СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Лекционный курс по дисциплине "Материаловедение"

Категория: Прочее

Нажмите, чтобы узнать подробности

Лекционный курс по дисциплине "Материаловедение" предназнечен для обучающихся по профессии 23.01.03 Автомеханик и специальности 23.02.03 Техническое обслуживание и ремонт автомобильного транспорта. В лекционном курсе представлены следующие вопросы: качество и свойства материалов, металлы и сплавы, сплавы железа с углеродом, химико-термическая обработка стали, легированные стали, цветные металлы и сплавы, неметаллические материалы и экономические проблемы использования материалов.

Просмотр содержимого документа
«Лекционный курс по дисциплине "Материаловедение"»

Лекционный курс по дисциплине «МАТЕРИАЛОВЕДЕНИЕ»


Введение

Материаловедение относится к числу основополагающих дисциплин для машиностроительных специальностей. Это связано с тем, что получение, разработка новых материалов, способы их обработки являются основой современного производства и во многом определяют уровнем своего развития научно-технический и экономический потенциал страны. Проектирование рациональных, конкурентоспособных изделий, организация их производства невозможны без достаточного уровня знаний в области материаловедения.

Материаловедение является основой для изучения многих специальных дисциплин.

Разнообразие свойств материалов является главным фактором, предопределяющим их широкое применение в технике. Материалы обладают отличающимися друг от друга свойствами, причем каждое зависит от особенностей внутреннего строения материала. В связи с этим материаловедение как наука занимается изучением строения материала в тесной связи с их свойствами. Основные свойства материалов можно подразделить на физические, механические, технологические и эксплуатационные.

От физических и механических свойств зависят технологические и эксплуатационные свойства материалов.

Среди механических свойств прочность занимает особое место, так как прежде всего от нее зависит неразрушаемость изделий под воздействием эксплуатационных нагрузок. Учение о прочности и разрушении является одной из важнейших составных частей материаловедения. Оно является теоретической основой для выбора подходящих конструкционных материалов для деталей различного целевого назначения и поиска рациональных способов формирования в них требуемых прочностных свойств для обеспечения надежности и долговечности изделий.

Основными материалами, используемыми в машиностроении, являются и еще долго будут оставаться металлы и их сплавы. Поэтому основной частью материаловедения является металловедение, в развитии которого, ведущую роль сыграли российские ученые: Аносов П.П., Чернов Д.К., Курнаков Н.С., Гуляев А.П. и другие.

В настоящих лекциях рассмотрены физические основы строения и свойств конструкционных материалов, приводятся широко используемые методы определения механических свойств материалов при различных видах нагружения, излагаются основы термической обработки и поверхностного упрочнения деталей, даются характеристики основных групп конструкционных материалов.

 

Цель и задачи дисциплины, ее место в учебном процессе

 

Целью преподавания дисциплины является научить инженеров применять основные методы управления конструкционной прочностью материалов и проводить обоснованный выбор материала для изделий с учетом условий их эксплуатации.

Для достижения поставленной цели при изучении дисциплины решаются следующие основные задачи:


  • приобретение знаний по оценке технических свойств материалов, исходя из условий эксплуатации и изготовления изделия;


  • формирование научно обоснованных представлений о возможностях рационального изменения технических свойств материала путем изменения его структуры;


  • ознакомление со способами упрочнения материалов, обеспечивающими надежность изделий и инструментов;


  • ознакомление с основными группами современных материалов, их свойствами и областью применения.


Преподавание дисциплины базируется на знаниях, полученных в курсе “Физика”:

На момент начала изучения дисциплины «Материаловедение» студентам необходимо знание следующих понятий: нагрузка, напряжение, деформация упругая и пластическая, работа, энергия, агрегатное состояние вещества, термодинамическая система, параметры термодинамической системы, внутренняя энергия, атомно-кристаллическое строение металлов, типы связей частиц в твердом теле, основные физические свойства металлов.

Материаловедение подготавливает студента к освоению специальных дисциплин изучающих основные производственные технологии и процессы.

Знание основ материаловедения необходимо технику, технологу, инженеру, работающим в сфере технического обслуживания и эксплуатации автомобильного транспорта и оборудования.



СОДЕРЖАНИЕ


ВВЕДЕНИЕ

1. КАЧЕСТВО И СВОЙСТВА МАТЕРИАЛОВ

1.1. Качество материалов и его оценка

1.2. Механические свойства материалов

1.3. Технология материалов и технологические свойства

1.4. Физические, химические и эксплуатационные свойства материалов

2. МЕТАЛЛЫ И СПЛАВЫ

2.1. Строение металлов

2.2. Металлические сплавы

3. СПЛАВЫ ЖЕЛЕЗА С УГЛЕРОДОМ

3.1. Диаграмма состояния железоуглеродистых сплавов

3.2. Стали

3.3. Чугуны

4. ТЕРМИЧЕСКАЯ И ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ

4.1. Отжиг

4.2.Закалка и отпуск стали
4.3 Поверхностное упрочнение стали

5. ЛЕГИРОВАННЫЕ СТАЛИ

5.1. Конструкционные стали

5.2. Стали со специальными свойствами

6. ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ

6.1. Алюминий и его сплавы

6.2. Медь и ее сплавы

6.3. Сплавы других цветных металлов

НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

7.1. Пластические массы

7.2. Резиновые материалы

7.3. Древесные материалы

7.4. Неорганические материалы

7.5 Композиционное материалы

8.ЭКОНОМИЧЕСКИЕ ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ МАТЕРИ-АЛОВ

8.1. Экономически обоснованный выбор материала

8.2.Основные направления экономии материалов


































ВВЕДЕНИЕ

Материаловедение — наука о связях между составом, строением и свойствами материалов и закономерностях их изменений при внешних физико-химических воздействиях.

Все материалы по химической основе делятся на две основные группы — металлические и неметаллические. К металлическим от­носятся металлы и их сплавы. Металлы составляют более 2/3 всех известных химических элементов.

В свою очередь, металлические материалы делятся на черные и цветные. К черным относятся железо и сплавы на его основе — стали и чугуны. Все остальные металлы относятся к цветным. Чи­стые металлы обладают низкими механическими свойствами по сравнению со сплавами и поэтому их применение ограничивает­ся теми случаями, когда необходимо использовать их специаль­ные свойства (например, магнитные или электрические).

Практическое значение различных металлов не одинаково. Наи­большее применение в технике приобрели черные металлы. На осно­ве железа изготавливают более 90 % всей металлопродукции. Однако цветные металлы обладают целым рядом ценных физико-химичес­ких свойств, которые делают их незаменимыми. Из цветных метал­лов наибольшее промышленное значение имеют алюминий, медь, магний, титан и др.

Кроме металлических, в промышленности значительное место занимают различные неметаллические материалы — пластмассы, керамика, резина и др. Их производство и применение развивается в настоящее время опережающими темпами по сравнению с металли­ческими материалами. Но использование их в промышленности не­велико (до 10 %) и предсказание тридцатилетней давности о том, что неметаллические материалы к концу века существенно потеснят ме­таллические, не оправдалось.


1. КАЧЕСТВО И СВОЙСТВА МАТЕРИАЛОВ


    1. Качество материалов и его оценка


Качеством материала называется совокупность его свойств, удов­летворяющих определенные потребности в соответствии с назначени­ем. Уровень качества определяется соответствующими показателями, представляющими собой количественную характеристику одного или нескольких свойств материалов, которые определяют их качество применительно к конкретным условиям изготовления и использова­ния. По количеству характеризуемых свойств показатели качества подразделяются на единичные и комплексные. Единичный показатель качества характеризуется только одним свойством (например, твер­дость стали). Комплексный показатель характеризуется несколькими свойствами продукции. При этом продукция считается качественной только в том случае, если весь комплекс оцениваемых свойств удов­летворяет установленным требованиям качества. Примером комплек­сного показателя качества стали могут служить оценка химического состава, механических свойств, микро- и макроструктуры. Комплекс­ные показатели качества устанавливаются государственными стандар­тами.

Методы контроля качества могут быть самые разнообразные: ви­зуальный осмотр, органолептический анализ и инструментальный кон­троль. По стадии определения качества различают контроль предва­рительный, промежуточный и окончательный. При предварительном контроле оценивается качество исходного сырья, при промежуточ­ном — соблюдение установленного технологического процесса. Окон­чательный контроль определяет качество готовой продукции, ее год­ность и соответствие стандартам. Годной считается продукция, полностью отвечающая требованиям стандартов и технических усло­вий. Продукция, имеющая дефекты и отклонения от стандартов, счи­тается браком.

Качество материала определяется главным образом его свойства­ми, химическим составом и структурой. Причем свойства материала зависят от структуры, которая, в свою очередь, зависит от химического состава.

Поэтому при оценке качества могут определяться свой­ства, состав и оцениваться структура материала. Свойства материа­лов и методы определения некоторых из них изложены в следующих разделах. Химический состав может определяться химическим ана­лизом или спектральным анализом.

Существуют различные методы изучения структуры материалов. С помощью макроанализа изучают структуру, видимую невооружен­ным глазом или при небольшом увеличении с помощью лупы. Макро­анализ позволяет выявить различные особенности строения и дефек­ты (трещины, пористость, раковины и др.). Микроанализом называется изучение структуры с помощью оптического микроскопа при увели­чении до 3000 раз. Электронный микроскоп позволяет изучать струк­туру при увеличении до 25000 раз. Рентгеновский анализ применяют для выявления внутренних дефектов. Он основан на том, что рентге­новские лучи, проходящие через материал и через дефекты, ослабля­ются в разной степени. Глубина проникновения рентгеновских лучей в сталь составляет 80 мм. Эту же физическую основу имеет просвечи­вание гамма-лучами, но они способны проникать на большую глуби­ну (для стали — до 300мм). Просвечивание радиолучами сантиметро­вого и миллиметрового диапазона позволяет обнаружить дефекты в поверхностном слое неметаллических материалов, так как проникаю­щая способность радиоволн в металлических материалах невелика. Магнитная дефектоскопия позволяет выявить дефекты в поверхнос­тном слое (до 2 мм) металлических материалов, обладающих магнит­ными свойствами и основана на искажении магнитного поля в местах дефектов. Ультразвуковая дефектоскопия позволяет осуществлять эффективный контроль качества на большой глубине. Она основана на том, что при наличии дефекта интенсивность проходящего через материал ультразвука меняется. Капиллярная дефектоскопия слу­жит для выявления невидимых глазом тонких трещин. Она исполь­зует эффект заполнения этих трещин легко смачивающими матери­ал жидкостями.

1.2. Механические свойства материалов


Механические свойства характеризуют способность материа­лов сопротивляться действию внешних сил. К основным механичес­ким свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

Прочность — это способность материала сопротивляться раз­рушающему воздействию внешних сил.

Твердость — это способность материала сопротивляться вне­дрению в него другого, более твердого тела под действием нагрузки.

Вязкостью называется свойство материала сопротивляться раз­рушению под действием динамических нагрузок.

Упругость — это свойство материалов восстанавливать свои раз­меры и форму после прекращения действия нагрузки.

Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

Хрупкость — это свойство материалов разрушаться под дей­ствием внешних сил без остаточных деформаций.

При статических испытаниях на растяжение определяют вели­чины, характеризующие прочность, пластичность и упругость мате­риала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диа­метром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:

σ = P/F0,

Деформация характеризует изменение размеров образца под дей­ствием нагрузки, %:

ε =[(l1-l0)/l0]·100,

где l1 — длина растянутого образца.

Деформация может быть упру­гой (исчезающей после снятия нагрузки) и пластической (остаю­щейся после снятия нагрузки).

При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения ис­пытаний определяются следующие характеристики механических свойств.

Предел упругости σу— это максимальное напряжение при кото­ром в образце не возникают пластические деформации.

Предел текучести σт— это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести(что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2— напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв— это на­пряжение, отвечающее максимальной нагрузке, которую выдержи­вает образец при испытании.

Относительное удлинение после разрыва δ— отношение при­ращения длины образца при растяжении к начальной длине l0, %:

δ =[(lk-l0)/l0]·100,

где lк — длина образца после разрыва.

Рисунок 1 - Статические испытания на растяжение: а – схема испытания;

б – диаграмма растяжения

Относительным сужением после разрыва ψ называется умень­шение площади поперечного сечения образца, отнесенное к началь­ному сечению образца, %:

ψ =[(F0-Fk)/F0]·100,

где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

Твердость металлов измеряется путем вдавливания в испытуе­мый образен твердого наконечника различной формы/

Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо­сти по Бринеллю НВ определяется отношением нагрузки, действую­щей на шарик, к площади поверхности полученного отпечатка.

Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавли­вание производится под действием двух нагрузок — предваритель­ной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

В методе Виккерса применяют вдавливание алмазной четырех­гранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сече­ния F; Дж/м2:

KC=A/F

Испытания проводятся ударом специального маятникового коп­ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.


1.3. Технология материалов и технологические свойства


Технология материалов представляет собой совокупность совре­менных знаний о способах производства материалов и средствах их переработки в целях изготовления изделий различного назначе­ния. Металлы и сплавы производят путем выплавки при высоких температурах из различных металлических руд. Отрасль промыш­ленности, занимающаяся производством металлов и сплавов, называ­ется металлургией. Полимеры (пластмассы, резина, синтетические волокна) изготовляются чаще всего с помощью процессов органичес­кого синтеза. Исходным сырьем при этом служат нефть, газ, камен­ный уголь.

Готовые изделия и заготовки для дальнейшей обработки из ме­таллов и сплавов производятся путем литья или обработки давлени­ем. Литейное производство занимается изготовлением изделий пу­тем заливки расплавленного металла в специальную форму, внутренняя полость которой имеет конфигурацию изделия. Различают литье в песчаные формы (в землю) и специальные способы литья.

Песчаные литейные формы изготовляются путем уплотнения формовочных смесей, основой которых является кварцевый песок, К специальным способам относится литье в кокиль, литье под давлением, центро­бежное литье, литье в оболочковые формы, литье по выплавляемым моделям. Кокиль — это специальная металлическая форма. При литье под давлением заливка металла в металлическую форму и его засты­вание происходит под избыточным давлением. При центробежном литье металл заливается во вращающуюся металлическую форму. Оболочковые формы состоят из мелкого песка со связующим. При литье по выплавляемым моделям керамическая форма изготовляется путем погружения модели из легкоплавкого материала (парафина, стеарина) в керамическую суспензию и последующей выплавки мо­дели из формы. Сплавы, предназначенные для получения деталей литьем, называются литейными.

Обработкой металлов давлением называют изменение формы заготовки под воздействием внешних сил. К видам обработки металлов давлением относятся прокатка, прессование, волочение, ковка и штамповка. Прокатка заключается в обжатии заготовки между вра­щающимися валками. При прессовании металл выдавливается из зам­кнутого объема через отверстие. Волочение заключается в протягива­нии заготовки через отверстие. Ковкой называется процесс свободного деформирования металла ударами молота или давлением пресса. Штамповкой получают детали с помощью специального инструмен­та — штампа, представляющего собой металлическую разъемную фор­му, внутри которой расположена полость, соответствующая конфигу­рации детали. Сплавы, предназначенные для получения деталей обработкой давлением, называют деформируемыми.

Сравнительно новым направлением производства металлических деталей является порошковая металлургия, которая занимается про­изводством деталей из металлических порошков путем прессования и спекания.

Изделия из пластмасс получают путем прессования, литья или выдавливания. Резиновые изделия получают обработкой между вала­ми (каландрированием), выдавливанием, прессованием или литьем с последующей вулканизацией (см. раздел, 7.2.).Изделия из керами­ческих материалов получают путем формования и обжига или прес­сования и спекания.

Сваркой называется технологический процесс получения неразъ­емных соединений материалов путем установления межатомных связей между свариваемыми частями при их нагреве или пластическом де­формировании или совместном действии того и другого. Сваркой соединяют однородные и разнородные металлы и их сплавы, метал­лы с некоторыми неметаллическими материалами (керамикой, гра­фитом, стеклом), а также пластмассы.

Заключительной стадией изготовления изделий часто является обработка резанием, заключающаяся в снятии с заготовки режущим инструментом слоя материала в виде стружки. В результате этого заготовка приобретает правильную форму, точные размеры, необхо­димое качество поверхности.

Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства харак­теризуются способностью металлов и сплавов в расплавленном состоя­нии хорошо заполнять полость литейной формы и точно воспроизво­дить ее очертания (жидкотекучестъю), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии. Ковкость — это способность металлов и сплавов подвергаться различ­ным видам обработки давлением без разрушения. Свариваемость опре­деляется способностью материалов образовывать прочные сварные сое­динения. Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.


1.4. Физические, химические и эксплуатационные свойства материалов


К физическим свойствам материалов относится плотность, тем­пература плавления, электропроводность, теплопроводность, магнит­ные свойства, коэффициент температурного расширения и др.

Плотностью называется отношение массы однородного матери­ала к единице его объема.

Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые кон­струкции должны быть легкими и прочными.

Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже темпе-

ратура плавления металла, тем легче протекают процессы его плав­ления, сварки и тем они дешевле.

Электропроводностью называется способность материала хоро­шо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, осо­бенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важ­ным свойством, используемом в электроизоляционных материалах.

Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

Магнитными свойствами т.е. способностью хорошо намагничи­ваться обладают только железо, никель, кобальт и их сплавы.

Коэффициенты линейного и объемного расширения характеризу­ют способность материала расширяться при нагревании. Это свой­ство важно учитывать при строительстве мостов, прокладке желез­нодорожных и трамвайных путей и т.д.

Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способнос­тью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различ­ных агрессивных сред называется коррозионной стойкостью (см. раз­дел 5.2), а аналогичная способность неметаллических материалов — химической стойкостью.

К эксплуатационным (служебным) свойствам относятся жаро­стойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

Жаростойкость характеризует способность металлического ма­териала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

Износостойкость — это способность материала сопротивлять­ся разрушению его поверхностных слоев при трении.

Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.


2. МЕТАЛЛЫ И СПЛАВЫ


2.1. Строение металлов


В технике под металлами понимают вещества, обладающие ком­плексов металлических свойств: характерным металлическим блес­ком, высокой электропроводностью, хорошей теплопроводностью, высокой пластичностью.

Кристаллические решетки. Все вещества в твердом состоянии могут иметь кристаллическое или аморфное строение. В аморфном веществе атомы расположены хаотично, а в кристаллическом — в строго определенном порядке. Все металлы в твердом состоянии имеют кристаллическое строение.

Для описания кристаллической структуры металлов пользуются понятием кристаллической решетки. Кристаллическая решетка — это воображаемая пространственная сетка, в узлах которой распо­ложены атомы. Наименьшая часть кристаллической решетки, опре­деляющая структуру металла, называется элементарной кристалли­ческой ячейкой,

На рис. 2 изображены элементарные ячейки для наиболее рас­пространенных кристаллических решеток. В кубической объемно-центрированной решетке (рис. 2, а) атомы расположены в ушах ячейки и один атом в центре куба.


Рисунок 2 – Виды кристаллических решеток.


Такую решетку имеют хром, вольфрам,молибден и др. В кубической гранецентрированной решетке (рис. 2, б) атомы расположены в вершинах куба и в центре каждой грани. Эту решетку имеют алюминий, медь, никель и другие металлы. В гекса­гональной плотноупакованной решетке (рис. 2, в) атомы расположе­ны в вершинах и центрах оснований шестигранной призмы и три атома в середине призмы. Такой тип решетки имеют магний, цинк и некоторые другие металлы.

Кристаллизация металлов. Процесс образования в металлах кристаллической решетки называется кристаллизацией. Для изуче­ния процесса кристаллизации строят кривые охлаждения металлов, которые показывают изменение температуры (t) во времени (τ). На рис. 3 приведены кривые охлаждения аморфного и кристаллическо­го веществ. Затвердевание аморфного вещества (рис. 3, а) происхо­дит постепенно, без резко выраженной границы между жидким и твердым состоянием- На кривой охлаждения кристаллического ве­щества (рис. 3, б) имеется горизонтальный участок с температурой tкр, называемой температурой кристаллизации. Наличие этого участ­ка говорит о том, что процесс сопровождается выделением скрытой теплоты кристаллизации. Длина горизонтального участка — это время кристаллизации.

Рисунок 3 – Кривые охлаждения аморфного и кристаллического тел


Кристаллизация металла происходит постепенно. Она объеди­няет два процесса, происходящих одновременно: возникновение цен­тров кристаллизации и рост кристаллов. В процессе кристаллиза­ции когда растущий кристалл окружен жидкостью, он имеет правильную геометрическую форму. При столкновении растущих кри­сталлов их правильная форма нарушается (рис. 4). После окончания кристаллизации образуются кристаллы неправиль­ной

Рисунок 4 – Схема процесса кристаллизации металла


формы, которые называются зернами или кристаллитами. Внутри каждого зерна имеется определенная ориентация кристаллической ре­шетки, отличающаяся от ориентации решеток соседних зерен.

Полиморфизм. Некоторые металлы в зависимости от темпера­туры могут существовать в различных кристаллических формах. Это явление называется полиморфизм или аллотропия, а различные кри­сталлические формы одного вещества называются полиморфными модификациями. Процесс перехода от одной кристаллической фор­мы к другой называется полиморфным превращением. Полиморфные превращения протекают при определенной температуре.

Полиморфные модификации обозначают строчными гречески­ми буквами α, β, γ, δ и т. д., причем α соответствует модификации, существующей при наиболее низкой температуре. Полиморфизм ха­рактерен для железа, олова, кобальта, марганца, титана и некоторых других металлов.

Важное значение имеет полиморфизм железа. На рис. 5 изобра­жена кривая охлаждения железа.


Рисунок 5 – Кривая охлаждения железа


Полиморфные превращения ха­рактеризуются горизонтальными участками на кривой охлаждения, так как при них происходит полная перекристаллизация металла. До 911°С устойчиво Feα, имеющее кубическую объемноцептрированную решетку. В интервале 911…1392 °С существует Feγ с кубической гранецентрированной кристаллической решеткой.

При 1392…1539 °С вновь устойчиво Feα. Часто высокотемпературную модификацию Feα обо­значают Feδ. Остановка на кривой охлаждения при 768 °С связана не с полиморфным превращением, а с изменением магнитных свойств. До 768 °С железо магнитно, а выше — немагнитно.

Дефекты кристаллического строения. Реальный металлический кристалл всегда имеет дефекты кристаллического строения. Они подразделяются на точечные, линейные и поверхностные (рис. 6).

Точечные дефекты малы во всех трех измерениях. К точечным дефектам относятся вакансии, представляющие собой узлы кристал­лической решетки в которых отсутствуют атомы (рис. 6, а), а также замещенные атомы примеси (рис. 6, б) и внедренные атомы (рис. 6, в) которые могут быть как примесными, так и атомами основно­го металла.

Точечные дефекты вызывают местные искажения кри­сталлической решетки, которые затухают достаточно быстро по мере удаления от дефекта.

Линейные дефекты имеют малые размеры в двух измерениях и большую протяженность в третьем. Эти дефекты называют дислока­циями. Краевая дислокация (рис. 7) представляет собой искажение кристаллической решетки, вызванное наличием «лишней» атомной полуплоскости.

Поверхностные дефекты малы только в одном измерении. К ним относятся, например, границы между отдельными зернами или группами зерен.

Наклеп и рекристаллизация. При пластической деформации из­меняется не только форма и размеры металла, но также его внутрен­нее строение и механические свойства. Зерна разворачиваются, де­формируются и сплющиваются, вытягиваясь в направлении деформации. Образуется волокнистая структура. При этом прочность и твердость металла повышаются, а пластичность и вязкость снижа­ются. Явление упрочнения металла при пластической деформации называется наклепом.

Волокнистое строение и наклеп могут быть устранены при нагреве металла. Частичное снятие наклепа происходит уже при небольшом нагреве (до 300…400 °С для железа). Но волокнистая структура при этом сохраняется. При нагреве до более высокой температуры в металле происходит образование новых равноосных зерен. Этот процесс назы­вается рекристаллизацией. Наклеп при этом снимается полностью.

Температура, при которой начинается процесс рекристаллиза­ции называется температурой рекристаллизации. Абсолютная тем­пература рекристаллизации Тp связана с абсолютной температурой плавления простой зависимостью:


Тp =a · Tпл,


где а — коэффициент, зависящий от состава и структуры металла. Для особо чистых металлов а = 0,2, для металлов технической чис­тоты а = 0,3…0,4, для сплавов а = 0,5…0,6.

Если деформирование металла происходит при температуре, которая выше температуры рекристаллизации, то наклеп после де­формации не возникает. Такая деформация называется горячей. При горячей деформации идут одновременно процессы упрочнения и рекристаллизации. Деформация, которая происходит ниже темпера­туры рекристаллизации называется холодной.


2.2. Металлические сплавы


Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обла­дающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами. Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму размер и характер взаимного распо­ложения фаз в металлах и сплавах. Структурными составляющими называют обособленные части сплава, имеющие одинаковое строе­ние с присущими им характерными особенностями.

Виды сплавов по структуре. По характеру взаимодействия ком­понентов все сплавы подразделяются на три основных типа: механи­ческие смеси, химические соединения и твердые растворы.

Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристалличес­кую решетку. Структура механических смесей неоднородная, состо­ящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения ком­понентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.

Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химичес­кой формуле АmВn . Химическое соединение имеет свою кристалли­ческую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структу­ру, состоящую из одинаковых по составу и свойствам зерен.

При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы заме­щения образуются в результате частичного замещения атомов крис­таллической решетки одного компонента атомами второго (рис. 6, б).

Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную струк­туру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определен­ном соотношении компонентов, а в интервале концентраций. Обо­значают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.

Диаграмма состояния. Диаграмма состояния показывает строе­ние сплава в зависимости от соотношения компонентов и от темпера­туры. Она строится экспериментально по кривым охлаждения спла­вов (рис. 8). В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур. Поэтому на кривых охлаждения сплавов имеется две критические точки. В верхней критической точке, называемой точкой ликвидус (tл), начина­ется кристаллизация. В нижней критической точке, которая называ­ется точкой солидус (tc), кристаллизация завершается. Кривая охлаж­дения механической смеси (рис. 8, а) отличается от кривой охлаждения твердого раствора (рис. 8, б) наличием горизонтального участка. На этом участке происходит кристаллизация эвтектики. Эвтектикой на­зывают механическую смесь двух фаз, одновременно кристаллизовав­шихся из жидкого сплава. Эвтектика имеет определенный химичес­кий состав и образуется при постоянной температуре.

Диаграмму состояния строят в координатах температура-концен­трация. Линии диаграммы разграничивают области одинаковых фазо­вых состояний. Вид диаграммы зависит от того, как взаимодейству­ют между собой компоненты. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов раз­личных концентраций. При построении диаграммы критические точ­ки переносятся с кривых охлаждения на диаграмму и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие. Линия диаграммы состояния на ко­торой при охлаждении начинается кристаллизация сплава называется линией ликвидус, а линия на которой кристаллизация завершается — линией солидус.

Виды диаграмм состояния. Диаграмма состояния сплавов, обра­зующих механические смеси (рис. 9), характеризуется отсутствием растворения компонентов в твердом состоянии. Поэтому в этом спла­ве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В. Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоян­ной температуре происходит кристаллизация эвтектики Э. Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.

Сплавы, расположенные на диаграмме левее эвтектического, называ­ются доэвтектическими, их структура состоит из зерен А и эвтекти­ки. Те сплавы которые на диаграмме расположены правее эвтектичес­кого, называются заэвтектическими, их структура представляет собой зерна В, окруженные эвтектикой.

Диаграмма состояния сплавов с неограниченной растворимос­тью компонентов в твердом состоянии изображена на рис. 10. Для этого сплава возможно образование двух фаз: жидкого сплава и твер­дого раствора а. На диаграмме имеется всего две линии, верхняя является линией ликвидус, а нижняя — линией солидус.

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии показана на рис 11. В этом сплаве могут существовать три фазы — жидкий сплав, твердый раствор α компонента В в компоненте А и твердый раствор β компонента А в компоненте В. Данная диаграмма содержит в себе элементы двух пре­дыдущих. Линия АСВ является линией ликвидус, линия АDСЕВ — линией солидус. Здесь также образуется эвтектика, имеются эвтек­тический, доэвтектический и заэвтектический сплавы. По линиям FD и EG происходит выделение вторичных кристаллов αIIи βII(вслед­ствие уменьшения растворимости с понижением температуры). Про­цесс выделения вторичных кристаллов из твердой фазы называется вторичной кристаллизацией.



Диаграмма состояния сплавов, образующих химическое соеди­нение (рис. 12) характеризуется наличием вертикальной линии, соот­ветствующей соотношением компонентов в химическом соединении АmВn. Эта линия делит диаграмму на две части, которые можно рас­сматривать как самостоятельные диаграммы сплавов, образуемых одним из компонентов с химическим соединением. На рис. 12 изоб­ражена диаграмма для случая, когда каждый из компонентов образу­ет с химическим соединением механическую смесь.


3. СПЛАВЫ ЖЕЛЕЗА С УГЛЕРОДОМ


3.1. Диаграмма состояния железоуглеродистых сплавов

Диаграмма состояния железоуглеродистых сплавов дает представ­ление о строении основных конструкционных сплавов — сталей и чугунов.

Компоненты, фазы и структурные составляющие сплавов же­леза с углеродом. Железо — пластичный металл серебристо-белого цвета с невысокой твердостью (НВ 80). Температура плавления — 1539 °С, плотность 7,83 г/см3. Имеет полиморфные модификации (см. раздел 2.1.). С углеродом железо образует химическое соединение и твердые растворы.

Цементит — это химическое соединение железа с углеродом (карбид железа) Fe3С. В нем содержится 6,67 % углерода (по массе). Имеет сложную ромбическую кристаллическую решетку. Характе­ризуется очень высокой твердостью (НВ 800), крайне низкой плас­тичностью и хрупкостью.

Ферритом называется твердый раствор углерода к α- железе. Со­держание углерода в феррите очень невелико — максимальное 0,02% при температуре 727 °С. Благодаря столь малому содержанию угле­рода свойства феррита совпадают со свойствами железа (низкая твер­дость и высокая пластичность). Твердый раствор углерода в высоко­температурной модификации Feα (т. е. в Feδ) часто называют δ- ферритом или высокотемпературным ферритом.

Аустенит — это твердый раствор углерода в γ- железе. Макси­мальное содержание углерода в аустените составляет 2,14 % (при температуре 1147 °С). Имеет твердость НВ 220.

Перлит — это механическая смесь феррита с цементитом. Со­держит 0,8% углерода, образуется из аустенита при температуре 727°С. Имеет пластинчатое строение, т.е. его зерна состоят из чередующих­ся пластинок феррита и цементита. Перлит является эвтектоидом. Эвтектоид— это механическая смесь двух фаз, образующаяся из твердого раствора (а не из жидкого сплава, как эвтектика).

Ледебурит представляет собой эвтектическую смесь аустенита с цементитом. Содержит 4,3 % углерода, образуется из жидкого сплава при температуре 1147 °С. При температуре 727 °С аустенит, входя­щий в состав ледебурита превращается в перлит и ниже этой темпе­ратуры ледебурит представляет собой механическую смесь перлита с цементитом.

Фаза цементита имеет пять структурных форм: цементит пер­вичный, образующийся из жидкого сплава; цементит вторичный, образующийся из аустенита; цементит третичный, образующийся из феррита; цементит ледебурита; цементит перлита.

Диаграмма Fе-Fе3С. На рис. 13 приведена диаграмма состояния сплавов железа с цементитом. На горизонтальной оси концентраций отложено содержание углерода от 0 до 6,67 %. Левая вертикальная ось соответствует 100 % содержанию железа. На ней отложены темпера­тура плавления железа и температуры его полиморфных превраще­ний. Правая вертикальная ось (6,67 % углерода) соответствует 100 % содержанию цементита. Буквенное обозначение точек диаграммы при­нято согласно международному стандарту и изменению не подлежит.

Линия АВСД диаграммы является линией ликвидус. На ней на­чинается кристаллизация: на участке АВ — феррита, ВС — аустенита и СД — первичного цементита. Линия AHJECF является лини­ей солидус диаграммы.

