interaction with ozone, each chlorine molecule has the ability to destroy a large amount of ozone for an extended period of time.

The consequences of continued depletion of the ozone layer would be dramatic. Increased ultraviolet radiation would lead to a growing number of skin cancers and cataracts and also reduce the ability of immune systems to respond to infection. Additionally, growth of the world’s oceanic plankton, the base of most marine food chains, would decline. Plankton contains photosynthetic organisms that break down carbon dioxide. If plankton populations decline, it may lead to increased carbon dioxide levels in the atmosphere and thus to global warming. Recent studies suggest that global warming, in turn, may increase the amount of ozone destroyed.


WATER POLLUTION

Estimates suggest that nearly 1.5 billion people worldwide lack safe drinking water and that at least 5 million deaths per year can be attributed to waterborne diseases. Water pollution may come from point sources or nonpoint sources. Point sources discharge pollutants from specific locations, such as factories, sewage treatment plants, and oil tankers. The technology exists to monitor and regulate point sources of pollution, although in some areas this occurs only sporadically. Pollution from nonpoint sources occurs when rainfall or snowmelt moves over and through the ground. As the runoff moves, it picks up and carries away pollutants, such as pesticides and fertilizers, depositing the pollutants into lakes, rivers, wetlands, coastal waters, and even underground sources of drinking water. Pollution arising from nonpoint sources accounts for a majority of the contaminants in streams and lakes.

With almost 80 percent of the planet covered by oceans, people have long acted as if those bodies of water could serve as a limitless dumping ground for wastes. However, raw sewage, garbage, and oil spills have begun to overwhelm the diluting capabilities of the oceans, and most coastal waters are now polluted, threatening marine wildlife. Beaches around the world close regularly, often because the surrounding waters contain high levels of bacteria from sewage disposal.


AIR POLLUTION

A significant portion of industry and transportation burns fossil fuels, such as gasoline. When these fuels burn, chemicals and particulate matter are released into the atmosphere. Although a vast number of substances contribute to air pollution, the most common air pollutants contain carbon, sulfur, and nitrogen. These chemicals interact with one another and with ultraviolet radiation in sunlight in dangerous ways. Smog, usually found in urban areas with large numbers of automobiles, forms when nitrogen oxides react with hydrocarbons in the air to produce aldehydes and ketones. Smog can cause serious health problems.

Acid rain forms when sulfur dioxide and nitrous oxide transform into sulfuric acid and nitric acid in the atmosphere and come back to Earth in precipitation. Acid rain has made numerous lakes so acidic that they no longer support fish populations. Acid rain is also responsible for the decline of many forest ecosystems worldwide, including Germany’s Black Forest and forests throughout the eastern United States.


HABITAT DESTRUCTION AND SPECIES EXTINCTION

Plant and animal species are dying out at an unprecedented rate. Estimates range that from 4,000 to as many as 50,000 species per year become extinct. The leading cause of extinction is habitat destruction, particularly of the world’s richest ecosystems-tropical rain forests and coral reefs. If the world’s rain forests continue to be cut down at the current rate, they may completely disappear by the year 2030. In addition, if the world’s population continues to grow at its present rate and puts even more pressure on these habitats, they might well be destroyed sooner.

3.6. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 23.01.17 Мастер по ремонту и обслуживанию автомобилей


THE WANKEL ENGINE

The Wankel engine is a form of heat engine which has a rotary piston. In other words, instead of going up and down the Wankel piston rotates in the cylinder. Both cylinder and piston are quite different in the shape from those of conventional engines. The Wankel piston is triangular with curved sides and the cylinder is roughly oval. The piston has an inner bore, which is linked through a gear to the output shaft.

The piston thus forms three hook-shaped spaces between itself and the cylinder wall, which vary in size as the piston rotates. Fuel enters the cylinder through the inlet port when one of these spaces is increasing in size. The fuel trapped in this section is then compressed by the turning piston and ignited by the sparking plug. The expanding gases subject the piston to a twisting moment, which makes the piston revolve further until the exhaust gases escape through the exhaust port.

The Wankel engine has many advantages over other conventional engines. Fewer moving parts are necessary because it produces a rotary movement without using a connecting rod and a crankshaft. Because of thus rotary movement, it has no vibration. In addition, it has no valves, it is smaller and lighter than conventional engines of the same power, and it runs economically on diesel and several other fuels.


