СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Курс лекций по ОУДб.05 Математике

Категория: Математика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Курс лекций по ОУДб.05 Математике»

Функция. Предел функции в точке

План


  1. Ввести понятие предела функции в точке;

  2. Рассмотреть геометрическую иллюстрацию понятия предела функции в точке;

  3. Ввести понятие непрерывности функции;

  4. Рассмотреть правила о нахождении предела суммы, произведения и частного двух функций;

  5. Рассмотреть примеры нахождения предела функции в точке.


Тема нашего урока: «Предел функции в точке». Сегодня на уроке мы познакомимся с понятиями «предел функции в точке», «непрерывность функции», а также рассмотрим правила вычисления предела функции в точке.

- Эта тема очень важна для дальнейшего изучения алгебры: понятие предела функции имеет большое значение для построения графиков функций. Кроме того, в дальнейшем мы будем изучать понятие производной и без знания предела функции рассмотрение этого понятия невозможно.

- Перед тем как начать изучать новую тему выполним следующее задание: постройте график функции если:

а) при х = 4 значение функции не существует; (рис.1)

б) при х = 4 значение функции равно 3; (рис.2)

в) при х = 4 значение функции равно 2. (рис.3)

Рисунок 1

Рисунок 1

Рисунок 2


- Воспользуемся построенными графиками функций. Во всех трех случаях изображена одна и та же кривая, тем не менее, это три разные функции.

- Чем они отличаются друг от друга?

(Они отличаются друг от друга своим поведением в точке х = 4).

- Как ведет себя функция в точке х = 4 на первом графике?

(Для функции при х = 4 значение функции не существует, функция в указанной точке не определена).

- Как ведет себя функция в точке х = 4 на втором графике?

(Для функции при х = 4 значение функции существует, но оно отличается от естественного значения функции в указанной точке).

- Как ведет себя функция в точке х = 4 на третьем графике?

(Для функции при х = 4 значение функции существует, и оно равно естественному значению функции в указанной точке, то есть двум).

- Если мы исключим точку х = 4 из рассмотрения, то все три функции будут тождественными.

- Для всех трех случаев используется одна и та же запись: .

- В общем случае эта запись выглядит следующим образом: .

- Эту запись читаем так: «предел функции y=f(x) при стремлении х к а равен b».

- А теперь ответьте на такой вопрос: какую из трех рассмотренных функций естественно считать непрерывной в точке х = 4?

(Непрерывной будет третья функция)

- Так как эта функция непрерывна, то она удовлетворяет условию . И функцию f (x) называют непрерывной в точке х = а.

- Иными словами, функцию y = f (x) называют непрерывной в точке х = а, если предел функции y = f (x) при стремлении х к а равен значению функции в точке х = а.

- Функция y = f (x) называется непрерывной на промежутке Х, если она непрерывна в каждой точке промежутка.


Решение задач.

1). Постройте график какой– нибудь функции y = g (x), обладающей заданным свойством:

а) , (рис.4)

б) . (рис.5)


Решение.

Рисунок 3 Рисунок 4



- Рассмотрим несколько примеров на вычисление пределов функций.

Пример 1. Вычислить: .

Решение. Выражение х3 – 2х2 + 5х + 3 определено в любой точке х, в частности, в точке х = 1. Следовательно, функция у = х3 – 2х2 + 5х + 3 непрерывна в точке х = 1, а потому предел функции при стремлении х к 1 равен значению функции в точке х = 1.

Имеем: .

Ответ: 7.

- Для решения следующего примера нам потребуются правила вычисления предела функции в точке.

Правило 1. .

Правило 2. .

Правило 3. .

Пример 2. Используя эти правила, вычислим .

Решение. Выражение определено в любой точке х 0, в частности, в точке х = 2. Следовательно, функция у = f (x) непрерывна в точке х = 2, а потому предел функции при стремлении х к 2 равен значению функции в точке х = 2. Имеем: .

Ответ: 0.



Пример 3: а) ; б) ; в) ; г) .

Решение.

а) . Выражение х2 – 3х + 5 определено в любой точке х, в частности, в точке х = 1. Следовательно, функция у = х2 – 3х + 5 непрерывна в точке х = 1, а потому предел функции при стремлении х к 1 равен значению функции в точке х = 1.

Имеем: .

Ответ: 3.

б) . Выражение определено в любой точке х , в частности, в точке х = . Следовательно, функция у = f (x) непрерывна в точке х = , а потому предел функции при стремлении х к равен значению функции в точке х = . Имеем: .

Ответ: 0.

в) . Выражение х2 + 6х – 8 определено в любой точке х, в частности, в точке х = - 1. Следовательно, функция у = х2 + 6х – 8 непрерывна в точке х = - 1, а потому предел функции при стремлении х к - 1 равен значению функции в точке х = - 1.

Имеем: .

Ответ: - 1.

г) . Выражение определено в любой точке х , в частности, в точке х = . Следовательно, функция у = f (x) непрерывна в точке х = , а потому предел функции при стремлении х к равен значению функции в точке х = .

Имеем: .


- Вы заметили, что в рассмотренных примерах вычисление пределов не составило значительных сложностей: достаточно было найти значение функции в точке, к которой стремится аргумент х. Но часты случаи, когда этот прием не срабатывает.

Пример 4. Вычислить .

Решение. Если подставить значение х = - 3 в заданное выражение, то и в числителе, и в знаменателе получится 0, а на нуль делить нельзя. Но заданную алгебраическую дробь можно сократить: .

Значит, функции и тождественны при условии х - 3. Но при вычислении предела функции при х - 3 саму точку х = - 3 можно исключить из рассмотрения. Значит, .

Ответ: - 1,5.



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!