Железоуглеродистые сплавы в зависимости от содержания угле­рода делятся на техническое железо (до 0,02 % С), сталь (от 0,02 до 2,14 % С) и чугун (от 2,14 до 6,67 % С). Сталь, содержащая до 0,8 % С называется доэвтектоидной, 0,8 % С — эвтектоидной и свыше 0,8 % С — заэвтектоидной. Чугун, содержащий от 2,14 до 4,3 % С называется доэвтектическнм, ровно 4,3% — эвтектическим и от 4,3 до 6,67 % С — заэвтектическим.

Структура технического железа представляет собой зерна фер­рита или феррит с небольшим количеством третичного цементита. Обязательной структурной составляющей стали является перлит. Структура доэвтектоидной стали, состоит из равномерно распреде­ленных зерен феррита и перлита. Эвтектоидная сталь состоит толь­ко из перлита. Структура заэвтектоидной стали представляет собой зерна перлита, окруженные сплошной или прерывистой сеткой вто­ричного цементита. Дня чугуна характерно наличие ледебурита в структуре. Структура доэвтектического чугуна состоит из перлита, вторичного цементита и ледебурита, эвтектического — из ледебури­та и заэвтектического — из ледебурита и первичного цементита.

Значение диаграммы железо - цементит состоит в том, что она позволяет объяснить зависимость структуры и, соответственно, свойств сталей и чугунов от содержания углерода и определить ре­жимы термической обработки для изменения свойств сталей.


3.2. Стали


Сталью называется сплав железа с углеродом, в котором углеро­да содержится не более 2,14%. Это теоретическое определение. На практике в сталях, как правило, не содержится углерода более 1,5 %.

Влияние углерода и примесей на свойства стали. Углерод существенно влияет на свойства стали даже при незначительном измене­нии его содержания. В стали имеются две фазы — феррит и цементит (частично в виде перлита). Количество цементита возрастает прямо пропорционально содержанию углерода.Как уже говорилось, феррит характеризуется высокой пластичностью и низкой твердостью, а це­ментит, напротив, очень низкой пластичностью и высокой твердо­стью. Поэтому с повышением содержания углерода до 1,2 % снижают­ся пластичность и вязкость стали и повышаются твердость и прочность.

Повышение содержания углерода влияет и на технологические свойства стали. Ковкость, свариваемость и обрабатываемость реза­нием ухудшаются, по литейные свойства улучшаются.

Кроме железа и углерода в стали всегда присутствуют постоянные примеси. Наличие примесей объясняется технологическими особен­ностями производства стали (марганец, кремний) и невозможностью полного удаления примесей, попавших в сталь из железной руды (сера, фосфор, кислород, водород, азот). Возможны также случайные при­меси (хром, никель, медь и др.).

Марганец и кремний вводят в любую сталь для раскисления, т.е. для удаления вредных примесей оксида железа FеО. Марганец также устраняет вредные сернистые соединения железа. При этом содер­жание марганца обычно не превышает 0,8 %, а кремния — 0,4 %. Марганец повышает прочность, а кремний упругость стали.

Фосфор растворяется в феррите, сильно искажает кристалли­ческую решетку, снижая при этом пластичность и вязкость, но по­вышая прочность. Вредное влияние фосфора заключается в том, что он сильно повышает температуру перехода стали в хрупкое состоя­ние, т.е. вызывает ее хладноломкость. Вредность фосфора усугубля­ется тем, что он может распределяться в стали неравномерно. По­этому содержания фосфора в стали ограничивается величиной 0,045 %.

Сера также является вредной примесью. Она нерастворима в железе и образует с ним сульфид железа FeS, который образует с железом легкоплавкую эвтектику. Эвтектика располагается по гра­ницам зерен и делает сталь хрупкой при высоких температурах. Это явление называется красноломкостью. Количество серы в стали ог­раничивается 0,05 %.

Водород, азот и кислород содержатся в стали в небольших ко­личествах. Они являются вредными примесями, ухудшающими свой­ства стали.

Классификация сталей. По химическому составу стали могут быть углеродистыми, содержащими железо, углерод и примеси и легированными, содержащими дополнительно легирующие элемен­ты, введенные в сталь с целью изменения ее свойств.

По содержанию углерода стали делятся на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,25 … 0,7 % С) и высокоуглеро­дистые (более 0,7 % С).

По назначению различают стали конструкционные, идущие на изготовление деталей машин, конструкций и сооружений, инстру­ментальные, идущие на изготовление различного инструмента, а также стали специального назначения с особыми свойствами: нержавею­щие, жаростойкие, жаропрочные, износостойкие, с особыми элект­рическими и магнитными свойствами и др..

По показателям качества стали классифицируются на обыкно­венного качества, качественные, высококачественные и особо высо­кокачественные. Качество стали характеризуется совокупностью свойств, определяемых процессом производства, химическим соста­вом, содержанием газов и вредных примесей (серы и фосфора). В соответствии с ГОСТом стали обыкновенного качества должны со­держать не более 0,045 % Р и 0,05 % S, качественные — не более 0,035 % Р и 0,04 % S, высококачественные — не более 0,025 % Р и 0,025 % S и особо высококачественные — не более 0,025 % Р и 0,015 % S.

Углероди­стые конструкционные стали могут быть только обыкновенного ка­чества и качественными.

Качественные конструкционные углеродистые стати маркируют­ся цифрами 08, 10, 15, 20, 25, ..., 85, которые обозначают среднее содержание углерода в сотых долях процента. Эти стали отличаются от сталей обыкновенного качества большей прочностью, пластичностью и ударной вязкостью. Если для сталей обыкновенного качества макси­мальная прочность составляет 700 МПа, то для качественной она достигает 1100 МПа. Более подробно они будут рассмотрены совместно с конструкционными легированными сталями (см. раздел 5.1.).



3.3. Чугуны


Чугуном называют сплав железа с углеродом, содержащий от 2,14 до 6,67 % углерода. Но это теоретическое определение. На практике содержание углерода в чугунах находится в пределах 2,5…4,5 %. В качестве примесей чугун содержит Si, Мn, S и Р.

Классификация чугунов. В зависимости от того, в какой форме содержится углерод в чугунах, различают следующие их виды. В бе­лом чугуне весь углерод находится в связанном состоянии в виде це­ментита. Структура белого чугуна соответствует диаграмме Fе-Fе3С. В сером чугуне большая часть углерода находится в виде графита, вклю­чения которого имеют пластинчатую форму. В высокопрочном чугуне графитные включения имеют шаровидную форму, а в ковком — хлопь­евидную. Содержание углерода в виде цементита в сером, высоко­прочном и ковком чугунах может составлять не более 0,8%.

Белый чугун обладает высокой твердостью, хрупкостью и очень плохо обрабатывается. Поэтому для изготовления изделий он не ис­пользуется и применяется как предельный чугун, т.е. идет на произ­водство стали. Для деталей с высокой износостойкостью использу­ется чугун с отбеленной поверхностью, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой — белого чугуна. Машиностроительными чугунами, идущими на изго­товление деталей, являются серый, высокопрочный и ковкий чугуны. Детали из них изготовляются литьем, так как чугуны имеют очень хорошие литейные свойства. Благодаря графитным включени­ям эти чугуны хорошо обрабатываются, имеют высокую износостой­кость, гасят колебания и вибрации. Но графитные включения умень­шают прочность.

Таким образом, структура машиностроительных чугунов состо­ит из металлической основы и графитных включений. По металли­ческой основе они классифицируются на ферритный чугун (весь углерод содержится в виде графита), феррито-перлитный и перлит­ный (содержит 0,8% углерода в виде цементита). Характер ме­таллической основы влияет на механические свойства чугунов: проч­ность и твердость выше у перлитных, а пластичность — у ферритных.

Серый чугун имеет пластинчатые графитные включения. Струк­тура серого чугуна схематически изображена на рис. 14,а. Получают серый чугун путем первичной кристаллизации из жидкого сплава.

На графитизацию (процесс выделения графита) влияют скорость охлаждения и химический состав чугуна. При быстром охлаждении графитизации не происходит и получается белый чугун. По мере уменьшения скорости охлаждения получаются, соответственно, пер­литный, феррито-перлитный и ферритный серые чугуны. Способ­ствуют графитизации углерод и кремний.

Кремния содержится в чу­гуне от 0,5 до 5 %. Иногда его вводят специально. Марганец и сера препятствуют графитизации. Кроме того, сера ухудшает механичес­кие и литейные свойства. Фосфор не влияет на графитизацию, но улучшает литейные свойства.

Механические свойства серого чугуна зависят от количества и размера графитных включений. По сравнению с металлической ос­новой графит имеет низкую прочность. Поэтому графитные включе­ния можно считать нарушениями сплошности, ослабляющими ме­таллическую основу. Так как пластинчатые включения наиболее сильно ослабляют металлическую основу, серый чугун имеет наибо­лее низкие характеристики, как прочности, так и пластичности сре­ди всех машиностроительных чугунов. Уменьшение размера графит­ных включений улучшает механические свойства. Измельчению графитных включений способствует кремний.

Маркируется серый чугун буквами СЧ и числом, показывающем предел прочности в десятых долях мегапаскаля. Так, чугун СЧ 35 имеет σв=350 МПа. Имеются следующие марки серых чугунов: СЧ 10, СЧ 15, СЧ 20. ..., СЧ 45.

Высокопрочный чугун имеет шаровидные графитные включе­ния. Структура высокопрочного чугуна изображена на рис. 14,б. Получают высокопрочный чугун добавкой в жидкий чугун неболь­шого количества щелочных или щелочноземельных металлов, кото­рые округляют графитные включения в чугуне, что объясняется уве­личением поверхностного натяжения графита. Чаще всего для этой цели применяют магний в количестве 0,03…0,07 %. По содержанию других элементов высокопрочный чугун не отличается от серого.

Шаровидные графитные включения в наименьшей степени ос­лабляют металлическую основу. Именно поэтому высокопрочный чугун имеет более высокие механические свойства, чем серый. При этом он сохраняет хорошие литейные свойства, обрабатываемость резанием, способность гасить вибрации и т. д.

Маркируется высокопрочный чугун буквами ВЧ и цифрами, показывающими предел прочности и десятых долях мегапаскаля. Например, чугун ВЧ 60 имеет σв = 600 МПа. Существуют следующие марки высокопрочных чугунов: ВЧ 35, ВЧ 40, ВЧ 45, ВЧ 50, ВЧ 60, ВЧ 70, ВЧ 80, ВЧ 100. Применяются высокопрочные чугуны для изготовления ответственных деталей — зубчатых колес, валов и др.

Ковкий чугун имеет хлопьевидные графитные включения (рис. 14, в). Его получают из белого чугуна путем графитизирующего отжига, ко­торый заключается в длительной (до 2 суток) выдержке при темпера­туре 950…970 °С. Если после этого чугун охладить, то получается ков­кий перлитный чугун, металлическая основа которого состоит из перлита и небольшого количества (до 20 %) феррита. Такой чугун называют также светлосердечным. Если в области эвтектоидного пре­вращения (720…760 °С) проводить очень медленное охлаждение или даже дать выдержку, то получится ковкий ферритный чугун, металли­ческая основа которого состоит из феррита и очень небольшого ко­личества перлита (до 10 %). Этот чугун называют черносердечным, так как он содержит сравнительно много графита.

Маркируется ковкий чугун буквами КЧ и двумя числами, пока­зывающими предел прочности в десятых долях мегапаскаля и от­носительное удлинение в %. Так, чугун КЧ 45-7 имеет σв = 450 МПа и δ= 7%. Ферритные ковкие чугуны (КЧ 33-8, КЧ 37-12) имеют более высокую пластичность, а перлитные (КЧ 50-4, КЧ 60-3) более высокую прочность. Применяют ковкий чугун для деталей неболь­шого сечения, работающих при ударных и вибрационных нагрузках.


4. ТЕРМИЧЕСКАЯ И ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ

Термической обработкой называется совокупность операций нагрева, выдержки и охлаждения твердых металлических сплавов с целью получения заданных свойств за счет изменения внутреннего строения и структуры. Различают следующие виды термической об­работки: отжиг, закалка и отпуск.


4.1. Отжиг


Отжигом стали называется вид термической обработки, заклю­чающийся в ее нагреве до определенной температуры, выдержке при этой температуре и медленном охлаждении. Цели отжига — сниже­ние твердости и улучшение обрабатываемости стали, изменение формы и величины зерна, выравнивание химического состава, сня­тие внутренних напряжений. Существуют различные виды отжига: пол­ный, неполный, диффузионный, ре кристаллизационный, низкий, отжиг на зернистый перлит, нормализация. Температуры нагрева стали для ряда видов отжига связаны с положением линий диаграммы Fе-Fе3С. Низкая скорость охлаждения обычно достигается при остывании стали вместе с печью.

Полный отжиг применяется для доэвтектоидных сталей. Нагрев стали для полного отжига осуществляется на 30…50 °С выше линии GS диаграммы Fе-Fе3С (рис. 15). При этом происходит полная пере­кристаллизация стали и уменьшение величины зерна. Исходная струк­тура из крупных зерен феррита и перлита при нагреве превращается в аустенитную, а затем при медленном охлаждении в структуру из мелких зерен феррита и перлита. Повышение температуры нагрева привело бы к росту зерна. При полном отжиге снижается твердость и прочность стали, а пластичность повышается.

При неполном отжиге нагрев производится на 30…50 °С выше линии РSК диаграммы Fе-Fе3С (рис. 15). Он производится, если ис­ходная структура не очень крупнозерниста или не надо изменить расположение ферритной (в доэвтектоидных сталях) или цементитной (в заэвтектоидных сталях) составляющей. При этом происходит лишь частичная перекристаллизация — только перлитной составля­ющей стали.



Диффузионный отжиг (гомогенизация) заключается в нагреве ста­ли до 1000…1100 °С, длительной выдержке (10…15 часов) при этой температуре и последующем медленном охлаждении. В результате диффузионного отжига происходит выравнивание неоднородности стали по химическому составу. Благодаря высокой температуре на­грева и продолжительной выдержке получается крупнозернистая струк­тура, которая может быть устранена последующим полным отжигом.

Рекристаллизационный отжиг предназначен для снятия наклепа и внутренних напряжений после холодной деформации и подготов­ки структуры к дальнейшему деформированию. Нагрев необходимо осуществлять выше температуры рекристаллизации, которая для железа составляет 450 °С (см. раздел 2.1.).Обычно для повышения скорости рекристаллизационных процессов применяют значительно более высокие температуры, которые, однако, должны быть ниже линии РSК диаграммы Fе-Fе3С. Поэтому температура нагрева для рекристаллизационного отжига составляет 650…700 °С. В результате рекристаллизационного отжига образуется однородная мелкозерни­стая структура с небольшой твердостью и значительной вязкостью.

Низкий отжиг применяется в тех случаях, когда структура стали удовлетворительна и необходимо только снять внутренние напряже­ния, возникающие при кристаллизации или после механической обработки. В этом случае сталь нагревают значительно ниже линии РSК диаграммы Fе-Fе3С (200…600 °С).

Отжиг на зернистый перлит (сфероидизацию) применяют для сталей близких к эвтектоидному составу или для заэвтектоидных. Такой отжиг осуществляют маятниковым способом (температуру несколько раз изменяют вблизи линии РSК, то перегревая выше нее на 30…50 °С, то охлаждая ниже на 30…50°С) или путем длительной выдержки (5-6 часов) при температуре несколько выше линии РSК и последующего медленного охлаждения. После такого отжига це­ментит, обычно присутствующий в структуре в виде пластин, приоб­ретает зернистую форму. Сталь со структурой зернистого перлита обладает большей пластичностью, меньшей твердостью и прочнос­тью по сравнению с пластинчатым перлитом. Отжиг на зернистый перлит применяется для подготовки сталей к закалке или для улуч­шения их обрабатываемости резанием.

Нормализация состоит из нагрева стали на 30…50 °С выше линии GSE диаграммы Fе-Fе3С (рис. 15), выдержки при этой температуре и последующего охлаждения на воздухе. Более быстрое охлаждение по сравнению с обычным отжигом приводит к более мелкозернис­той структуре. Нормализация — более дешевая термическая опера­ция, чем отжиг, так как печи используют только для нагрева и вы­держки. Для низкоуглеродистых сталей (до 0,3% С) разница в свойствах между нормализованным и отожженным состоянием прак­тически отсутствует и эти стали лучше подвергать нормализации. При большем содержании углерода нормализованная сталь обладает большей твердостью и меньшей вязкостью, чем отожженная. Иногда нормализацию считают самостоятельной разновидностью термичес­кой обработки, а не видом отжига.