ENGINE

An engine produces power by burning air and fuel. The fuel is stored in a fuel tank. The fuel tank is connected to a fuel pipe. The fuel pipe carries the fuel to a fuel pump. The fuel pump is connected to the carburettor. The fuel pump pumps the fuel into the carburettor. In the carburettor, the fuel is mixed with air. The fuel and air are drawn into the engine cylinder by the piston. Then the fuel and air are compressed by the piston and ignited by the spark plug. They burn and expand very quickly and push the piston down. Then the power is produced. The burned fuel and air are expelled from the cylinder by the piston.

Two vales control the flow of gases into and out of the cylinder. There is an inlet valve allowing fresh fuel mixture into the cylinder and an exhaust valve, which allows the burnt gases to escape.

There are two classic engine operating cycles:

the four-stroke cycle;

the two-stroke cycle.

The complete four-stroke cycle comprises:

the induction stroke (the piston moves downwards);

the compression stroke (the piston moves upwards);

the power stroke (the piston moves downwards);

the exhaust stroke (the piston moves upwards).


COMPONENTS OF THE AUTOMOBILE

Automobiles are trackless, self-propelled vehicles for land transportation of people or goods, or for moving materials. There are three main types of automobiles. These are passenger cars, buses and lorries (trucks). The automobile consists of the following components: a) the engine; b) the framework; c) the mechanism that transmits the power from engine to the wheels; d) the body.

Passenger cars are, as a rule, propelled by an internal combustion engine. They are distinguished by the horsepower of the engine, the number of cylinders in the engine and the type of the body, the type of transmission, wheelbase, weight and overall length.

There are engines of various designs. They differ in the number of cylinders, their position, their operating cycle, valve mechanism, ignition and cooling system.

Most automobile engines have six or eight cylinders, although some four-, twelve-, and sixteen-cylinder engines are used. The activities that take place in the engine cylinder can be divided into four stages which are called strokes. The four strokes are: intake, compression, power and exhaust. “Stroke” refers to the piston movement. The upper limit of piston movement is called top dead centre, TDC. The lower limit of piston movement is called bottom dead centre, BDC. A stroke constitutes piston movement from TDC to BDC or from BDC to TDC. In other words, the piston completes a stroke each time it changes the direction of motion.


ENGINE OPERATION

An automobile powered by a petrol engine begins to operate when the driver turns a flywheel connected to the engine crankshaft. As the crankshaft revolves a mixture of fuel and air is drawn from a carburetor into the engine cylinders. The ignition system provides the electric sparks that ignite this mixture. The resultant explosions of the mixture turn the crankshaft and the engine starts moving. By regulating the flow of the fuel and air with a throttle the driver controls the rotational speed of the crankshaft.

Colling, electrical ignition and lubrication systems are of great importance for the good performance of a car. The lights, radio and heater add to the flexibility, comfort and convenience of the car. The indicating devices keep the driver informed as to engine temperature, oil pressure, amount of fuel, and battery charging rate.

Brakes are of drum and disk types. The steering system consists of a manually operated steering wheel which is connected by a steering column to the steering gear from which linkages run to the front wheels. It is difficult to turn the steering wheel and special hydraulic power mechanisms are used to lessen this effort. Suitable springings are used against shocks. These are leaf springs, coil springs, torsion bars and air suspensions.


DIESEL ENGINES

The oil engine (diesel engine) is also a form of internal combustion engine. It has the usual arrangement of cylinder, piston, connecting rod, crank, inlet and exhaust valves as we find in petrol engine. In place of carburetor and sparking plug, it has an injection pump and a fuel injection valve (injector). Unlike spark-ignition engines, it uses the heat of compression to fire the fuel and therefore is called compression-ignition engine.

It utilizes a fuel known as diesel oil, which is forced in the form of a fine spray through a suitable nozzle directly into the combustion space. No mixture of fuel and air is introduced in to the cylinder, the compression-ignition (CI) engine draws in pure air only. This air is then compressed by the ascending piston to a high pressure. As a result of it the temperature of the air is raised considerably so that the fuel oil injected into the cylinder ignites rapidly. Thereafter the gaseous products expand providing the energy for the power stroke.

The high-output oil engines are nearly all of two-stroke type. The charge is filled into the cylinder by means of a blower, which assists both the intake and exhaust processes. One cycle completed within one revolution, i.e. in two strokes-compression and expansion.


AIR-COOLED ENGINES

All vehicle engines are air-cooled to some degree. Even in water-cooled engines heat is transmitted first from cylinder to water and afterwards, in the radiator, from water to air. This method of cooling is not difficult to accomplish, because the heat taken off the hot cylinder walls by water can be distributed without difficulty upon the large cooling surface of the radiator, and so easy transmission of air is made possible.

