Решаемые учебные задачи: 1) расширить и обобщить представления учащихся о системах объектов, о системном подходе; 2) сформировать у учащихся представление об информационных связях в системах; 3) сформировать у учащихся представление о системах управления
Рассмотрим различные задачи, которые встречаются в данном задании, и способы их решения. Начнем с самых простых задач, которые вряд ли будут на ЕГЭ, но решение которых позволит нам быстро и просто решать самые сложные, и придем сложным в этом задании.
Задача 1. Как представлено число 7310 в двоичной системе счисления?
a) 1001011 b) 111101 c) 101011 d) 1001001
Решение. Для быстрого и точного решения задачи достаточно разложить исходное число на сумму степеней двойки, а затем записать «1» на место существующей степени и «0» - на место пропущенной степени двойки.
Тогда 7310 = 26 + 23 + 20 = 10010012
(шестая степень есть – 1, пятой нет – 0, четвертой нет – 0, третья есть – 1, второй нет – 0, первой нет – 0, нулевая есть – 1).
Возможные ловушки:
если исходное число четное, то нужно не забыть о нулевой степени числа.
вариант ответа b). Нужно помнить правильность перевода числа из десятичной системы счисления в двоичную, что десятичная система не «дружит» ни с какой другой в окружении систем с основанием, меньшим 100 (а на другие задачи мы не решаем), и пользоваться таблицей «дружбы» для перевода в двоичную систему счисления нельзя.
Проверка решения: По закономерности 4 из теоретической части: NL-1 ≤ Ch L
Тогда 64 ≤ 73 6 ≤ 73 7
Длина результата равна 7, как и в полученном ответе.
Эта проверка действует на оба варианта из возможных совершенных ошибок.
На ЕГЭ более вариантов ответов не предусматривается.
Ответ: d (1001001)
Задача 2. Сколько единиц в двоичной записи числа 187 ?
Решение. Для быстрого и точного решения задачи достаточно разложить исходное число на сумму степеней двойки, а затем посчитать количество присутствующих степеней.
Тогда 187 = 128 + 32 + 16 + 8 + 2 + 1 , то есть будет всего шесть степеней двойки.
Заметим, что более никаких действий для получения ответа здесь выполнять не нужно!
Для проверки правильности решения достаточно сложить полученные числа и сравнить их с исходным числом.
Ответ: 6
Задача 3. Сколько нулей в двоичной записи числа 204 ?
Решение. Для быстрого и точного решения задачи достаточно разложить исходное число на сумму степеней двойки, а затем посчитать количество присутствующих степеней.
Тогда 205 = 128 + 64 + 8 + 4 , то есть будет всего 4 степени двойки. А длина числа при переводе в двоичную систему счисления будет равна 8 (27 ≤ 205 8). Тогда количество нулей в числе будет равно разнице между ними: 8 - 4 = 4.
Заметим, что более никаких действий для получения ответа здесь выполнять не нужно!
Ответ: 4
Задача 4. Как записывается число A9516 в восьмеричной системе счисления?
Решение. Шестнадцатеричная и восьмеричная системы счисления являются «дружественными» («родственными») системами, поэтому для решения задания достаточно использовать таблицу «дружбы» и принцип перевода чисел с ее помощью (см. теорию по теме).
Тогда A9516 = 1010 1001 01012 = 101 010 010 1012 = 52258.
Ответ: 5225