4.2. Закалка и отпуск стали


Превращения в стали при охлаждении. При медленном охлаж­дении стали образуются структуры, соответствующие диаграмме Fе-Fе3C. Вначале происходит выделение феррита (в доэвтектоидных сталях) или вторичного цементита (в заэвтектоидных сталях), а затем происходит превращение аустенита в перлит. Это превращение заключается в распаде аустенита на феррит, почти не содержащий углерода и цементит, содержащий 6,67 % С. Поэтому превращение сопровождается диффузией, перераспределением углерода. Диффузи­онные процессы происходят в течение некоторого времени, причем скорость диффузии резко падает с понижением температуры. Обычно изучают изотермическое превращение аустенита (проис­ходящее при выдержке при постоянной температуре) для эвтектоидной стали. Влияние температуры на скорость и характер превращения пред­ставляют в виде диаграммы изотермического превращения аустенита (рис. 16).

Диаграмма строится в координатах температура — логарифм времени. Выше температуры 72 °С на диаграмме находится область устойчивою аустенита. Ниже этой температуры аустенит является неустойчивым и превращается в другие структуры. Первая С - образ­ная кривая на диаграмме соответствует началу превращения аустени­та, а вторая — его завершению. При небольшом переохлаждении — приблизительно до 550 °С происходит упомянутое выше диффузион­ное перлитное превращение.

В зависимости от степени переохлаж­дения образуются структуры, называемые перлит, сорбит и трос­тит. Это структуры одного типа — механические смеси феррита и цементита, имеющие пластинчатое строение. Отличаются они лишь степенью дисперсности, т. е. толщиной пластинок феррита и цемен­тита. Наиболее крупнодисперсная структура — перлит, наиболее мелкодисперсная — тростит. При переохлаждении аустенита при­близительно ниже 240 °С скорость диффузии падает почти до нуля и происходит бездиффузионное мартенситное превращение. Образу­ется мартенсит — пересыщенный твердый раствор углерода в α - железе. Мартенсит имеет ту же концентрацию углерода, что и ис­ходный аустенит. Из-за высокой пересыщенности углеродом решетка мартенсита сильно искажается, благодаря чему мартенсит имеет высокую твердость (до НRС 65). Горизонтальная линия Мн диаграм­мы соответствует началу .превращения аустенита в мартенсит, а ли­ния Мк — завершению этого процесса.

В диапазоне температур от мартенситного до перлитного пре­вращения происходит промежуточное превращение и образуется структура, называемая бейнит.

Закалка — это вид термической обработки, состоящий в нагре­ве стали до определенной температуры, выдержке и последующем быстром охлаждении. В результате закалки повышается твердость и прочность, но снижается вязкость и пластичность. Нагрев стали производится на 30…50 °С выше линии GSK диаграммы Fе-Fе3С. В доэвтектоидных сталях нагрев выше линии GS необходим для того, чтобы после закалки в структуре не было мягких ферритных включений. Для заэвтектоидных сталей применяется нагрев выше линии SК, так как присутствие цементита не снижает твердость стали.

Обычно в результате закалки образуется мартенситная структура. Поэтому охлаждать сталь следует с такой скоростью, чтобы кривая охлаждения не пересекала С- образные кривые диаграммы изотер­мического превращения аустенита (рис. 16). Для достижения высо­кой скорости охлаждения закаливаемые детали погружают в воду (для углеродистых сталей) или минеральные масла (для легирован­ных сталей).

Способность стали закаливаться на мартенсит называется зака­ливаемостью. Она характеризуется значением твердости, приобре­таемой сталью после закалки и зависит от содержания углерода. Стали с низким содержанием углерода (до 0,3 %) практически не закаливаются и закалка для них не применяется.

Прокаливаемостью называется глубина проникновения закален­ной зоны. Отсутствие сквозной прокаливаемости объясняется тем, что при охлаждении сердцевина остывает медленнее, чем поверхность. Прокаливаемость характеризует критический диаметр Dкр, т. е. максимальный диаметр детали цилиндрического сечения, кото­рая прокаливается насквозь в данном охладителе.

Отпуск стали — это вид термической обработки, следующий за закалкой и заключающийся в нагреве стали до определенной темпера­туры (ниже линии РSК), выдержке и охлаждении. Цель отпуска — получение более равновесной по сравнению с мартенситом структу­ры, снятие внутренних напряжений, повышение вязкости и пластич­ности. Различают низкий, средний и высокий отпуск.

Низкий отпуск проводится при температуре 150…200 °С. В ре­зультате снимаются внутренние напряжения, происходит некоторое увеличение пластичности и вязкости без заметного снижения твер­дости. Образуется структура мартенсит отпуска. Низкому отпуску подвергают режущий и мерительный инструмент, а также детали, которые должны обладать высокой твердостью и износостойкостью.

При среднем отпуске производится нагрев до 350…450 °С. При этом происходит некоторое снижение твердости при значительном увеличении предела упругости и улучшении сопротивляемости дей­ствию ударных нагрузок. Структура стали представляет собой трос­тит отпуска, который имеет зернистое, а не пластинчатое строение. Применяется для пружин, рессор, ударного инструмента.

Высокий отпуск проводится при 550…650 °С. В результате твер­дость и прочность снижаются значительно, но сильно возрастают вязкость и пластичность и получается оптимальное для конструкци­онных сталей сочетание механических свойств. Структура стали — сорбит отпуска с зернистым строением цементита. Применяется для деталей, подвергающихся действию высоких нагрузок. Термическая обработка, состоящая из закалки и высокого отпуска, называется улучшением. Она является основным видом обработки конструкци­онных сталей.


4.3 Поверхностное упрочнение стали


Поверхностная закалка состоит в нагреве поверхностного слоя стальных деталей до аустенитного состояния и быстрого охлажде­ния с целью получения высокой твердости и прочности в поверхно­стном слое в сочетании с вязкой сердцевиной. Существуют различ­ные способы нагрева поверхности под закалку — в расплавленных металлах или солях, пламенем газовой горелки, лазерным излучени­ем, током высокой частоты. Последний способ получил наибольшее распространение в промышленности.

При нагреве токами высокой частоты закаливаемую деталь по­мещают внутри индуктора, представляющего собой медные трубки с циркулирующей внутри для охлаждения водой. Форма индуктора соответствует внешней форме детали. Через индуктор пропускают электрический ток (частотой 500 Гц…10 МГц). При этом возникает электромагнитное поле, которое индуцирует вихревые токи, нагрева­ющие поверхность детали. Глубина нагретого слоя уменьшается с уве­личением частоты тока и увеличивается с возрастанием продолжи­тельности нагрева. Регулируя частоту и продолжительность, можно получить необходимую глубину закаленного слоя, находящуюся в пределах 1…10 мм.

Преимуществами закалки токами высокой частоты являются регулируемая глубина закаленного слоя, высокая производительность (нагрев одной детали длится 10 с), возможность автоматизации, от­сутствие окалинообразования. Недостаток — высокая стоимость индуктора, который является индивидуальным для каждой детали. Поэтому этот вид закалки применим, в основном, к крупносерийно­му и массовому производству.

Перспективный метод поверхностной закалки стальных деталей сложной формы — лазерная обработка. Благодаря высокой плотно­сти энергии в луче лазера возможен быстрый нагрев очень тонкого слоя металла. Последующий быстрый отвод тепла в объем металла приводит к закалке поверхностного слоя с приданием ему высокой твердости и износостойкости.

Химико-термическая обработка — это процесс изменения хи­мического состава, структуры и свойств поверхности стальных дета­лей за счет насыщения ее различными химическими элементами. При этом достигается значительное повышение твердости и износо­стойкости поверхности деталей при сохранении вязкой сердцевины. К видам химико-термической обработки относятся цементация, азо­тирование, цианирование и др.

Цементация — это процесс насыщения поверхностного слоя стальных деталей углеродом. Цементация производится путем нагрева стальных деталей при 880…950 °С в углеродосодержащей среде, называемой карбюризатором. Различают два основных вида цемен­тации — газовую и твердую. Газовая цементация проводится в газе, содержащем метан СН4 и оксид углерода СО. Твердая цементация проводится в стальных ящиках, куда укладываются детали впере­мешку с карбюризатором. Карбюризатором служит порошок дре­весного угля с добавкой солей Na2СО3 или ВаСО3.

Цементации подвергают стали с низким содержанием углеро­да (0,1…0,3 %). В результате на поверхности концентрация углерода возрастает до 1,0…1,2 %. Толщина цементованного слоя составляет 1…2,5 мм.

Цементацией достигается только выгодное распределение угле­рода по сечению детали, Высокая твердость и износостойкость по­верхности получается после закалки, которая обязательно прово­дится после цементации. Затем следует низкий отпуск. После этого твердость поверхности составляет HRC 60.

Азотированием называется процесс насыщения поверхности ста­ли азотом. При этом повышаются не только твердость и износостой­кость, но и коррозионная стойкость. Проводится азотирование при температуре 500…600 °С в среде аммиака NН3 в течение длительного времени (до 60 ч.) Аммиак при высокой температуре разлагается с образованием активного атомарного азота, который и взаимодей­ствует с металлом.

Твердость стали повышается за счет образования нитридов легирующих элементов. Поэтому азотированию подверга­ют только легированные стали. Наиболее сильно повышают твер­дость такие легирующие элементы, как хром, молибден, алюминий, ванадий. Глубина азотированного слоя составляет 0,3 … 0,6 мм, твер­дость поверхностного слоя по Виккерсу доходит до НV 1200 (при цементации НV 900).

К преимуществам азотирования перед цементацией следует отне­сти отсутствие необходимости в дополнительной термообработке, более высокую твердость и износостойкость, высокую коррозионную стой­кость поверхности. Недостатками являются низкая скорость процесса и необходимость применения дорогих легированных сталей.

Цианирование (нитроцементация) — это процесс одновременно­го насыщения поверхности стали углеродом и азотом. Проводится цианирование в расплавах цианистых солей NaСН или KCH или в газовой среде, содержащей смесь метана СН4 и аммиака NH3. Разли­чают низкотемпературное и высокотемпературное цианирование.

Низкотемпературное цианирование проводится при температуре 500…600 °С. При этом преобладает насыщение азотом. Глубина цианированного слоя составляет 0,2…0,5 мм, твердость поверхности — НV 1000.

При высокотемпературном цианировании температура состав­ляет 800…950 °С. Преобладает насыщение углеродом. Глубина повер­хностного слоя составляет 0,6…2,0 мм. После высокотемператур­ного цианирования следует закалка с низким отпуском. Твердость после термообработки составляет HRC 60.

Поверхностное упрочнение пластическим деформированием ос­новано на способности стали к наклепу при пластической деформации (см. раздел 2.1). Наиболее распространенными способами такого упрочнения поверхности является дробеструйная обработка и обра­ботка поверхности роликами или шариками.

При дробеструйной обработке на поверхность детали из специ­альных дробеметов направляется поток стальной или чугунной дро­би малого диаметра (0,5…1,5 мм). Удары концентрируются на весьма малых поверхностях, поэтому возникают очень большие местные давления. В результате повышается твердость и износостойкость обработанной поверхности.

Кроме того, сглаживаются мелкие по­верхностные дефекты. Глубина упрочненного слоя при дробеструй­ной обработке составляет около 0,7 мм.

Обкатка роликами производится с помощью специальных при­способлений на токарных станках. Помимо упрочнения, обкатка снижает шероховатость обрабатываемой поверхности. Глубина уп­рочненного слоя доходит до 15 мм.


5. ЛЕГИРОВАННЫЕ СТАЛИ


Легированной называют сталь, содержащую специально введенные в нее с целью изменения строения и свойств легирующие элементы.

Легированные стали имеют целый ряд преимуществ перед углеро­дистыми. Они имеют более высокие механические свойства, прежде всего, прочность. Легированные стали обеспечивают большую прокаливаемость, а также возможность получения структуры мартенсита при закалке в масле, что уменьшает опасность появления трещин и короб­ления деталей. С помощью легирования можно придать стали различ­ные специальные свойства (коррозионную стойкость, жаростойкость, жаропрочность, износостойкость, магнитные и электрические свойства).

Классификация сталей по различным признакам была рассмот­рена ранее (см. раздел 3.2) . Отметим только, что стали обыкновен­ного качества, могут быть только углеродистыми, т.е. легированные стали, как минимум, являются качественными.

Маркируются легированные стали с помощью цифр и букв, ука­зывающих примерный химический состав стали. Первые цифры в марке показывают среднее содержание углерода в сотых долях про­цента. Далее показывается содержание легирующих элементов. Каж­дый элемент обозначается своей буквой: Н — никель, Г — марга­нец, Ц — цирконий, Т — титан, X — хром, Д — медь, С — кремний, А — азот, К — кобальт, Р — бор, П — фосфор, Ф — ванадий, М — молибден, Б — ниобий, В — вольфрам, Ю — алюминий. Цифры, идущие после буквы, указывают примерное содержание данного ле­гирующего элемента в процентах. При содержании элемента менее 1% цифра отсутствует. Например, сталь 12Х18Н10Т содержит при­близительно 0,12 % углерода, 18 % хрома, 10 % никеля, менее 1 % титана. Для некоторых групп сталей применяют другую маркировку, которая будет указана при рассмотрении этих сталей.


5.1. Конструкционные стали


Конструкционные стали идут на изготовление деталей машин, конструкций и сооружений. Они должны обеспечивать длительную и надежную работу деталей и конструкций в условиях эксплуатации. Поэтому основное требование к конструкционным сталям — комплекс высоких механических свойств.

Строительные стали содержат малые количества углерода (0,1…0,3%). Это объясняется тем, что детали строительных конструкции обычно соединяются сваркой. Низкое содержание углерода обеспечивает хорошую свариваемость.

В качестве строительных используются углеродистые стали Ст2 и СтЗ, имеющие предел текучести σ0.2=240 МПа. В низколегированных строительных сталях при содержании около 1,5 % Мn и 0,7%Si предел текучести увеличивается до 360 МПа. К этим сталям относятся 14Г2, 17ГС, 14ХГС. Дополнительное легирование небольшими количествами ванадия и ниобия (до 0,1 %) повышает предел текучести до 450 МПа за счет уменьшения величины зерна. К сталям такого типа относятся 14Г2АФ, 17Г2АФБ.

Приведенные стали применяют для строительных конструкций, армирования железобетона, магистральных нефтепроводов и газопроводов.

Цементуемые стали содержат 0,1…0,3 % углерода. Они подверга­ются цементации, закалке и низкому отпуску. После этой обработки твердость поверхности составляет HRC 60, а сердцевины HRC 15 … 40. Упрочнение сердцевины в этих статях тем сильнее, чем больше содержание легирующих элементов. В зависимости от степени уп­рочнения сердцевины цементуемые стали можно разделить на три группы.

К сталям с неупрочняемой сердцевиной относятся углеродистые цементуемые стали 10, 15, 20. Их сердцевина имеет феррито-пер-литную структуру. Эти стали имеют высокую износостойкость, но малую прочность (σв= 400…500 МПа). Поэтому они применяются для малоответственных деталей небольших размеров.

К сталям со слабо упрочняемой сердцевиной относятся низколегированные стали 15Х, 15ХР, 20ХН и др. Сердцевина имеет структуру бейнит. Эти стали имеют повышенную прочность (σв = 750…850 МПа).

К сталям с сильно упрочняемой сердцевиной относятся, стали 20ХГР, 18ХГТ, ЗОХГТ, 12ХНЗ, 18Х2Н4В и др. Серцевина имеет мартенситную структуру. Стали этой группы имеют высокую прочность (σв = 1200…1600 МПа) и применяются для крупных деталей, испытывающих значительные нагрузки.