Reciprocating engines used in aircraft are almost entirely air-cooled. Aircraft engines cooled by air are manufactured today in sizes ranging from 50 to 3500 hp and they superseded water-cooled engines. The principal advantages of air-cooled aircraft engines are low weight, and greater reliadilim reliability in operation. Modern motorcycles are also designed almost exclusively with air-cooled engines.

New designs of air-cooled vehicle engines are notable for their easy maintenance, reliability and economical operation.


3.7. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 26.01.13 Водолаз


ANCIENT DIVERS

Since the dawn of human existence, men have entered the water to collect food, so it’s impossible to trace the exact date or origin of diving. We do know from artifacts that the people of Mesopotamia engaged in diving as a form of commerce – usually collecting pearl oysters – as long as 4,500 years ago. By the third millennia before Christ, the Greeks of Thebes also had a thriving pearl-diving industry, and the Chinese followed soon after.

References to sponge fishermen are mentioned by Homer as early as 1000 B.C. Tethered to the surface, their technique involved plummeting to depths of almost 100 feet (30 m) by holding a heavy rock. They, of course, knew nothing about the anatomy of equalization. So to try and compensate somewhat for the increasing pressure on the ears they poured oil into their ear canals and took a mouthful before descent. Once on the bottom, they spit out the oil, cut as many sponges free from the bottom as their limited breath-holding capacity would allow and were then hauled back to the surface by the tether. Certainly a grueling and painful way to earn a living.

The most famous divers of antiquity were the Greek Scyllias and his daughter Cyana. Using reeds as breathing tubes to avoid detection, they slipped into the water under the cover of darkness and escaped from the King Xerxes’ captivity. Years later, they destroyed one of Xerxes’ fleets by diving into a stormy sea and cutting the mooring lines of the vessels at anchor. For their bravery, statues of Scyllias and Cyana were erected in the Greek city of Delphi.


THE EVOLUTION OF DIVING BELLS

Although their design was relatively haphazard and unsophisticated, diving bells did meet with limited success during the Renaissance. One of the first successful salvage operations using a one-person diving bell was carried out in 1531 in Lake Nemi near Rome. As the bell carried with it only the amount of air trapped within it once it submerged, it provided only a short bottom time.

In 1669, George Sinclair, a professor at Glasgow University, wrote a treatise describing the theory and techniques for using diving bells. Based on Sinclair’s theories, in 1685 one of the most famous early salvors – Sir William Phipps – used a bell to recover nearly a million dollars worth of treasure from the wreck of the Spanish galleon La Nuestra Senora de Almiranta in the West Indies.

Another inventor’s – Halley – was refined by an American named John Smeaton in 1788. Smeaton incorporated several improvements, including a bell made from cast iron, the first efficient hand-operated pump to sustain the air supply via a hose, an air reservoir system and nonreturn valves to keep air from being sucked back up the hoses when the pump stopped. This was the first truly modern diving bell, and by the end of the century virtually every major harbor of the world had one for salvage, construction and repair operations. From this point on, bottom times began to increase dramatically and working underwater was becoming commonplace.


THE DAWN OF MODERN DIVING SYSTEMS

In 1820 a farm near Whitstable, England, caught fire and ignited a spark that would eventually result in the standard equipment used by divers for almost 150 years. Because of the dense smoke, rescuers were unable to get into the stable to save a team of valuable horses. But an ingenious, burley man in the crowd had an idea. Borrowing a helmet from a medieval suit of armor on display at a nearby home, he asked the fire brigade to pump air, not water, through the hose. Placing the hose under the helmet to provide a continuous air supply, he bravely walked into the stable through the dense smoke and saved the entire stock. That man was John Deane.

John and his brother Charles went into business producing a fire-fighting apparatus, which was patented in 1823. But John had a grander vision for his invention. He believed it could be used for diving, and by 1828 the original fire-fighting apparatus evolved into “Deane’s Patent Diving Dress.” As the helmet wasn’t attached to the suit, air escaped from the bottom. This, however, was the system’s major flaw, as the diver had to continually remain in an upright position. If the diver bent over, or even fell, the helmet would flood and he would drown. Still, the Deane’s system was very successful, and soon the brothers became well-known salvage operators. In 1836, they produced what was probably the first diving manual. A truly remarkable man, John Deane continued diving for many years, even diving under the ice in the Black Sea to salvage Russian warships at the age of 56.


