МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №6» с.СПИЦЕВКА
ГРАЧЁВСКОГО МУНИЦИПАЛЬНОГО РАЙОНА СТАВРОПОЛЬСКОГО КРАЯ
Реферат по теме:
«Математика в Древней Греции»
Цель: развитие интереса к математике, исследовательской и проектной деятельности обучающихся
Задачи: познакомить обучающихся с историей развития математики в Древней Греции; развивать умение выделять главное в тексте,
умение работать на компьютере; воспитывать ответственность за порученное дело
Краткое содержание:
1. Развитие математики
2 . Школа Пифагорейцев
3 . Поворот в истории развития античной математики
4. Проблема бесконечности
5. Период самостоятельной деятельности греков
6. Заключение
Что такое математика?
Математика зародилась в V-VI веке до н.э. в Древней Греции. Затем она появилась у арабов, а несколько позже дошла до европейцев.
Термин « математика» произошел от греческого слова mathema, что означает - наука, учение, знание.
Математика занимается изучением чисел и величин, их сходствами и отличиями. Изучая математику, мы находим ответы на многие вопросы, объясняем форму и объём предметов, находим способы решения многих задач. Математика включает в себя различные разделы: алгебру, геометрию, арифметику, логику и многие другие.
"Нет стремления более естественного, чем стремление к знанию." - М.Монтень
Математики Древней Греции
Математика родилась в Греции. Это, конечно, преувеличение, но не слишком большое. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов. Греки подошли к делу с другой стороны: они выдвинули дерзкий тезис "Числа правят миром". Или, как сформулировали эту же мысль два тысячелетия спустя: "Природа разговаривает с нами на языке математики". Греки проверили справедливость этого тезиса в тех областях, где сумели: астрономия, оптика, музыка, геометрия, позже - механика. Всюду были отмечены впечатляющие успехи.
В Древней Греции математика развивалась по иному направлению, чем на Востоке
Греки связывали высокое развитие арифметики с их обширной торговлей; начало же греческой геометрии связано с путешествиями. Появились римские цифры: I II III IV V VI VII VIII IХ Х.
Школа Пифагорейцев
Математика как теория получила развитие в школе Пифагора (571-479 гг. до н.э.). Главной заслугой пифагорейцев в области науки является существенное развитие математики как по содержанию, так и по форме. По содержанию - открытие новых математических фактов. По форме - построение геометрии и арифметики как теоретических, доказательных наук, изучающих свойства отвлеченных понятий о числах и геометрических формах.
Пифагор (ок. 580- ок. 550 гг. до н.э.). Полагают, что жил Пифагор около 580—550 гг. до н. э., о жизни его до нас дошли очень скудные данные. По отрывочным сведениям некоторых историков известно, что Пифагор родился на острове Самосе. В молодости для изучения наук жрецов путешествовал по Египту, жил также в Вавилоне, где имел возможность в течение 12 лет изучать астрологию и астрономию у халдейских жрецов. После Вавилона, побыв некоторое время в своем отечестве, переселился в Южную Италию, а потом в Сицилию и организовал там пифагорейскую школу, которая внесла ценный вклад в развитие математики и астрономии. Однако, приняв количественное отношение за сущность вещей и оторвав их от материального мира, эта школа пришла к идеализму. В политической жизни пифагорейская школа стала реакционной политической организацией рабовладельческой аристократии того времени. Пифагор и его ученики много потрудились над тем, чтобы придать геометрии научный характер.
Все правильные многогранники были известны еще в Древней Греции
-
Успехи пифагорейцев в стереометрии были значительными. Они занимались изучением свойств шара, открыли построение четырех правильных многоугольников - тетраэдра, куба, октаэдра и додекаэдра (икосаэдр исследовал впоследствии Геэтет). Однако они не смогли обосновать утверждения, относящиеся к объемам тел (пирамиды, конуса, цилиндра и шара), хотя, конечно, эти утверждения были установлены эмпирически много веков раньше. Не знали пифагорейцы и отношения поверхности шара к большому кругу. В области арифметики пифагорейцы изучали свойства четных и нечетных, простых и составных натуральных чисел, искали совершенные числа, т.е. такие, которые равны сумме всех своих делителей (например, 6=1+2+3; 28=1+2+4+7+14). Пифагорейцы знали также дробные числа и в этой связи разработали теорию арифметической и геометрической пропорций. Они владели понятиями среднего арифметического, среднего геометрического и среднего гармонического.
Греческий театр
Остатки древнего греческого театра имеют идеально выдержаную в нем форму конуса. Это сделать довольно сложно! Нужны серьезные математические инструменты. Кстати в самой древней Греции существовали предания, что такие театры, когда-то ранее использовалось совсем для других целей. Для каких – неизвестно.