Улучшаемые стали содержат 0,3…0,5 % углерода и небольшое количество легирующих элементов (до 3…5 %). Эти стали подвергаются улучшению, состоящему из закалки в масле и высокого отпуска. После термообработки имеют структуру сорбита. Механические свой­ства разных марок улучшаемой стали в случае сквозной прокаливаемости близки (σв = 900…1200 МПа). Поэтому прокаливаемость оп­ределяет выбор стали. Чем больше легирующих элементов, тем выше прокаливаемость. Следовательно, чем больше сечение детали, тем более легированную сталь следует использовать. По прокаливаем ос­ти улучшаемые стали могут быть условно разбиты на пять групп.

В первую труппу входят углеродистые стали 35, 40, 45, имеющие критический диаметр Dкр= 10 мм (см. раздел 4.2.). Эти стали под­вергаются нормализации вместо улучшения.

Ко второй группе относятся стали, легированные хромом ЗОХ, 40Х. Для них критический диаметр составляет Dкр= 15…20 мм.

Третью группу составляют хромистые стали, дополнительно ле­гированные еще одним двумя элементами (кроме никеля) ЗОХМ, 40ХГ, ЗОХГС и др. Для этих сталей Dкр= 20…30 мм.

Четвертая группа представлена хромоникелевыми сталями, со­держащими около 1% никеля: 40ХН, 40ХНМ и др. Их критический диаметр Dкр= 40 мм.

В пятую группу входят стали, легированные рядом элементов, причем содержание никеля доходит до 3…4 %: 38ХНЗ, 38ХНЗМФ (Dкр= 100 мм). Это лучшие марки улучшаемых сталей, хотя они сравнительно дороги.

Высокопрочные стали. Новейшая техника предъявляет высо­кие требования к прочности стали ( σв = 1500…2500 МПа). Этим тре­бованиям соответствуют мартенитностареющие стали сочетаю­щие высокую прочность с достаточной вязкостью и пластичностью. Они представляют собой практически безуглеродистые (до 0,03 % С) сплавы железа с никелем (17…26 % Ni), дополнительно легированные титаном, алюминием, молибденом, ниобием и кобальтом.

Широкое распространение получила сталь Н18К9М5Т. Она подвергается за­калке на воздухе с 800…850 °С. Высокую прочность маргенситностареюшие стали получают в результате старения, представляющего собой отпуск, производимый при температуре 450…500 °С. В резуль­тате такой термообработки сталь Н18К9М5Т имеет предел прочно­сти σ в = 2000 МПа.

Кроме упомянутой выше стали нашли применение стали Н12К8МЗГ2, МЮХ11М2Т, Н12К8М4Г2 и другие. Мартенситностаре-ющие стали применяют в авиационной промышленности, в ракетной технике, судостроении и т. д. Они обладают хорошей свариваемостью и обрабатываемостью. Эти стали являются достаточно дорогостоящими.

Пружинные стали. В пружинах и рессорах используются толь ко упругие свойства стали. Возникновение пластической деформа­ции в них недопустимо, поэтому высоких требований к пластичнос­ти и вязкости не предъявляется. Основное требование к пружинной стали — высокий предел упругости σy(см. раздел 1.2). Хорошие упругие свойства стали достигаются при повышенном содержании углерода (0,5…0,7 %) и применении термообработки, состоящей из закалки и среднего отпуска при температуре 350…450 °С. После та­кой термообработки сталь имеет троститную структуру.

Углеродистые пружинные стали (65, 70, 75) вследствие низкой прокаливаемости используются для пружин небольшого сечения. Они могут работать при температуре до 100 °С. Стали, легированные кремнием и марганцем (60С2, 60СГ и др.) предназначены для больших по размеру упругих элементов и обеспечивают их длительную и надежную работу. Для ответственных пружин применяют высокока­чественные стали легированные хромом и ванадием (50ХФА. 50ХГФА). Эти стали могут работать при температуре до 300 °С. Из них изготавливают, например, рессоры легковых автомобилей.

Износостойкие стали способны сопротивляться процессу изна­шивания. Изнашивание — это процесс постепенного разрушения поверхностных слоев трущихся деталей, который приводит к умень­шению их размеров (износу). Износостойкие стали можно разделить на три группы.

В первую группу входят стали, износостойкость которых дости­гается высокой твердостью поверхности. Они подвергаются закалке и низкому отпуску или химико-термической обработке.

Имеют структуру мартенсита или мартенсита с карбидными включениями. К этой группе относятся подшипниковые стали, из которых изготавливают­ся шарики и ролики подшипников качения. Они маркируются бук­вами ШХ и цифрой показывающей содержание хрома в десятых долях процента, содержат также марганец и кремний (ШХ4, ШХ15, ШХ15СГ, ШХ20СГ). Содержание углерода в них около 1 %.

Ко второй группе относятся стали, износостойкость которых достигается смазывающим действием графита. Эти стали имеют в структуре графитные включения, которые в процессе изнашивания выходят на поверхность и выполняют роль сухой смазки. Эти стали имеют высокое содержание углерода ( ~1, %) и кремния (~1 %), что повышает способность к графитизации. Эти стали подвергаются графитизирующему отжигу, который аналогичен отжигу ковкого чугуна (см. раздел З.З.).

Третью группу составляют стали износостойкость, которых дос­тигается повышенной склонностью к наклепу. Это, прежде всего, сталь 110Г13. Она имеет невысокую твердость, которая при дей­ствии давления и ударов резко повышается, за счет чего и достигает­ся износостойкость. Эта сталь подвергается закалке от 1100 °С в воде, после чего получает аустенитную структуру. Плохо обрабаты­вается резанием, поэтому применяется в литом состоянии.


5.2. Стали со специальными свойствами


Коррозионностойкие (нержавеющие) стали. Коррозией называется разрушение металла под действием внешней агрессивной среды в результате ее химического или электрохимического воздействия. Раз­личают химическую коррозию, обусловленную воздействием на металл сухих газов и неэлектролитов (например, нефтепродуктов) и электро­химическую, возникающую под действием жидких электролитов или влажного воздуха. По характеру коррозионного разрушения различают сплошную и местную коррозию. Сплошная коррозия захватывает всю поверхность металла. Ее делят на равномерную и неравномерную в зависимости от того, одинаковая ли глубина коррозионного разруше­ния на разных участках. При местной коррозии поражения локальны. В зависимости от степени локализации различают пятнистую, язвен­ную, точечную, межкристаллитную и др. виды местной коррозии.

Самый надежный способ защиты от коррозии — применение коррозионностойких сталей. Коррозионная стойкость достигается при введении в сталь элементов, образующих на ее поверхности тонкие и прочные оксидные пленки. Наилучший из этих элементов — хром. При введении в сталь 12…14 % хрома она становится устойчивой про­тив коррозии в атмосфере, воде, ряде кислот, щелочей и солей. Ста­ли, содержащие меньшее количество хрома, подвержены коррозии точно так же, как и углеродистые стали. В технике применяют хроми­стые и хромоникелевые Коррозионностойкие стали.

Хромистые Коррозионностойкие стали могут содержать 13, 17 или 25…27 % хрома. Стали марок 08X13, 12X13, 20X13 подвергают­ся закалке от 1000 °С и отпуску при 600…700 °С. Их применяют для изготовления деталей с повышенной пластичностью, работающих в слабоагрессивных средах. Стали 30X13, 40X13 подвергаются закал­ке и отпуску при 200…300°С. Из них изготавливают режущий, мери­тельный и хирургическим инструмент.

Стали 12X17, 15X28 имеют более высокую коррозионную стой­кость. Подвергаются отжигу при температуре 700…780 °С.Используются для оборудования заводов легкой и пищевой промышленности, труб, работающих в агрессивных средах, для кухонной посуды.

Хромоникелевые стали обычно содержат 18 % хрома и 9…12 % никеля (04Х18Н10, 12Х18Н10Т, 12Х18Н12Т и др.). Они имеют более высокую коррозионную стойкость по сравнению с хромистыми сталями, лучшие механические свойства, хорошо свариваются. Эти стали имеют аустенитную структуру. Их термообработка состоит из закалки от температуры 1100…1150 °С в воде без отпуска.

Хромоникелевые стали склонны к межкристаллитной коррозии. Она быстро распространяется по границам зерен без заметных вне­шних признаков. Это происходит вследствие образования карбидов хрома по границам зерен, что приводит к уменьшению содержания хрома в поверхностном слое зерна: Чтобы карбиды хрома не обра­зовывались, надо либо использовать стали с пониженным содержа­нием углерода (до 0,04 %), либо дополнительно легировать сталь ти­таном, связывающим углерод в карбид титана.

Используются хромоникелевые стали в пищевой и химической промышленности, в холодильной технике. Поскольку никель доро­гостоящий элемент, иногда его частично заменяют марганцем и ис­пользуют сталь-10Х14П4Н4Т.

Другие методы защиты от коррозии. Распространенным средством защиты от коррозии является нанесение на защищаемый металл раз­личных покрытий. Металлические покрытия наносятся различным способами. При погружении в расплавленный металл поверхность изделия покрывается тонким и плотным слоем, затвердевающим после извлечения изделия. Этот способ применяется для нанесения покрытий цинком, оловом, свинцом и алюминием, температура плавления которых ниже, чем у защищаемого металла. При диффузионной металлизации изделие засыпают порошками алюминия, хрома, цинка и выдерживают при высокой температуре. При напылении поверхность изделия покрывают слоем расплавленного металла (цинка, алюминия, кадмия I др.) с помощью воздушной струи. При плакировании защищаемый металл подвергают совместной прокатке с защищающим (алюминием, титаном, нержавеющей сталью).

Гальванический способ нанесения покрытий основан па осаждении под действием электрического тока тонкого слоя защитного металла (хрома, никеля, меди, кадмия) при погружении защищаемого изделия в раствор электролита.

Неметаллические покрытия подразделяются на лакокрасочные и эмалевые, смоляные, покрытия пленочными полимерными материалами, резиной, смазочными материалами, керамические покрытия. Покрытия, получаемые химической и электрохимической обработкой, превращают поверхностный слой изделия в химическое соединение, образующее сплошную защитную пленку. Наибольшее распространение имеют оксидные и фосфатные защитные пленки.

Протекторная защита основана на подсоединении к защищае­мому изделию протектора с более отрицательным электрохимичес­ким потенциалом. В агрессивной среде протектор будет являться анодом, и разрушаться, а защищаемое изделие — катодом и разру­шаться не будет.

Для уменьшения агрессивности окружающей среды в нее, вво­дят добавки, называемые ингибиторами коррозии. Они значитель­но снижают скорость коррозии. Условием использования ингиби­торов является эксплуатация изделия в замкнутой среде постоянного состава.

Жаростойкие и жаропрочные стали. Под жаростойкими сталя­ми понимают стали, обладающие стойкостью против химического разрушения поверхности при высокой температуре (свыше 550 °С).

При нагреве стали происходит окисление поверхности и образуется оксидная пленка (окалина). Дальнейшее окисление определяется ско­ростью проникновения атомов кислорода через эту пленку. Через пленку оксидов железа они проникают очень легко. Для повышения жаростойкости сталь легируют элементами, образующими плотную пленку, через которую атомы кислорода не проникают. Эти элемен­ты — хром, алюминий, кремний. Так как алюминий и кремний по­вышают хрупкость стали, чаще всего применяют хром. Чем больше его содержание, тем более жаропрочной является сталь. Сталь 15X5 выдерживает до 600 °С, 40Х9С2 — до 800 °С, рассмотренные ранее 12X17 — до 900°С и 15X28 — до 1050 °С.

Жаропрочные материалы способны противостоять механическим нагрузкам при высоких температурах. Жаропрочные стали класси­фицируются по структуре.

Перлитные стали содержат малое количество углерода, легиру­ются хромом, молибденом, ванадием (12ХМ, 12Х1МФ). Используют для изготовления труб, паропроводов и др. деталей, длительно рабо­тающих при температуре 500…550 °С.

Мартенситные стали в большом количестве легированы хро­мом (15X11МФ, 15Х12ВНМФ). Они используются для деталей энер­гетического оборудования, длительно работающего при температу­ре 600…620 °С. Особую группу мартенситных сталей составляют сильхромы, применяемые для клапанов двигателей внутреннего сгорания. Они дополнительно легированы кремнием (40Х9С2, 40Х10С2М).

Аустенитные стали, легированы большим количеством хрома и никеля, а также другими элементами (09Х14Н16Б, 09Х14Н19В2БР). Из этих сталей изготавливают детали газовых турбин, работающих при температуре 600…700 °С.

Для работы при более высоких температурах (700…900 °С) слу­жат сплавы на основе никеля, называемые нимониками. Примером нимоника является сплав ХН77ТЮР, содержащий кроме никеля приблизительно 20 % Сг, 2,5 % Т1, 1 % А1.

Для работы при температурах свыше 1000 °С используют тугоп­лавкие металлы и их сплавы. Это — хром, ниобий, молибден, тантал, вольфрам. Они используются в атомной энергетике и в косми­ческой технике.

Температуры 1500…1700°С выдерживают жаропрочные керами­ческие материалы на основе карбида и нитрида кремния.


5.3. Инструментальные стали и сплавы


По назначению инструментальные стали делятся на стали для ре­жущего, измерительного и штампового инструмента. Кроме сталей, для изготовления режущего инструмента применяются металлокерамические твердые сплавы и минералокерамические материалы. Режу­щий инструмент работает в сложных условиях, подвержен интенсив­ному износу, при работе часто разогревается. Поэтому материал для изготовления режущего инструмента должен обладать высокой твер­достью, износостойкостью и теплостойкостью. Теплостойкость — это способность сохранять высокую твердость и режущие свойства при длительном нагреве.

Углеродистые инструментальные стали содержат 0,7…1,3 % уг­лерода. Они маркируются буквой У и цифрой, показывающих со­держание углерода в десятых долях процента (У7, У8, У9, ..., У13). Буква А в конце марки показывает, что сталь высококачественная (У7А, У8А, ..., У13А). Предварительная термообработка этих сталей — отжиг на зернистый перлит, окончательная — закалка в воде или растворе соли и низкий отпуск. После этого структура стали представляет со­бой мартенсит с включениями зернистого цементита. Твердость ле­жит в интервале HRC 56…64.

Для углеродистых инструментальных сталей характерны низкая теплостойкость (до 200 °С) и низкая прокаливаемость (до 10…12 мм). Однако вязкая незакаленная сердцевина повышает устойчивость инструмента против поломок при вибрациях и ударах.

Кроме того, эти стали достаточно дешевы и в незакаленном состоянии сами хо­рошо обрабатываются.

Стали У7…У9 применяются дня изготовления инструмента, ис­пытывающего ударные нагрузки (зубила, молотки, топоры). Стали У 10…У 13 идут на изготовление инструмента, обладающего высокой твердостью (напильники, хирургический инструмент). Стали У8…У12 применяются также для измерительного инструмента.

Низколегированные инструментальные стали содержат в сум­ме около 1…3 % легирующих элементов. Они обладают повышенной по сравнению с углеродистыми сталями прокаливаемостью, но теп­лостойкость их невелика — до 400 °С. Основные легирующие эле­менты — хром, кремний, вольфрам, ванадий.

Маркируются эти ста­ли так же, как конструкционные, но содержание углерода дается в десятых долях процента. Если первая цифра в марке отсутствует, то содержание углерода превышает 1 %. Например 9ХС, ХВГ, ХВ5.

Термообработка низколегированных инструментальных сталей — закалка в масле и отпуск при температуре 150…200 °С. При этом обычно достигается сквозная прокаливаемость. Твердость после термообра­ботки составляет HRC 62…64.

Благодаря большей прокаливаемости и закалке в масле низко­легированные стали используются для изготовления инструмента боль­шой длины и крупного сечения (например, сверл диаметром до 60 мм). Применяются для ручного инструмента по металлу и измерительного инструмента.

Быстрорежущие стали, предназначены для работы при высоких скоростях резания. Главное их достоинство — высокая теплостой­кость (до 650 °С). Это достигается за счет большого количества ле­гирующих элементов — вольфрама, хрома, молибдена, ванадия, кобальта. Маркируются быстрорежущие стали буквой Р, число после которой показывает среднее содержание вольфрама в %. Далее идут обозначения и содержание других легирующих элементов. Содержа­ние углерода во всех быстрорежущих сталях приблизительно 1 %, а хрома 4 %. Поэтому эти элементы в марке не указываются. Напри­мер, Р18, Р9, Р6М5, Р6М5Ф2К8.