MASTERING THE MASK CLEARING SKILL

Masks come in all sizes to suit a variety of faces. But no matter what, at some point even the best-fitting mask lets some water in. This can happen when you smile. Or perhaps you have a moustache that prevents a proper seal, or maybe a few strands of hair get caught under the mask’s skirt, allowing a leak. Fortunately, the mask clearing skill is easy to master and mask clearing takes mere seconds to achieve:

1) Using the palm of one hand. Place the palm of one hand along the top of the mask, pressing inward to keep the top seal in place. Exhale through the nose as you begin to tilt your head back. Continue exhaling until the exhaled air forces the water pooled at the bottom of the mask to escape. This is usually easy to accomplish on one breath – even for a fully flooded mask – but if more water remains, continue the clearing process. Simply inhale through your mouth and exhale into the mask through your nose. Once the mask is free of water, press the mask to your face to ensure it is sealed properly.

2) Using both hands. Place both index fingers along the top of the mask, pressing inward to keep the top seal in place. Exhale through the nose as you begin to tilt your head back. Continue exhaling until the exhaled air forces the water pooled at the bottom of the mask to escape. If you wish, as you exhale through the nose you may use the thumbs of both hands to slightly (only slightly) break the bottom seal, allowing the exhaled air to clear the water from the bottom of the mask. When using your thumbs to break the seal, don’t lift the mask off your face or you risk allowing more water in than you started with. Once the mask is free of water, press the mask to your face to ensure it is sealed properly.


WHAT IS VISIBILITY?

One of the most important considerations for diving is the “viz”. Visibility is generally considered to be the distance at which an object underwater can be readily identified. Underwater visibility is measured two ways. There is horizontal visibility – how far you can see looking straight ahead – and vertical visibility – how far you can see looking up or down. Horizontal visibility is usually more important, since it affects our ability to view the underwater environment.

Three factors primarily affect underwater visibility: light penetration, biological species and particulates. Not surprisingly, these factors are often related to one another, as well as to other environmental factors.

Sunlight plays a very important role in the visibility equation. Just as we can usually see better on the surface during a sunny day, the same generally holds true underwater. The amount of light that will penetrate the water depends on three things: overall light levels (i.e., a cloudy versus a sunny day), the angle at which the light rays meet the water (called the “angle of incidence”) and the roughness of the surface. The location of the sun in the sky also affects light penetration, with the best light levels occurring around noon. The further the sun sinks on the horizon, the smaller its angle of incidence and the worse the visibility. Sea state is another factor affecting light penetration. Rough seas reflect more light, thus reducing the underwater illumination. So if you’re choosing between two dive sites, opt for the one with calmer waters. The visibility will probably be better.


MEASURING VISIBILITY

Oceanographers and other marine researchers are very interested in measuring underwater visibility – primarily since the availability of light plays such an important role in biological productivity and the absorption of heat energy. One method of making such a measurement is with a device called a Secchi Disk.

The Secchi Disk is a white disk, 4 inches (10 cm) in diameter, which is lowered into the water to a depth at which it just disappears from sight. From this depth measurement, researchers can determine the extinction coefficient – a measure of how quickly illumination decreases with depth. This in turn can be related to other important physical and biological measurements. Incidentally, two divers can use a Secchi Disk to measure horizontal visibility too.

Perhaps a better measurement of visibility is made with an oceanographic instrument called a transmissometer. The transmissometer is a long (3 feet (1 meter)) tube which has a light source at one end and a light meter at the other. By measuring the amount of light which is transmitted from the light source through the water to the light meter, researchers can quantify the clarity of water.

Another increasingly popular way to measure visibility is with a personal sonar device. These handheld transmitters, available at many dive centers, can be used to accurately estimate horizontal or vertical visibility. Just point the device at an object at the edge of your field of vision and note the distance on the LCD readout.

3.8. Комплект материалов для оценки уровня освоения умений, усвоения знаний, сформированности общих компетенций при изучении учебной дисциплины ОУД.03 для профессии 35.01.09 Мастер растениеводства


SURVEY OF THE PLANT

Plants exist in great abundance on earth, covering much of the land with a thick carpet of green. Plants also come in a variety of shapes, sizes, and colours. Some plants are only a few centimetres long; others are as tall as a twenty-story building. Some plants change colours in autumn; others stay green all the year long. Plants grow in almost every kind of environment that exists on earth. You can find plants in the hot, wet environment of a jungle, as well as in the cold, dry environment of a tundra.