Несоизмеримые величины
Как ни велики заслуги пифагорейцев в развитии содержания и систематизации геометрии и арифметики, однако все они не могут сравниться со сделанным ими же открытием несоизмеримых величин. Это открытие явилось поворотным пунктом в истории античной математики. По поводу этого открытия Аристотель говорил, что Пифагор показал, что если бы диагональ квадрата была бы соизмерима с его стороной, то четное равнялось бы нечетному. Это замечание Аристотеля ясно показывает, что при доказательстве несоизмеримости диагонали квадрата с его стороной Пифагор использовал метод от противного.
Проблема бесконечности
В древнегреческой философии понятие бесконечности появилось впервые у материалистов милетской школы. Анаксимандр (610-546 гг. до н.э.), преемник Фалеса, учил: материя бесконечна в пространстве и во времени; вселенная бесконечна, число миров бесконечно. Анаксимен (546 г. до н.э. - расцвет деятельности) говорил: вечный круговорот материи - это и есть бесконечность.
Бесконечность
Бесконечность для Анаксигора - потенциальная; она существует в двух формах: как бесконечно малое и бесконечно большое. В математике точка зрения Анаксагора нашла благоприятную почву благодаря открытию несоизмеримых величин - величин, которые не могут быть измерены любой, какой угодно малой, общей мерой.
Аристотель
Аристотель (384-322 гг. до н.э.) отчетливо различает два вида бесконечности: потенциальную и актуальную. Понятие актуальной бесконечности в древней Греции не получило развития как в философии, так и в математике.
Период самостоятельной деятельности греков
Период вполне самостоятельной деятельности греков в области математики начинается с деятельности Платона и основанной им в 389 г. Философской школы, известной под именем Академии. С этого времени последующее развитие, если не всей математики вообще, то, несомненно, геометрии, сосредоточивается исключительно в руках одной греческой нации, которая и ведёт его, пока находит в своём распоряжении необходимые средства.
Философия математики
Главным результатом о математической деятельности самого Платона было создание философии математики и в частности её методологии. Как известно, его собственные работы очень мало касались увеличения математических знаний в количественном отношении и были направлены на установление строгих и точных определений основных понятий геометрии, на обнаружение и отведение настоящего места её основным положениям, на приведение приобретённых ранее математических знаний в строгую логическую связь как между собой, так и с основными понятиями и положениями, и наконец, на приведение в полную ясность и изучение методов открытия и доказательства новых истин, методов, хотя уже давно употребляемых в науке, но ещё не выяснившихся в достаточной степени перед сознанием. Методов, разработанных Платоном, по свидетельству Прокла, было три: аналитический, синтетический и апагогический.
Школа Платона
В школе Платона часто по его указаниям, а иногда и при непосредственном руководстве, продолжалась разработка планиметрии, получила значительное движение вперёд мало разработанная ранее стереометрия, создалось учение о конических сечениях и более общее о геометрических местах. Кроме того, в ней продолжал своё развитие получивший, насколько нам известно, начало в трудах Гиппократа Хиосского метод исчерпывания, о котором мы будем говорить далее, и были сделаны две новые попытки составления книги "Элементов" геометрии: Леоном в начале существования Академии, и Теюдием из Магнезии в конце жизни Платона.
АРХИМЕД ( около287 - 212 гг. до нашей эры )
- величайший математик и механик древней Греции, основоположник теоретической механики и гидростатики. В работах по статике и гидростатике дал образцы применения математики к задачам естествознания и техники, применил физико-математические знания к конструированию машин и сооружений. Архимед вошел в историю как один из первых ученых, работавших на войну, и как первая известная жертва войны среди ученых. Он был убит римским воином во время решения геометрической задачи.
Заключение
Греческая математика поражает прежде всего красотой и богатством содержания. Многие учёные Нового времени отмечали, что мотивы своих открытий почерпнули у древних.
Пифагорейцы заложили основы геометрической алгебры. Зачатки анализа заметны у Архимеда, корни алгебры - у Диофанта, аналитическая геометрия - у Аполлония. Теэтет и Евклид установили классификацию квадратичных иррациональностей. Евдопс развил общую теорию пропорций - геометрический эквивалент теории положительных вещественных чисел - и разработал метод исчерпывания - зачаточную форму теории пределов.
Информационные ресурсы
1) Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. Перевод с голландского И.Н. Веселовского - М.: Физматгиз, 1959. - 456 с.
2) Выгодский М.Я. Арифметика и алгебра в древнем мире - М.: Просвещение, 1967. - 101 с.
3) Глейзер Г.И. История математики в школе - М.: Просвещение, 1964. - 376 с.
Список литературы
4) Депман И.Я. История арифметики. Пособие для учителей. Изд. второе - М.: Просвещение, 1965. - 102-103, 236-238 с.
5) История математики Т 1: С древнейших времен до начала Нового времени / Под редакцией А.П. Юшкевича (в трёх томах): - М.: Наука, 1970. - 321 с.