Термообработка быстрорежущих сталей заключается закалке от высоких температур (1200…1300 °С) и трехкратном отпуске при 550…570 °С. Трехкратный отпуск применяется для того, чтобы избавиться от остаточного аустенита, который присутствует после закалки в ко­личестве приблизительно 30% и снижает режущие свойства. После термообработки сталь имеет мартенситную структуру с карбидными включениями. Твердость после термообработки составляет HRC 64…65.

Быстрорежущие стали применяются для инструмента, использу­емого для обработки металла на металлорежущих станках (резцы, фрезы, сверла). Для экономии дорогих быстрорежущих сталей ре­жущий инструмент часто изготавливается сборным или сварным. Рабочую часть из быстрорежущей стали приваривают к основной части инструмента из конструкционной стали.

Металлокерамические твердые сплавы представляют собой спеченные порошковые материалы, основой которых служат карби­ды тугоплавких металлов, а связующим — кобальт. Их теплостой­кость доходит до 900…1000 °С, а твердость НКА 80…97.

Твердые сплавы делятся на три группы. Вольфрамовые изготов­ляются на основе карбида вольфрама и кобальта. Маркируются бук­вами ВК и цифрой показывающей содержание кобальта в % (ВК2, ВК6, ВК10). Титановолъфрамовые твердые сплавы содержат допол­нительно карбид титана. Они маркируются буквами Т, К и цифрами. После буквы Т указывается содержание карбида титана в %, а после буквы К — кобальта (Т15К10, Т15К6). Титанотанталовольфрамовые содержат дополнительно карбид титана. Маркируются буквами ТТ, после которых указывается суммарное содержание карбидов титана и тантала в % и буквой К, после которой указывается содер­жание кобальта (ТТ7К12, ТТ10К8).

Твердые сплавы изготавливаются в виде пластин которые при­паиваются к державке из углеродистой стали. Применяют твердые сплавы для резцов, сверл, фрез и другого инструмента. Главный не­достаток твердых сплавов — высокая хрупкость.

6. ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ


6.1. Алюминий и его сплавы


Алюминий — металл серебристого цвета, характеризующийся
низкой плотностью (2,7 г/см3), высокой пластичностью (δ = 40%),
низкими прочностью (σ = 80МПа) и твердостью (НВ 25). Температура плавления — 659°С. Обладает высокой электропроводностью и коррозионной стойкостью. Кристаллизуется в кубической гранецентрированной решетке и полиморфных превращений не имеет. Мар­кируется буквой А. В зависимости от количества примесей различа­ют алюминий особой чистоты А999 (99,999% А1), высокой чистоты А995, А99, А97 и технической чистоты А85, А8, А7, А6, А5, АО.Применяется алюминий для производства фольги, электрических проводов. Как конструкционный материал используется редко вслед­ствие малой прочности. Сплавы алюминия делятся на литейные и деформируемые.

Литейные сплавы алюминия ГОСТ 1583-93 маркируются буквами и числом, показывающим содержание сплава. Чтобы сплав обладал хорошими литейными свойствами, он должен иметь низкий темпе­ратурный интервал кристаллизации. Кроме того, желательно, чтобы он имел низкую температуру плавления. Этим требованиям удовлет­воряют эвтектические сплавы. Наибольшее распространение полу­чили сплавы алюминия с кремнием, образующие эвтектику при со­держании 11,6 % кремния. Эти сплавы называются силуминами.

Широко применяется силумин эвтектического состава АК12 содержащий 10…12 % кремния. Он имеет очень хорошие литейные свой­ства, но малую прочность (σв = 180 МПа). Уменьшение содержания кремния и добавка меди, магния и марганца ухудшает литейные свой­ства силуминов, но улучшает механические. Кроме силуминов используются литейные сплавы алюминия с медью (АЛ7) и магнием (АЛ8), не содержащие кремния. Они обладают значительно боль­шей прочностью, чем силумины, но их литейные свойства хуже.

Деформируемые сплавы алюминия делятся на упрочняемые и не упрочняемые термической обработкой. К сплавам, не упрочняемым

термической обработкой относятся сплавы алюминия с марганцем (маркируется АМц) и магнием (маркируются АМг1, .... АМг7). Эти сплавы имею: низкую прочность, но высокую пластичность и кор­розионную стойкость.

К сплавам, упрочняемым термической обработкой относятся дюра­люминий, ковочные сплавы, высокопрочные сплавы алюминия. Дюра­люминии (дуралюмин) представляет собой сплав алюминия с медью (до 5 %), марганцем (до 1,8 %} и магнием (до 0,9 %). Маркируется буквой Д и цифрой, показывающей порядковый номер (Д1, Д16 и др. ). Подвергается термической обработке, которая состоит из закачки от температу­ры 500°С неестественного старения, заключающегося в выдержке при комнатной температуре в течение нескольких суток. В результате та­кой обработки прочность повышается в два раза (с 200…240 МПа до 450…500 МПа), а пластичность практически не меняется. Достоинством дюралюминия является высокая удельная прочность (отношение преде­ла прочности к плотности), что особенно важно в самолетостроении, Дюралюминий выпускается в виде листов и прутков.

Высокопрочные сплавы алюминия содержат кроме меди и магния дополнительно цинк (до 10 % ), Эти сплавы маркируются буквой В (В95, В96). Подвергаются термообработке, аналогичной термообработке дю­ралюминия, но естественное старение заменяется искусственным ста­рением, заключающимся в выдержке при температуре 120…140 °С в те­чение 16…24ч. В результате предел прочности доходит до 600…700 МПа.

Ковочные сплавы алюминия предназначены для производства деталей ковкой и штамповкой. Маркируются буквами АК и числом, показывающим порядковый номер. По химическому составу близки к дюралюминию (сплав АК1 совпадает но составу с Д1), иногда от­личаясь более высоким содержанием кремния (АК6, АК8). Подвер­гаются аналогичной термообработке.

Малая плотность и высокая удельная прочность обусловили ши­рокое применение алюминиевых сплавов в самолетостроении. Они составляют до 75% массы пассажирских самолетов. Из дюралюминия изготовляются обшивки, каркасы, из высокопрочных сплавов — тя­желонагруженные детали, из ковочных — кованые и штампованные детали (например, лопасти винта).



6.2. Медь и се сплавы


Медь - металл красно-розового цвета. Плотность меди 8,94 г/см³, температура плавления — 1083 °С. Кристаллизуется в кубической гранецентрированной решетке и полиморфных превращений не имеет. Характеризуется невысокими прочностью (σв= 150…250 МПа) и твер­достью (НВ 60) и хорошей пластичностью (δ = 25 % в литом состоянии и δ = 50 % в горячедеформированном). Обладает высокой электропро­водностью, теплопроводностью, коррозионной стойкостью в пресной и морской воде. Благодаря высокой электропроводности около полови­ны производимой меди используется в электро- и радиопромышленно­сти. Как конструкционный материал медь не используется из-за высо­кой стоимости и низких механических свойств. Маркируется буквой М и цифрами, зависящими от содержания примесей. Медь марок МОО (0,01 % примесей), МО (0,5 %) и М1 (0,1 %) используется для изготовле­ния проводников электрического тока, медь М2 (0,3 %) — для произ­водства высококачественных сплавов меди, МЗ (0,5 %) — для сплавов обыкновенного качества. Основные сплавы меди -латуни и бронзы.

Латунями называют сплавы меди с цинком. Цинк повышает проч­ность и пластичность сплава, но до определенных пределов. Наи­большей пластичностью обладают латуни, содержащие 30 % цинка, а наибольшей прочностью — 45 %. Поэтому более 45 % цинка в латунях содержаться не может. Кроме того, цинк удешевляет сплав, так как он дешевле меди. Латуни характеризуются высокой электро­проводностью и теплопроводностью, коррозионной стойкостью, хо­рошо обрабатываются резанием.

По технологическому признаку латуни делятся на деформируе­мые и литейные. По химическому составу латуни делятся на простые (двойные), в которых присутствуют только медь и цинк и сложные (многокомпонентные), в которые для улучшения различных свойств добавлены другие элементы. Наиболее распространены добавки алю­миния, олова, кремния, никеля и др.

Латуни маркируются буквой Л. В деформируемых латунях ука­зывается содержание меди и легирующих элементов, которые обозначаются соответствующими буквами (О — олово, А — алюминий, К — кремний, Н — никель, Мц — марганец, Ж — железо и т.д.).

Содержание элементов дается в % после всех буквенных обозначе­ний. Например, латунь Л63 содержит 63 % меди и 37 % цинка. Ла­тунь ЛАЖ 60-1-1 содержит 60 % меди, 1 % алюминия, 1 % железа и 38 % цинка. В марках литейных латуней указывается содержание цинка, а количество легирующих элементов (в %) ставится после букв их обозначающих. Например, литейная латунь ЛЦ40Мц3А со­держит 40 % цинка, 3 % марганца, менее 1 % алюминия и 56 % меди.

Бронзами называются сплавы меди с оловом, алюминием, свинцом и другими элементами, среди которых цинк не является основным. Бронзы обладают высокой коррозионной стойкостью, хорошими литейными свойствами, хорошо обрабатываются давлением и реза­нием. По названию основного легирующею элемента бронзы делят­ся на оловянные, алюминиевые, кремнистые, бериллиевые, свинцовые и др.

По технологическому признаку бронзы делят на деформируемые и литейные. Маркируются бронзы буквами Бр, за которыми показывает­ся содержание легирующих элементов в %. Обозначения легирующих элементов и отличия в марках деформируемых и литейных сплавов у бронз такие же, как у латуней. Например, деформируемая бронза БрОФ 6,5-0,4 содержит 6,5 % олова и 0,4 % фосфора, а литейная бронза БрОЗЦ7С5Н — 3 % олова, 7 % цинка, 5 % свинца, менее 1 % никеля.

Особенно широкое применение в машиностроении имеют оло­вянные бронзы. Деформируемые оловянные бронзы обладают высо­кой пластичностью и упругостью. Из них изготовляют прутки, трубы, ленты. Литейные оловянные бронзы имеют хорошие литейные свой­ства, высокую коррозионную стойкость. Из них изготовляют армату­ру, работающую в условиях пресной и морской воды. Олово — отно­сительно дорогой металл, поэтому его стремятся частично или полностью заменить в составе бронз другими.

Алюминиевые бронзы (БрА7, БрАЖН 10-4-4) обладают более высокими механическими свойствами и коррозионной стойкостью по сравнению с оловянными. Кремнистые бронзы (БрКМц 3-1) име­ют хорошую упругость и поэтому используются для изготовления пружинящих деталей. Свинцовые бронзы (БрСЗО) обладают высоки­ми антифрикционными свойствами и применяются в подшипниках скольжения. Бериллиевые бронзы (БрБ2) отличаются высокой твер­достью, прочностью, упругостью и износостойкостью.


6.3. Сплавы других цветных металлов


Магний и его сплавы. Магний — самый легкий металл, использу­емый в промышленности (плотность — 1,74 г/см³). Имеет гексагональ­ную плотноупакованную решетку и полиморфных превращений не пре­терпевает. Температура плавления магния — 651°С. Недостатками магния являются низкая прочность и пластичность, низкая коррозионная стой­кость, способность к возгоранию при нагреве. Поэтому чистый магний в качестве конструкционного материала не используется.

Свойства магния значительно улучшаются при сплавлении его с другими элементами, основные из которых — алюминий, марганец и цинк. Магниевые сплавы делятся на литейные и деформируемые.

Литейные сплавы маркируются буквами МЛ, а деформируемые — МА. За буквами следует условный номер сплава. Магниевые сплавы, как и алюминиевые способны к упрочняющей термообработке (закалке и старению), но эффект повышения прочности при этом невысок.

Основное преимущество сплавов магния — легкость. Поэтому они применяются в авиа- и ракетостроении. Сплавы магния хорошо свариваются и обрабатываются резанием, но имеют невысокую кор­розионную стойкость.

Титан и его сплавы. Титан — легкий (плотность 4,5 г/см3) и пластичный металл серебристо-белого цвета. Температура плавле­ния титана — 1665 °С. Он обладает низкой электропроводностью и теплопроводностью. Механические свойства титана: σв ≈ З00 МПа, δ = 60…70 %. Главное достоинство титана и его сплавов — высокая коррозионная стойкость. Она достигается за счет образования на его поверхности плотной оксидной пленки. Недостатки титана — склон­ность к взаимодействию с газами при температурах выше 500…600°С, плохая обрабатываемость резанием, высокая стоимость.

Главная цель легирования титана — повышение механических свойств. Основными легирующими элементами являются алюми­ний, хром, молибден, ванадий, марганец. По технологическому признаку сплавы титана делятся на литейные и деформируемые. Маркируются титановые сплавы чаще всего буквами ВТ. Среди сплавов титана имеются обладающие высокой прочностью (ВТ6, ВТ14 с σв = 1000…1200 МПа), жаропрочностью до 500 °С (ВТЗ-1, ВТ8). Литейные сплавы титана (ВТ5Л, ВТ6Л) обладают хорошими литейными свойствами.

Используются титановые сплавы в химичес­кой промышленности благодаря высокой коррозионной стойкости, в ракетной и авиационной технике благодаря легкости и высокой удельной прочности.

Другие цветные металлы нашли меньшее применение в техни­ке. Тугоплавкие металлы (вольфрам, молибден, хром, тантал, нио­бий) и никель, а также их сплавы используются как жаропрочные. Сплавы легкоплавких металлов (олова, цинка, свинца) используют­ся в подшипниках скольжения (эти сплавы называются баббиты) и в качестве припоев для пайки металлов. Кроме того, значительная часть цинка расходуется на нанесение покрытий на металлические изде­лия, олова — на лужение консервной жести, свинца — на изготов­ление оболочек электрических кабелей, производство свинцовых аккумуляторов, емкостей для хранения радиоактивных материалов.


7. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ


7.1. Пластические массы

Свойства, состав и классификация пластмасс. Пластическими массами (пластмассами) называются материалы, получаемые на ос­нове природных или синтетических полимеров. Пластмассы являют­ся важнейшими современными конструкционными материалами. Они обладают рядом ценных свойств: малой плотностью (до 2 г/см³), высокой удельной прочностью, низкой теплопроводностью, хими­ческой стойкостью, хорошими электроизоляционными свойствами, звукоизоляционными свойствами. Некоторые пластмассы обладают оптической прозрачностью, фрикционными и антифрикционными свойствами, стойкостью к истиранию и др. Кроме того, пластмассы имеют хорошие технологические свойства: легко формуются, прес­суются, обрабатываются резанием, их можно склеивать и сваривать. Недостатками пластмасс являются низкая теплостойкость, низкая ударная вязкость, склонность к старению для ряда пластмасс.

Основой пластмасс являются полимерные связующие вещества. Кроме связующих в состав пластмасс входят: наполнители для повы­шения прочности и придания специальных свойств; пластификаторы для повышения пластичности, что необходимо при изготовлении из­делий из пластмасс; отвердители, ускоряющие переход пластмасс в неплавкое, твердое и нерастворимое состояние; стабилизаторы, пре­дотвращающие или замедляющие процесс старения; красители.

По поведению при нагреве все пластмассы делятся на термопластичные и термореактивные. Термопластичные при неоднократном нагревании и охлаждении каждый раз размягчаются и затвердевают. Термореактивные при нагревании размягчаются, затем еще до ох­лаждения затвердевают (вследствие протекания химических реак­ций) и при повторном нагревании остаются твердыми.

По виду наполнителя пластмассы делятся на порошковые, волок­нистые, слоистые, газонаполненные и пластмассы без наполнителя.

По способу переработки в изделия пластмассы подразделяются на литьевые и прессовочные. Литьевые перерабатываются в изделия методами литьевого прессования и являются термопластичными. Прессовочные перерабатываются в изделия методами горячего прессования и являются термореактивными.

По назначению пластмассы делятся на конструкционные, химически стойкие, прокладочные и уплотнительные, фрикционные и антифрикционные, теплоизоляционные и теплозащитные, электроизоляционные, оптически прозрачные, облицовочно-декоративные и отделочные.