The plant kingdom includes organisms as different as a tiny moss and a giant redwood. However, approximately 285,000 species of plants share a number of traits. These shared traits distinguish plants from other types of organisms. Although plants are very diverse, some plants have similar characteristics, and they can be grouped according to these characteristics. Scientists group – or classify – plants to understand better the similarities and differences among many types of plants.


PLANT CLASSIFICATION

In classification, plants are first divided into large divisions which have gross features in common, then successively into smaller divisions. These divisions are: classes, orders, families, genera, and species.

The dominant plants of today are seed plants. They are vascular plants, which represent the highest type of specialization to date, though not necessarily the final type. Seeds permit of the wider and more rapid dissemination of the plant and tide the plants over unfavourable periods.

But the coniferous trees are productive timber on a commercial scale. Various members of this group are known as conifers, evergreens, or softwoods. Forty-six genera and about five hundred species are recognized, many of which are important, timber trees. In fact, the chief economic product is wood, and it occupies a unique position in this respect.

HOW TO IDENTIFY A PLANT

When we want to identify a plant, we usually divide its characteristics into smaller and smaller groups.

Every plant has two names: a scientific name and a common name. The scientific name, always in Latin, is necessary because scientists in various countries understand it. There is international system indicating plant relationships. The common name is “local” and the languages of different countries identify the same tree by different names. For example, Pinus sylvestris (scientific name) is commonly called сосна, Scots pine, die Kiefer, mänty, etc., but its scientific name always remains the same.

How is a scientific name created and what does it mean? It contains of two terms: the genus and the species. The genus, the first term, and always capitalized, is the name of the family of plants containing various subgroups called species. The second term is the species. So, “Pinus” is the genus, “sylvestris” is the species.


HOW TO IDENTIFY A TREE

When we identify a tree, we must determine first if the tree is deciduous or coniferous. Deciduous means that the tree loses its leaves seasonally, usually in autumn. A deciduous tree is a broad-leaved tree with round crown and branches as long or even longer than the short trunk. The wood of a deciduous tree is hard and heavy. The leaves change colour every autumn. In this group, we find Plane Trees, Maples, Oaks and others.

Conifers or Evergreen Trees are trees that do not lose their leaves seasonally. They have a central trunk with short side branches, which form a conical crown. The wood of a coniferous tree is soft. Among these trees, we find Pine, Larch, Spruce and Fir.

When you identify a tree, you must concentrate on leaf, the twig, flowers or fruit and the shape. Note that in scientific literature trees (as well as other plants) are referred to by scientific names, which are composed of their genus and species: black walnut, for example, is Junglas Nigra L. The initial following the scientific name denotes the scientist who named the plant, in this case, Linnaeus, a Swedish botanist.


KINDS OF WOODY PLANTS

Woody plants are of three types trees, shrubs, and woody lianas, between which no hard and fast lines can be drawn. In general, the kind of woody plants may be defined as follows; a tree is a woody plant that attains a height of at least 20 feet in a given locality and usually (not always) has but a single self-supporting stem or trunk.

A shrub is a woody plant that seldom exceeds 20 feet in height in a given locality and usually (not always) has a number of steins. Many shrubs have prostrate primary stems; these send up persisting secondary branches at intervals, which appear as separate individuals.

A woody liana is a climbing woody vine. Woody lianas climb by twining, aerial roots, tendrils, etc., and are characteristic features of tropical rain forests in many parts of the world.


BOTANICAL GARDEN IN LONDON

There are eighty parks in London, large and small. Three of them are in the centre of the city: Hyde Park, Regent’s Park and St. James Park. The others are in different parts of London.

In the south-western London, near the river Thames there is a fantastic park of Great Britain – the Kew Gardens. It is a botanical garden. All year round you can see lots of flowers there because Kew gets plants – 100,000 different plants – from all countries of the world. The plants, which like hot weather live in greenhouses, for example, palms grow in the palm house. The first palm was planted here 150 years ago. Now not only palm trees, but also bananas and oranges are grown here too. Another house, which people like to visit, is the cactus house. Cactuses came here from deserts where month after month it doesn’t rain.

Kew is important for men who are fond of nature, trees and flowers and for young men who are going to study botany and gardening.

4. Литература для проходящих дифференцированный зачет


4.1. Основная литература для проходящих дифференцированный зачет


  1. Английский язык : Английский язык нового тысячелетия / New Millennium English [Текст] : Учебник для 10 кл. общеобраз. учрежд. / О. Л. Гроза и др. – 4-е изд., испр. и перераб. – Обнинск : Титул, 2013. – 176 с. : ил.

  2. Голицынский, Ю. Б. Грамматика английского языка [Текст] : Сборник упражнений / Ю. Б. Голицынский, Н. А. Голицынская. – 8-е изд. – СПб : КАРО, 2017. – 576 с.

  3. Голубев, А. П. Английский язык [Текст] : учебник для студ. учреждений сред. проф. образования / А. П. Голубев, Н. В. Балюк, И. Б. Смирнова. – 13-е изд., стер. – М. : Издательский центр «Академия», 2013. – 336 с.

  4. Мюллер, В. К. Англо-русский и русско-английский словарь [Текст] / В. К. Мюллер. – М. : АСТ, 2016. – 800 с.

  5. Русско-английский и англо-русский словарь [Текст] / сост. С. Флеминг – 5-е изд. – СПб. : Виктория плюс, 2017. – 480 с.

  6. English Grammar in Use [Text] / R. Murphy. – 4th ed. – Cambridge : Cambridge University Press, 2015. – 320 p.

  7. Oxford Dictionary of Current English [Text] / под ред. – 4-е изд. – Oxford : Oxford University Press, 2009. – 1104 с.


4.2. Дополнительная литература для проходящих дифференцированный зачет


4.2.1. Дополнительная литература для проходящих дифференцированный зачет для всех профессий


  1. Агабекян, И. П. Английский язык [Текст] : учебное пособие для студентов образовательных учреждений среднего профессионального образования / И.П. Агабекян. – Изд. 27-е, стер. – Ростов-на-Дону : Феникс, 2015. – 318, [1] с.

  2. Бережная О. А. Сборник 1500 новых тем современного английского языка [Текст] / Кубарьков Г.Л., Куриленко Ю.В. и др. – Ростов-на-Дону : Баро-пресс, 2013. – 672 с.

  3. Большой англо-русский политехнический словарь [Текст] : Около 200 000 терминов / Сост. С. М. Баринов, А. Б. Борковский, В. А. Владимиров и др. – В 2 т. – М. : Русский язык, 1991.

  4. Бонк, Н. А. Английский шаг за шагом [Текст]: Курс для нач. / Н. А. Бонк. – М .: Эксмо, 2017. – 960 с.

  5. Голубев, А. П. Английский язык для технических специальностей / English for Technical Colleges [Текст] : учебник для студ. учреждений сред. проф. образования / А. П. Голубев, Н. В. Балюк, И. Б. Смирнова. – 7-е изд., стер. – М. : Издательский центр «Академия», 2016. – 208 с.

  6. Кравцова, Л. И. Английский язык [Текст]: учебник для студентов учреждений среднего профессионального образования (СПО) / Л. И. Кравцова. – 2-е изд., испр.. – М. : Высш. шк., 2007. – 463 с. : ил.

  7. Elsevir’s Dictionary of Technical Abbreviations [Text] : in English and Russian / Comp. M. Rosenberg, S. Bobryakov. – Germantown, Kiev, 2005. – 1117 p.

4.2.2. Дополнительная литература для проходящих дифференцированный зачет для профессии 08.01.05 Мастер столярно-плотничных и паркетных работ


  1. Березина, И. А. Англо-русский словарь строительных терминов [Текст] : учебное пособие / И. А. Березина, А. П. Малиновский. – Томск : Изд-во Том. гос. архит. строит. ун-та, 2011 – 82 c.

  2. Ивянская, И. С. Архитектура Англии [Текст] : Учебное пособие по английскому языку / И. С. Ивянская. – М. : Высшая школа, 2003. – 144 с.

  3. Карлова, Т. М. Как построить дом / BUILDING A HOUSE [Текст] : учебное пособие / Т. М. Карлова ; Сыкт. лесн. ин-т. – Сыктывкар : СЛИ, 2012. – 224 с.

  4. Корецкая, М. К. Русская архитектура / Russian Architecture [Электронный ресурс] : учебное пособие / М. К. Корецкая, О. Н. Романова ; Волгогр. гос. архит.-строит. ун-т. – Волгоград : ВолгГАСУ, 2014. – 45 с. – Электрон. текстовы дан. – Режим доступа: http://www.vgasu.ru/publishing/on-line/, свободный (дата обращения : 10.11.2018). – Загл. с экрана.

  5. Dictionary of Construction Terms / Edited by : Simon Tolson, Jeremy Glover and Stacy Sinclair. – Informa Law from Routledge, 2012. – 352 р.

  6. Evans, V. Buildings [Text] / V. Evans, J. Dooley, T. O’Dell ; ill. A. Victor. – Newbury : Express Publishing, 2012. – 40 p.