Слоистые пластмассы получают прессованием (или намоткой) слоистых наполнителей, пропитанных смолой. Они обычно выпускаются в виде листов, плит, труб, из которых механической обработкой получают различные детали. Текстолит — это материал, полученный прессованием пакета кусков хлопчатобумажной ткани, пропитанной смолой. Обладает хорошей способностью поглощать вибрационные нагрузки, электроизоляционными свойствами. Теплостоек до 80°С. Стеклотекстолит отличается от текстолита тем, что в качестве наполнителя использу­ется стеклоткань. Более прочен и теплостоек, чем текстолит, имеет лучшие электроизоляционные свойства. В асботекстолите напол­нителем является асбестовая ткань. Кроме электроизоляционных, он имеет хорошие теплоизоляционные и фрикционные свойства. Гетинакс представляет собой материал, полученный прессованием нескольких слоев бумаги, пропитанной смолой. Он обладает электроизоляционными свойствами, устойчив к действию химикатов, может применяться при температуре до 120-140°С. Стекловолокнистый анизотропный матерная (СВАМ) получают прессованием листов стеклошпона, пропитанных смолой. Стеклошпон изготовля­ется из стеклянных нитей, которые склеиваются между собой сразу после изготовления. Листы стеклошпона располагаются в материале так, чтобы волокна соседних листов располагались под углом 90°. СВАМ обладает высокой прочностью, хорошими электроизоляци­онными свойствами, теплостоек до 200…400 °С.

Волокнистые пластмассы представляют собой композиции из волокнистого наполнителя, пропитанного смолой. Они делятся на волокниты, асбоволокниты и стекловолокниты.

В волокнитах в качестве наполнителя применяется хлопковое волокно. Они используются для относительно крупных деталей обще­технического назначения с повышенной стойкостью к ударным нагрузкам. Асбоволокниты имеют наполнителем асбест — волокнистый минерал, расщепляющийся на тонкое волокно диаметром 0,5 мкм.

Обладают теплостойкостью до 200 °С, устойчивостью к ударным воздействиям, химической стойкостью, электроизоляционными и фрикционными свойствами. Стекловолокниты имеют в качестве наполнителя короткое стекловолокно или стеклонити. Прочность, электроизоляционные свойства и водостойкость стекловолокнитов выше, чем у волокиитов. Применяются для изготовления деталей, обладающих повышенной прочностью.

Порошковые пластмассы в качестве наполнителя используют органические порошки (древесная мука, порошкообразная целлюло­за) и минеральные порошки (молотый кварц, тальк, цемент, графит). Эти пластмассы обладают невысокой прочностью, низкой ударной вязкостыо, электроизоляционными свойствами. Пластмассы с органи­ческими наполнителями применяются для ненагруженных деталей общетехнического назначения — корпусов приборов, рукояток, кно­пок. Минеральные наполнители придают порошковым пластмассам химическую стойкость, водостойкость, повышенные электроизоляци­онные свойства.

Рассмотренные выше пластмассы со слоистыми, волокнистыми и порошковыми наполнителями имеют чаше всего термореактивные свя­зующие, хотя имеются пластмассы с термопластичными связующими.

Пластмассы без наполнителя чаще всего являются термоплас­тичными материалами. Рассмотрим наиболее важные из них.

Полиэтилен (-СН2—СН2-)n — продукт полимеризации бесцветно­го газа — этилена. Один из самых легких материалов (плотность 0,92 г/см³), имеет высокую эластичность, химически стоек, морозостоек. Недостатки — склонность к старению и невысокая теплостойкость (до 60 °С). Используется для изготовления пленки, изоляции проводов, изготовления коррозионно-стойких труб, уплотнительных деталей. Занимает первое место в общем объеме производства пластмасс.

Полипропилен (-СН2-СНС6Н5-)n — продукт полимеризации газа пропилена. По свойствам и применению аналогичен полиэтилену, но более теплостоек (до 150 °С) и менее морозостоек (до 10 °С).

Поливинилхлорид (-СН2-СНС1-)n используется для производства винипласта и пластиката.

Винипласт представляет собой твердый листовой материал, полученный из поливинилхлорида без добавки пластификаторов. Обладает высокой прочностью, химической стой­костью, электроизоляционными свойствами. Пластикат получают при добавлении в поливинилхлорид пластификаторов, повышающих его пластичность и морозостойкость.

Полистирол (-СН2-СНС6Н5-)n — твердый, жесткий, прозрачный полимер. Имеет очень хорошие электроизоляционные свойства. Его недостатки — низкая теплостойкость, склонность к старению и рас­трескиванию. Используется в электротехнической промышленности.

Органическое стекло — прозрачный термопластичный матери­ал на основе полиакриловой смолы. Отличается высокой оптичес­кой прозрачностью, в 2 раза легче минеральных стекол, обладает химической стойкостью. Недостатки — низкая твердость и низкая теплостойкость. Используется для остекления в автомобиле- и само­летостроении, для прозрачных деталей в приборостроении.

Фторопласты имеют наибольшую термическую и химическую стой­кость из всех термопластичных полимеров. Фторопласт-4 (-СF2-СF2)n водостоек, не горит, не растворяется в обычных растворителях, обла­дает электроизоляционными и антифрикционными свойствами.

При­меняется для изготовления изделий, работающих в агрессивных сре­дах при высокой температуре, электроизоляции и др.

Фторопласт-3 (-СF2-СFС1-)n по свойствам и применению аналогичен фторопласту-4, уступая ему по термохимической стойкости и превосходя по проч­ности и твердости.

Газонаполненные пластмассы представляют собой материалы на основе синтетических смол, содержащие газовые включения. В пенопластах поры, заполненные газом, не соединяются друг с дру­гом и образуют замкнутые объемы. Они отличаются малой плотнос­тью (0,02…0,2 г/см3), высокими тепло-, звуко- и электроизоляцион­ными свойствами, водостойкостью. Недостатки пенопластов — низкая прочность и низкая теплостойкость (до 60°С). Используются для теплоизоляции и звукоизоляции, изготовления непотопляемых пла­вучих средств, в качестве легкого заполнителя различных конструк­ций. Мягкие виды пенопластов используются для изготовления ме­бели, амортизаторов и т. п.

Поропласты — это газонаполненные пластмассы, поры которых сообщаются между собой. Их плотность составляет 0,02…0,5 г/см3. Они представляют собой мягкие эластичные материалы, обладающие водопоглощением.


7.2. Резиновые материалы


Резина представляет собой искусственный материал, получае­мый в результате специальной обработки резиновой смеси, основ­ным компонентом которой является каучук. Каучук — это полимер, отличительной особенностью которого является способность к очень большим обратимым деформациям при небольших нагрузках. Это свойство объясняется строением каучука. Его макромолекулы име­ют вытянутую извилистую форму. При нагрузке происходит выпрям­ление макромолекул, что и объясняет большие деформации. При разгрузке макромолекулы принимают исходную форму. Различают натуральный и синтетический каучук. Натуральный каучук добывают из некоторых видов тропических растений в незначительных количествах. Поэтому производство резины основано на применении синтетических каучуков. Сырьем для производства синтетичес­кою каучука служит спирт, на смену которому приходит нефтехи­мическое сырье.

Резину получают из каучука путем вулканизации, т. е. в процессе химического взаимодействия каучука с вулканизатором при высокой температуре, вулканизатором чаще всею является сера. В процессе вулканизации сера соединяет нитевидные молекулы каучука и образу­ется пространственная сетчатая структура. В зависимости от количества серы получается различная частота сетки. При введении 1…5 % серы образуется редкая сетка и резина получается мягкой. С увеличе­нием содержания серы сетка становится все более частой, а резина более твердой приблизительно при 30 % серы получается твердый материал, называемый эбонитом.

Кроме каучука и вулканизатора в состав резины входит ряд дру­гих веществ. Наполнители вводят в состав резины от 15 до 50 % к массе каучука. Активные наполнители (сажа, оксид цинка и др.) слу­жат для повышения механических свойств резин. Неактивные напол­нители (мел, тальк и др.) снижают стоимость резиновых изделий. Пластификаторы (парафин, вазелин, стеариновая кислота, мазут, ка­нифоль и др.) предназначены для облегчения переработки резиновой смеси, повышения эластичности и морозостойкости резины. Противостарители служат для замедления процесса старения резины, при­водящего к ухудшению ее эксплуатационных свойств. Красители слу­жат для придания резине нужного цвета. В резину также добавляются регенераты — продукты переработки старых резиновых изделий и отходы резинового производства. Они снижают стоимость резин.

Основное свойство резины — очень высокая эластичность. Резина способна к большим деформациям, которые почти полностью об­ратимы. Кроме того, резина характеризуется высоким сопротивлени­ем разрыву и истиранию, газо- и водонепроницаемостью, химической стойкостью, хорошими электроизоляционными свойствами, небольшой плотностью, малой сжимаемостью, низкой теплопроводностью.

По назначению резины подразделяются на резины общего и спе­циального назначения. Из резин общего назначения изготовляются автомобильные шины, транспортерные ленты, ремни ременных пе­редач, изоляция кабелей, рукава и шланги, уплотнительные и амор­тизационные детали, обувь и др. Резины общего назначения могут использоваться в горячей воде, слабых растворах щелочей и кислот, а также на воздухе при температуре от -10 до +150 °С.

Резины специального назначения подразделяются на теплостой­кие, которые могут работать при температуре до 250…350 °С; моро­зостойкие, выдерживающие температуру до -70 °С; маслобензостойкие, работающие в среде бензина, других топлив, масел и нефтепродуктов; светоозоностойкие, не разрушающиеся при работе в атмосферных условиях в течении нескольких лет, стойкие к дей­ствию сильных окислителей; электроизоляционные, применяемые для изоляции проводов и кабелей; электропроводящие, способные про­водить электрический ток.


7.3. Древесные материалы


Древесина — это органический матерная растительного проис­хождения, представляющий собой сложную ткань древесных расте­ний. Она составляет основную массу ствола деревьев. Древесина яв­ляется волокнистым материалом, причем волокна в ней расположены вдоль ствола. Поэтому для нее характерна анизотропия, т.е. ее свой­ства вдоль и поперек волокон различны.

Достоинствами древесины являются относительно высокая проч­ность; малая объемная масса и, следовательно, высокая удельная прочность; хорошее сопротивление ударным и вибрационным на­грузкам; малая теплопроводность и, следовательно, хорошие тепло­изоляционные свойства; химическая стойкость; хорошая техноло­гичность (легкость обработки и изготовления изделий). К недостаткам древесины следует отнести гигроскопичность, т.е. способность впи­тывать влагу, и возникающую из-за изменения влажности нестабиль­ность свойств и размеров (усушка и набухание), а также отсутствие огнестойкости, неоднородность строения, склонность к гниению.

Для защиты древесины от увлажнения, загнивания и воспламенения про­изводят окраску лаками и красками, опрыскивание и пропитку спе­циальными химическими веществами. Материалы из древесины можно разделить на лесоматериалы, сохраняющие природную физическую структуру и химический состав древесины, и древесные материалы, полученные путем специальной обработки исходной древесины. В свою очередь лесоматериалы под­разделяются на необработанные (круглые), пиломатериалы, лущенные (древесный шпон) и колотые.

Круглые лесоматериалы получают из спиленных деревьев после очистки от ветвей, разделения поперек ствола на части требуемой длины и окорки. Они применяются в строительстве, в качестве опор и столбов линий электропередач, в качестве сырья.

Пиломатериалы получают лесопилением. Пиломатериалы с опи­ленными кромками называют обрезными, неопиленными — необ­резными. Подвергающиеся после пиления дальнейшей обработки называют стругаными. Пиломатериалы делятся в зависимости от поперечного сечения на следующие виды: брусья (толщина или ши­рина больше 100 мм), бруски (ширина не более двойной толщины), доски (ширина более двойной толщины), планки (узкие и тонкие доски).

Древесный шпон — это широкая ровная стружка древесины, получаемая путем лущения. Толщина листов шпона 0,5…1,5 мм. Ис­пользуется шпон в качестве полуфабрикатов для изготовления фане­ры, облицовочного материала для изделий из древесины.

К материалам, полученным путем специальной обработки дре­весины можно отнести фанеру, прессованную и модифицированную древесину, древесностружечные и древесноволокнистые плиты и др.

Фанера — это листовой материал, полученный путем склейки лис­тов шпона. При этом волокна соседних листов находятся под пря­мым углом друг к другу. Толщина фанеры от 1 до 12 мм, более толстые материалы называют плитами. Столярные плиты представ­ляют собой трехслойные щиты, состоящие из реечного заполнителя, оклеенного с обеих сторон древесным шпоном. Прессованная дре­весина — это материал, получаемый при горячем прессовании брус­ков, досок и других заготовок поперек волокон под давлением до 30 МПа. В результате прочность возрастает по сравнению с исходной более чем в два раза.

Модифицированная древесина представляет собой материал, полученный при обработке древесины каким-либо химическим веществом (смолой, аммиаком и др.) с целью повыше­ния механических свойств и придания водостойкости. Древесно-стружечные плиты изготовляют прессованием древесной стружки со связующим. Плиты могут быть облицованными шпоном, фанерой или бумагой. Древесноволокнистые плиты изготовляют путем прес­сования древесных волокон при высокой температуре, иногда с до­бавлением связующих веществ.


7.4. Неорганические материалы


Стеклом называется твердый аморфный термопластичный мате­риал, получаемый переохлаждением расплава различных оксидов. В состав стекла входит стеклообразующие кислотные оксиды (SiO2, А12О3, В2О3 и др.), а также основные оксиды (К2О, СаО, Na2О и др.), придающие ему специальные свойства и окраску. Оксид кремния SiO2 является основой практически всех стекол и входит в их состав в количестве 50 … 100 %. По назначению стекла подразделяются на строительные (оконные, витринные и др.), бытовые (стеклотара, посуда, зеркала и др.) и технические (оптические, свето- и элект­ротехнические, химико-лабораторные, приборные и др.).

Важными свойствами стекла являются оптические. Обычное стекло пропускает около 90 %, отражает — 8 % и поглощает — 1 % видимого света. Механические свойства стекла характеризуются высоким со­противлением сжатию и низким — растяжению.

Термостойкость стекла определяется разностью температур которую оно может выдержать без разрушения при резком охлаждении в воде. Для большинства сте­кол термостойкость колеблется от 90 до 170 °С, а для кварцевого стекла, состоящего из чистого SiO2— 1000 °С. Основной недостаток стекла — высокая хрупкость.

Керамика — это неорганический минеральный материал, полу­чаемый из отформованного минерального сырья путем спекания при высоких температурах (1200…2500 °С). Структура керамики состоит из кристаллической, стекловидной (аморфной) и газовой фазы.

Криc­таллическая фаза является основой керамики, ее количество соc­тавляет до 100 %. Она представляет собой различные химические соединения и твердые растворы. Стекловидная фаза находится в керамике в виде прослоек стекла. Ее количество составляет до 40 %. Она снижает качество керамики. Газовая фаза представляет собой газы, находящиеся в порах керамики.

По назначению керамика может быть разделена на строитель­ную, бытовую и художественно-декоративную, техническую. Строи­тельная ( например, кирпич) и бытовая (например, посуда) чаще всего имеет в структуре газонаполненные поры и изготовляется из глины. Техническая керамика имеет почти однофазную кристалли­ческую структуру и изготовляется из чистых оксидов (реже карбидов, боридов или нитридов). Основные оксиды, используемые для произ­водства керамики — А12О3, ZnО2, МgО, СаО, ВеО. Техническая ке­рамика используется в качестве огнеупорного, конструкционного и инструментального материала. Она обладает высокой прочностью при сжатии и низкой при растяжении. Главный недостаток керами­ки, как и стекла — высокая хрупкость.

Ситаллы представляют собой материалы, полученные путем кристаллизации стекол. Ситаллы изготовляют путем плавления сте­кольного материала с добавкой катализаторов кристаллизации. Да­лее расплав охлаждается до пластического состояния и из него формуются изделия. Кристаллизация обычно происходит при повторном нагревании изделий.

По структуре ситаллы занимают промежуточное место между стеклом и керамикой. Их структура состоит из зерен кристалличес­кой фазы, скрепленных стекловидной прослойкой. Содержание кри­сталлической фазы составляет 30…95 %. Пористость отсутствует. Си­таллы характеризуются исключительной мелкозернистостью. По внешнему виду могут быть прозрачными и непрозрачными.