4.2.3. Дополнительная литература для проходящих дифференцированный зачет для профессии 08.01.08 Мастер отделочных строительных работ


  1. Дизайн интерьера и экстерьера зданий / Modern exterior and interior design [Электронный ресурс] : учебное пособие / сост. О. Н. Романова, М. К. Корецкая ; Волгогр. гос. архит.-строит. ун-т. – ВолгГАСУ, 2014. – 44 c. – Электрон. текстовые дан. – Режим доступа : http://www.vgasu.ru/publishing/on-line/, свободный (дата обращения 10.11.2018). – Загл. с экрана.

  2. Киреева, Ю. И. Строительные материалы и изделия / Building Materials and Items [Текст] : пособие для студентов и магистрантов строит. специальностей / Ю. И. Киреева, Л. Ф. Булойчик. – Новополоцк : ПГУ, 2013. – 120 с., [28] с. цв. ил.

  3. Современные строительные и отделочные материалы [Электронный ресурс] : сборник текстов для практических занятий по английскому языку / сост. О. Н. Романова, М. К. Корецкая ; Волгогр. гос. архит.-строит. ун-т. – Электрон. текстовые дан. – Режим доступа : http://www.vgasu.ru/publishing/on-line/, свободный (дата обращения : 10.11.2018). – Загл. с экрана.

  4. Учебные задания по развитию навыков чтения и профессиональной устной речи по английскому языку к практическим занятиям по теме «Строительные материалы» [Текст] / Сост. Н. С. Машковцева ; Владим. гос. ун-т. – Владимир : Изд-во Владим. гос. ун-та, 2004. – 32 с.


4.2.4. Дополнительная литература для проходящих дифференцированный зачет для профессии 08.01.18 Электромонтажник электрических сетей и электрооборудования


  1. Английские сокращения по электротехническому оборудованию и электрическим системам [Текст] / Сост. А. И. Гершенгорн ; ред. Л. И. Чернавина Всесоюзный центр переводов научно-технической литературы и документации. – М. : ПИК ВИНИТИ, 1991. – 80 с.

  2. Ларева, А. Г. Английский язык для студентов направления «Электроэнергетика и электротехника» [Текст] : учеб. пособие / А. Г. Ларева. – Ухта : УГТУ, 2016. – 48 с.

  3. Лысунец, Т. Б. Английский язык. Профессионально-ориентированный курс [Текст]: учебное пособие / Т. Б. Лысунец, М. В. Нетесова ; Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2012. – 120 с.

  4. Evans, V. Electrician [Text] / V. Evans, J. Dooley, T. O’Dell ; ill. A. Victor. – Newbury : Express Publishing, 2012. – 40 p.


4.2.5. Дополнительная литература для проходящих дифференцированный зачет для профессии 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки))


  1. Гричин, С. В., Ульянова О. В. Английский язык для инженеров сварочного производства [Текст] : учебное пособие / С. В. Гричин, О. В. Ульянова; Юргинский технологический институт. – Томск: Изд-во Томского политехнического университета, 2011. – 164с.

  2. Гричин, С. В. Английский для сварщиков [Текст] : Учебное пособие. / С. В. Гричин. – Юрга: Изд-во ЮТИ ТПУ, 2007. – 181 с.

  3. Грязнова, С. С. Учебно-методическое пособие по английскому языку для студентов СПО по специальности «Сварочное производство» [Текст] / С. С. Грязнова. – Сургут : Сургутский профессиональный колледж, 2011 – 39 с.


4.2.6. Дополнительная литература для проходящих дифференцированный зачет для профессии 18.01.02 Лаборант-эколог
  1. Англо-русский терминологический словарь по экологии [Текст] / сост. : М. Н. Пигарева. – Самара : Изд-во СГАУ, 2013. – 840 с.

  2. Батманова, В. В. Fundsmentals of Ecology [Текст] : Учебно-методическое пособие для обучающихся по направлению «Защита окружающей среды» и «Экология и природопользование» / В. В. Батманова. – Волгоград : Волгоградское научное издательство, 2011. – 72 с.

  3. Беляева, Е. А. Ecology [Текст] : учебное пособие по обучению чтению и переводу научной литературы на английском языке по специальности «Экология» / Е. А. Беляева, Т. В. Комаровских. – Сыктывкар : Изд-во Сыктывкарского госуниверситета, 2011. – 112 с.