Структура ситаллов определяет их свойства. Ситаллы имеют высокую твердость, высокую прочность при сжатии и низкую при растяжении, обладают жаропрочностью до 900…1200 °С, жаростой­костью, износостойкостью.

Они характеризуются высокой химичес­кой стойкостью и хорошими электроизоляционными свойствами. Ситаллы отличаются хрупкостью, однако меньшей, чем стекло. При­меняются ситаллы для деталей, работающих при высоких темпера­турах и в агрессивных средах, деталей радиоэлектроники, инстру­ментов.


7. 5. Композиционные материалы


Композиционными называют сложные материалы в состав которых входят отличающиеся но свойствам нерастворимые друг в друге компо­ненты. Основой композиционных материалов является сравнительно пластичный материал, называемый матрицей. В матрице равномерно распределены более твердые и прочные вещества, называемые упрочнителями или наполнителями. Матрица может быть металлической, полимерной, углеродной, керамической. По типу упрочнителя компо­зиционные материалы делятся на дисперсноупрочнённые, в которых уп­рочнителем служат дисперсные частицы оксидов, карбидов, нитридов и др., волокнистые, в которых упрочнителем являются волокна различ­ной формы и слоистые, состоящие из чередующихся слоев волокон и листов матричного материала.

Среди дисперсноупрочненных материалов ведущее место зани­мает САП (спеченная алюминиевая пудра), представляющий собой алюминий, упрочненный дисперсными частицами оксида алюминия. Получают САП из окисленной с поверхности алюминиевой пудры путем последовательного брикетирования, спекания и прессования. Структура САП состоит из алюминиевой основы с равномерно распределенными частицами А12О3. С увеличением содержания А12О3 повышается прочность, твердость, жаропрочность САП, но снижается его пластичность. Марки САП-1, САП-2, САП-3, САП-4 содержат, соответственно, 6…8, 9…12, 13…17, 18…22 % А12О3. Высокая прочность САП объясняется большой дисперсностью упрочнителя и малым расстоянием между его частицами. По жаропрочности САП превосходит все алюминиевые сплавы.

В волокнистых композиционных материалах упрочнителем служат углеродные, борные, синтетические, стеклянные и др. волокна, нитевидные кристаллы тугоплавких соединений (карбиды кремния, оксиды алюминия и др.) или металлическая проволока (стальная, вольфрамовая и др.). Свойства материала зависят от состава компонентов, количественного соотношения и прочности связи между ними. Для металлических композиционных материалов прочная связь между волокном и матрицей достигается благодаря их взаимодействию. Связь между компонентами в композиционных материалах на неметаллической основе осуществляется с помощью адгезии. Повышение адгезии волокон к матрице достигается их поверхностной обработкой. Производится осаждение нитевидных кристаллов на поверхность волокон. При этом получаются «мохнатые» волокна с улучшенной адгезией, благодаря чему улучшаются механические свойства композиционного материала.

Среди неметаллических волокнистых композиционных материалов наибольшее распространение получили материалы с полимер- ной матрицей. Материалы, содержащие в качестве упрочнителя уг­леродные волокна, называются карбоволокнитами. Они обладают низкими теплопроводностью и электропроводностью, хорошей из­носостойкостью. Недостаток кабоволокнитов — низкая прочность при сжатии и сдвиге. Материалы с упрочнителем в виде волокон бора называют бороволокнитами. Они характеризуются высокой прочностью при растяжении, сжатии и сдвиге, высокими твердостью и модулем упругости, тепло- и электропроводностью. Материалы, содержащие в качестве упрочнителя синтетические волокна (кап­рон, лавсан и др.), называются органоволокнитами. Они обладают высокой удельной прочностью в сочетании с хорошей пластичностью и ударной вязкостью, электроизоляционными свойствами.

Волокнистые композиционные материалы на металлической основе имеют более высокие характеристики, зависящие от свойств матрицы. В качестве матрицы используются металлы, имеющие не­большую плотность (алюминий, магний, титан), их сплавы, а также никель для создания жаропрочных материалов. В качестве упрочнителя используют стальную проволоку (наиболее дешевый материал), борные и углеродные волокна. При создании жаропрочных компо­зиционных материалов на основе никеля используется вольфрамо­вая проволока.


8. ЭКОНОМИЧЕСКИЕ ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ МАТЕРИАЛОВ


8.1. Экономически обоснованный выбор материала


Правильный выбор материала для конкретного изделия является исключительно важной задачей. Он производится с учетом целого ряда критериев. При этом технические критерии выбора материала определяются условиями эксплуатации изделия. Они определяют комплекс механических свойств (прочность, упругость, твердость, пластичность, вязкость), а в ряде случаев и требования к специаль­ным свойствам (коррозионная стойкость, жаростойкость, жаропроч­ность, износостойкость, радиоционная стойкость и др.). Способ изготовления изделий определяет требования к технологическим свойствам материала (ковкость, литейные свойства, обрабатываемость резанием, свариваемость). Если изделие должно подвергаться терми­ческой обработке, следует также учитывать прокаливаемость и зака­ливаемость.

Приведенные требования накладывают определенные ограниче­ния на выбор материала. Если они оказываются достаточно жестки­ми, то возможный выбор ограничивается весьма узкой группой мате­риалов. При меньшей жесткости требований выбор становится более широким. В любом случае, когда возможны различные варианты решения задачи выбора материала, окончательный ответ должен дать экономический анализ вопроса. Исходными данными для этого слу­жат цены материалов. Однако выбор наиболее дешевого материала далеко не всегда будет оптимальным. Экономия также может быть получена за счет следующих факторов.

1. Использование более прочного материала. Это дает возмож­ность уменьшить размеры изделия, т. е. позволяет снизить расход материала на единицу готовой продукции. Уменьшение размеров также способствует снижению затрат на транспортирование изде­лий. Кроме того, появляется возможность повысить мощность и про­изводительность оборудования, изготовленного из более прочных материалов.

2. Применение более технологичного материала, позволяющего применять более экономичные методы изготовления и обработки изделий. При этом экономия может быть получена как непосред­ственно за счет снижения себестоимости изготовления, так и за счет снижения расхода материала благодаря уменьшению отходов и брака.

3. Применение материала с более длительным сроком службы, что приводит к повышению долговечности готового изделия.

4. Использование материалов, способных работать в более тяже­лых условиях (при более высоких нагрузках, более высоких темпе­ратурах, в более агрессивной среде). Применение таких материалов при изготовлении различных машин и оборудования позволяет из­менить рабочие параметры машин (например, повысить давление или температуру), что приводит к повышению производительности и, соответственно, снижению себестоимости единицы работы или продукции.

Перечисленные факторы связаны, прежде всего, с повышением качества используемого материала. Более качественный материал, как правило, является и более дорогостоящим, так как улучшение качества сопровождается увеличением затрат на производство мате­риала. Правильный выбор материала должен учитывать как эконо­мический эффект от повышения качества, так и увеличение стоимо­сти материала. Для этого производится сравнительный расчет экономической эффективности применения различных материалов, по результатам которого и делается окончательный выбор. Только если увеличение цены перекрывается полученным экономическим эффектом, применение более дорогостоящего материала целесооб­разно. Методика определения экономической эффективности здесь не рассматривается, так как является предметом специальных кур­сов. Приведем некоторые примеры.

Для строительных конструкций могут быть применены как угле­родистые, так и низколегированные стали (см, раздел 5.1.). Низко­легированные стали обеспечивают повышение предела текучести приблизительно в 1,5 раза по сравнению с углеродистыми. Благода­ря этому масса конструкций снижается на 20…50 %.

При этом себес­тоимость проката из низколегированных сталей на 10…15 % выше, чем из углеродистых. Отсюда видно, что себестоимость низколеги­рованных сталей возрастает в меньшей степени, чем достигается эко­номия из-за увеличения прочности. Но не только этим обусловлена эффективность применения низколегированных сталей. В отличие от углеродистых сталей, они не склонны к хрупким разрушениям при температуре ниже - 40 °С. Это обеспечивает высокую надежность и долговечность конструкций. Таким образом, применение низколеги­рованных строительных сталей экономически выгодно.

В хромоникелевых коррозионных сталях при эксплуатации при 450…850 °С развивается межкристаллитная коррозия (см. раз­дел 5.2.). Для уменьшения склонности к коррозии стали дополни­тельно легируются титаном или в них снижают содержание углеро­да. Это делает сталь более дорогостоящей. Однако удорожание оправдывается значительно более длительным сроком службы таких сталей. В том случае, когда рабочая температура не превышает 400 °С, использование более дорогостоящих статей становится экономичес­ки не оправданным.

Целесообразность применения пластмасс диктуется технически­ми соображениями. Свойства пластмасс с одной стороны делают их незаменимыми, а с другой часто не позволяют им конкурировать с металлическими материалами. Если же применение пластмасс по техническим соображениям, возможно, оно обычно является эконо­мически эффективным. Благодаря малой плотности пластмассы в 4 раза снижается материалоемкость изделий. Затраты на производ­ство пластмассовых изделий значительно меньше, чем на производ­ство металлических. Это происходит вследствие хорошей техноло­гичности пластмасс: производство пластмассовых изделий происходит путем прессования, литья или выдавливания, а металлические изде­лия производятся литьем или обработкой давлением, путем механи­ческой и термической обработки с большим числом операций. Час­то применение пластмасс в машинах и оборудовании приводит к уменьшению затрат на смазку, ремонт, повышению надежности, уве­личению срока службы и т. д. Благодаря всему этому себестоимость пластмассовых изделий в 2…3 раза ниже себестоимости аналогичных металлических.


8.2. Основные направления экономии материалов


Доля стоимости материалов составляет от 40…70% всех затрат на изготовление готовых изделий. А для изделий, производ­ство которых широко механизировано и автоматизировано (шари­коподшипники, болты, электрокабели), эта доля доходит до 80 %. Поэтому экономия материалов — один из важнейших резервов сни­жения себестоимости готовой продукции. Еще более важен тот факт, что запасы сырья для производства материалов (различные руды для металлов и сплавов, нефть и газ для полимерных материалов и др.) являются ограниченными. Отсюда ясно, что экономия и повыше­ние эффективности использования материалов являются насущной задачей.

Огромное количество материалов теряется в процессе производ­ства готовых изделий. В нашей стране вследствие устаревших мето­дов разливки стали из каждой ее тонны получалось примерно 750 кг готового проката, а далее в машиностроении из каждой тонны про­ката около 250 кг уходило в отходы. Потери материала при произ­водстве изделий характеризует коэффициент использования мате­риала, представляющий собой отношение массы готового изделия к массе заготовки. Для профильного проката он составляет 0,7; прут­ков — 0.35; горячей штамповки — 0,45 и свободной ковки — 0,3. Более высокий коэффициент использования материала характерен для литейного производства: для литья в песчаные формы оно состав­ляет 0,7; литья в кокиль — 0,75; в оболочковые формы — 0,8; литья по выплавляемым моделям — 0,9 и литья под давлением — 0,95. Очень высок коэффициент использования при изготовлении изделий из металлических порошков. Благодаря хорошей технологичности пластмасс для них коэффициент использования материала выше, чем для металлов и сплавов: при прессовании он равен 0,9; при литье и выдавливании — 0,95. Из приведенных данных ясно, что основной путь экономии материала в процессе производства изде­лий — использование современных малоотходных и безотходных технологий: непрерывной разливки стати, малоотходных методов штамповки, специальных способов литья, методов порошковой ме­таллургии.Другое направление экономии материалов — максимальное использование, вторичных ресурсов. Это не только экономическая, но и экологическая задача, так как скопление отходов наносит ог­ромный вред окружающей среде.

Однако следует иметь в виду, что переработка отходов не всегда является технически выполнимой или экономически рентабельной. Использование металлолома в произ­водстве металлов и сплавов не вызывает технических трудностей и экономически выгодно. Производство стали из металлолома обхо­дится в несколько раз дешевле, чем из чугуна. Кроме того, каждая тонна металлолома экономит 1,5 тонны железной руды. Производ­ство цветных металлов из вторичного сырья также высокоэффек­тивно. На производство тонны алюминия из металлолома затрачива­ется приблизительно в 20 раз меньше электроэнергии и в 7 раз меньше топлива. Используются отходы и других цветных металлов. Большая часть металлолома — это промышленные отходы и пришедшие в негодность машины и оборудование. С экологической точки зрения важно также осуществлять переработку металлосодержащих шла­ков, находящихся в отвалах и терриконах.

Значительно хуже обстоит дело с повторной переработкой пластмасс. Экологическая проблема заключается в том, что поли­мерные отходы разлагаются очень медленно или совсем не разлага­ются. Некоторые виды пластмасс (термореактивные) вообще не под­даются вторичной обработке. Если же их сжигать, то это вызовет значительное загрязнение атмосферы. Из пластмасс, вторичное ис­пользование которых возможно, каждый вид требует своего способа переработки. Поэтому необходимо сортировать отходы по типу пла­стмасс. Это практически неосуществимо: на глаз распознать тип пластмассы очень трудно, а точный анализ был бы очень дорог. Воз­можно использование измельченных отходов пластмасс, независимо от их вида, в качестве наполнителя при производстве строительных материалов и дорожных покрытий. Сказанное не относится к тем случаям, когда тип пластмасс известен (например, отходы пласт­масс, получаемые непосредственно при производстве изделий). В этом случае осуществляется их переработка.

Из неметаллических материалов, вторичная переработка которых не вызывает серьезные трудности, отметим стекло. Кроме того, стеклянная посуда может собираться и использоваться повторно. Резиновое вторсырье пере­рабатывается и добавляется в резину при ее производстве.

Огромные потери металлических материалов вызывает корро­зия, которая приводит к долгосрочному выходу из строя изделий и сооружений. Ежегодно от коррозии теряется количество металла, равное 10 % от выплавляемого. Поэтому важнейшее направление экономии металлических материалов — правильная защита их от коррозии. Радикальный метод-— применение коррозионностойких (не­ржавеющих) сталей. Однако следует иметь в виду, что они в 4…8 раз дороже обыкновенных углеродистых сталей. Поэтому в каждом слу­чае надо применять соответствующий метод защиты от коррозии (см. раздел 5.2.).

Значительные потери материалов вызывает износ. При этом происходит выход из строя элементов машин, работающих в условиях трения, что вызывает дополнительные материальные потери, связанные с ремонтом техники .Борьба с износом – один из путей экономии материалов. Она заключается в использовании износостойких и антифрикционных материалов как металлических, так и неметалли­ческих; правильном применении смазочных материалов; повыше­нии износостойкости термической, химико-термической обработ­кой и поверхностным деформированием (см. раздел 4.З); наплавке на поверхность изделия износостойкого слоя; нанесении износос­тойких покрытий.

Значительную экономию материалов может принести сниже­ние материалоемкости изделий. Удельная материалоемкость мно­гих видов отечественных машин и оборудования на 15…25 % выше, чем у лучших мировых образцов. По этой причине допускается боль­шой перерасход материала. К способам снижения материалоемкос­ти следует отнести рациональное конструирование и расчет изделий с использованием компьютера; правильный выбор материала; ис­пользование технологий производства изделия, снижающей матери­алоемкость (например, в свое время, переход от клепки к сварке сэкономил 20 % стали в каждом изделии).

Важный путь снижения материалоемкости — увеличение единичной мощности машин и оборудования. Дело в том, что для более крупного оборудования материалоемкость (на единицу вырабатываемого продукта) значи­тельно ниже. Так, например, у паровой турбины мощностью 200МВт материалоемкость составляет 2,8 кг/кВт, а у турбины мощностью 800МВт…1,63 кг/кВт.

Однако радикального снижения материалоемкости можно до­биться за счет использования достижений научно-технического про­гресса, т. е. при внедрении принципиально новых технических реше­ний. Приведем несколько примеров из недавнего прошлого, где новый принцип работы дал значительный эффект. Планетарная передача вместо цилиндрической зубчатой передачи экономит до 80 % мате­риала. Сушилка с кипящим слоем экономит до 80 % материала. Дис­ковые тормоза вместо колодочных в автомобилестроении экономят до 50 % материала.



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!