  4. Изменение климата. Англо-русский словарь терминов, названий, выражений [Текст] / Сост. А. О. Кокорин при уч. Л. Н. Скуратовской и И. А. Ханыкова. – М. : WWF России, 2008. – 84 с.

  5. Методические указания к практическим занятиям по английскому языку на тему «Водная экология» [Текст] / Сост. Л. А. Радова, Т. А. Дорогина, О. Г. Мещрякова ; ВолгГАСА. – Волгоград, 2002. – 36 с.

  6. Смирнов, Н. Н. Словарь по экологии, этологии и охотоведению / Dictionary of Ecology, Ethology and Hunting [Текст] : Русско-английский и англо-русский / Н. Н. Смирнов, Панов Е. Н., Михеев В. Н. – М. : Книжный дом «ЛИБРОКОМ», 2014. – 416 с.

  7. Тарасенко, Н. Н. Экологические проблемы современного мира в курсе английского языка [Текст] : учеб. пособие / Н. Н. Тарасенко. – Краснодар : КубГАУ, 2018. – 92 с.


4.2.7. Дополнительная литература для проходящих дифференцированный зачет для профессии 23.01.17 Мастер по ремонту и обслуживанию автомобилей


  1. Жукова, Е. Н. Пособие по английскому языку для студентов автодорожных и строительных специальностей [Текст] : Учеб. пособие / Е. Н. Жукова, И. К. Тихонова. Иван. гос. архит.-строит. ун-т. – 2-е изд., испр. и доп. – Иваново, 2007. – 188 с.

  2. Английский язык для специальности «Автомобили и автомобильное хозяйство» / English for students of Motor transport and motor car industry [Текст] : учеб. пособие для студ. учреждений высш. проф. образования / Г. В. Шевцова и др. – М .: Издательский центр «Академия», 2011. – 320 с.

  3. Мини-словарь английских аббревиатур в автомобильной индустрии [Текст] : Учебно-справочное пособие / Сост. С. С. Грязнова. – Сургут : Сургутский политехнический колледж, 2017. – 7 с.

  4. Сборник технических текстов с заданиями для специальности «Автомеханик» [Текст] / Сост. А. В. Антонова. – Новокузнецк : ГОУ СПО Профессиональный колледж, 2011. – 33 с.

  5. Методическое пособие по английскому языку для развития умений и навыков профессионального общения по специальности «Техническое обслуживание и ремонт автомобильного транспорта» [Текст] / Сост. О. Б. Ефанова. – СПб. : Техникум «Автосервис», 2016. – 42 с.

  6. Солодкий, А. М. Англо-русский словарь для автомобилистов и автомехаников / English-Russian automobilist’s and automechanic’s dictionary [Текст] : Более 13 000 слов и терминов / А. М. Солодкий. – М. : Трансп., 1999. – 259 с.

4.2.8. Дополнительная литература для проходящих дифференцированный зачет для профессии 35.01.09 Мастер растениеводства


  1. Криворучко, И. С. Английский язык для агрономов [Текст] : учеб. пособие / И. С. Криворучко, Н. Б. Айвазян, В. П. Кочкина. – Краснодар : КубГАУ, 2018. – 89 с.

  2. Криворучко, И. С. Курс английского языка для специальностей агрономического профиля [Текст] : учеб. пособие / И. С. Криворучко, Е. В. Чуйкова. – Краснодар : КубГАУ, 2017. – 110 с.

  3. Токарева, Т. В. English for Foresters. Английский язык для специалистов лесного хозяйства [Текст] : учебное пособие / Т. В.Токарева. – 2-е изд., испр. – Йошкар-Ола: Марийский государственный технический университет, 2009. – 220с.

  4. Фомина, Т. Н. Англо-русский словарь по агрономии и агропочвоведению / English-Russian dictionary on Agronomy and Soil sciences./ Т. Н. Фомина. – М. : Изд-во РГАУ-МСХА имени К. А. Тимирязева, 2014. – 77 с.

  5. Compilation of Forestry Terms and Definitions [Text] / A. Schuck, R. Paivinen, T. Hytonen, B. Pajari // EFI International Report 6. – Joensuu : European Forest Institute, 2002. – 48 p.

  6. Dictionary of Agriculture [Text] / Ed. H. Bateman, S. Curtis, K. McAdam. – London : A & C Black Publishers Ltd, 2006. – 289 p.

  7. Russian-English, English-Russian Forestry and Wood Dictionary [Text] / Ed. W. Linnard, D. Darrah-Morgan. – 2nd edition. – Wallingford : CAB International, 1999. – 261 p.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!