СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 14.05.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Реферат Развитие представления об электромагнитных волнах

Категория: Физика

Нажмите, чтобы узнать подробности

Развитие представления об электромагнитных волнах, свойства и применение в быту. Опыт Герца.

Просмотр содержимого документа
«Реферат Развитие представления об электромагнитных волнах»

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Хакасский государственный университет им. Н.Ф. Катанова»

(ФГБОУ ВО «ХГУ им. Н.Ф. Катанова»)

Институт естественных наук и математики

Кафедра математики, физики и информационных технологий

Направление подготовки: 44.03.05. Педагогическое образование: математика, физика.





Реферат

Развитие представления об электромагнитных волнах





Выполнила: Донакай Ай-Чурена Радионовна

Группа: МФ-41

Курс 4

Форма обучения очная















Абакан 2023

Содержание

Введение 3

1. Связь между переменным электрическим и переменным магнитным полями 4

2. Электромагнитная волна 6

3. Классификация и применение электромагнитных волн в быту 8

Заключение. 11

Список литературы. 12



















Введение

Понятие электромагнитной волны относится к фундаментальным понятиям физики. Введение и формирование этого понятия происходит при изучении основ электродинамики в старших классах средней школы. Учащиеся в процессе познавательной деятельности овладевают учебной теорией и учебным экспериментом, что в конечном итоге и приводит к формированию в их сознании понятия электромагнитной волны.

Актуальность работы заключается в том, что именно учебный эксперимент призван объяснить сам факт существования электромагнитных волн, выявить основные их свойства, рассказать практическое применение в быту и как они объясняются через гипотезу Максвелла.

Целью данной работы является изучение электромагнитных волн и их свойств.

Задачи: рассмотреть понятие электромагнитные волны, их классификацию и применение в быту.

















1. Связь между переменным электрическим и переменным магнитным полями

Колебания заряда и силы тока в колебательном контуре сопровождаются колебаниями напряженности электрического поля и магнитной индукции в окружающем контур пространстве. Подобно механическим колебаниям в среде (газе, жидкости, твердом теле), распространяющимся в пространстве с течением времени, колебания электромагнитного поля тоже распространяются в пространстве. Только это происходит не в какой-либо среде, а в вакууме. Среда влияет на распространение колебаний, но не является необходимой для их существования.

Переменное магнитное поле порождает электрическое поле с замкнутыми силовыми линиями. При изменении со временем магнитной индукции возникает электрическое поле, линии напряженности которого охватывают линии магнитной индукции. Чем быстрее меняется магнитная индукция, тем больше напряженность электрического поля.

Рисунок 1. Линии напряженности охватывают линии магнитной индукции.

Не существует ли в природе обратного процесса, когда переменное электрическое поле, в свою очередь, порождает магнитное? Это предположение, диктуемое соображениями симметрии, составляет основу гипотезы Максвелла.

Максвелл допустил, что такого рода процесс реально происходит в природе. Во всех случаях, когда электрическое поле изменяется со временем, оно порождает магнитное поле. Линии магнитной индукции этого поля охватывают линии напряженности электрического поля подобно тому, как линии напряженности электрического поля охватывают линии индукции переменного магнитного поля.

Справедливость гипотезы Максвелла была доказана экспериментальным обнаружением электромагнитных волн: изменяющееся во времени электрическое поле вызывает появление вихревого магнитного поля. Согласно этой гипотезе, магнитное поле после замыкания цепи образуется не только вследствие протекания тока в проводнике, но и вследствие наличия переменного электрического поля между обкладками конденсатора.

Он не только высказал гипотезу, но и сформулировал точный количественный закон, определяющий значение магнитной индукции в зависимости от скорости изменения напряженности электрического поля (ток смещения, по Максвеллу, пропорционален скорости изменения напряженности электрического поля).

Максвелл смело положил в основу теории объект, экспериментальное существование которого не было доказано, - поле. И далее, идя шаг за шагом, опираясь на установленные опытным путем закономерности (законы Кулона, Ампера, Био-Савара-Лапласа и закон электромагнитной индукции Фарадея), он пришел к конечной цели. Гипотеза о токах смещения была последним принципиальным звеном.









2. Электромагнитная волна

В 1867 году английский физик Максвелл вывел из своих чисто теоретических трудов заключение о существовании в природе электромагнитных волн, распространяющихся со скоростью света. Он утверждал, что видимые волны света являются только частным случаем электромагнитных волн, известным потому, что эти волны люди могут обнаруживать и искусственно создавать.

Электромагнитные волны излучаются колеблющимися зарядами. При этом существенно, что скорость движения таких зарядов меняется со временем, т.е. что они движутся с ускорением. Наличие ускорения – главное условие излучения электромагнитных волн. Электромагнитное поле излучается заметным образом не только при колебаниях заряда, но и при любом быстром изменении его скорости, причем интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд.

Векторы и в электромагнитной волне перпендикулярны друг другу и перпендикулярны направлению распространения волны. Электромагнитная волна является поперечной. Если вращать буравчик с правой нарезкой от вектора к вектору, то поступательное перемещение буравчика будет совпадать с вектором скорости волны.

Представьте себе, что электрический заряд не просто сместился из одной точки в другую, а приведен в быстрые колебания вдоль некоторой прямой, так что он движется подобно грузу, подвешенному на пружине, но только много быстрее. Тогда электрическое поле в непосредственной близости от заряда начнет периодически изменяться. Период этих изменений, очевидно, равен периоду колебаний заряда. Переменное электрическое поле будет порождать периодически меняющееся магнитное поле, а последнее, в свою очередь, вызовет появление переменного электрического поля уже на большем расстоянии от заряда и т.д.

В окружающем заряд пространстве, захватывая все большие и большие области, возникает система периодически изменяющихся электрических и магнитных полей. Образуется так называемая электромагнитная волна, бегущая по всем направлениям от колеблющегося заряда. В каждой точке пространства электрические и магнитные поля меняются во времени периодически. Чем дальше расположена точка от заряда, тем позднее достигнут ее колебания полей. Следовательно, на разных расстояниях от заряда колебания происходят с различными фазами.

Рисунок 2. Электромагнитная волна.

Векторы и в электромагнитной волне перпендикулярны друг другу и перпендикулярны направлению распространения волны. Электромагнитная волна является поперечной. Если вращать буравчик с правой нарезкой от вектора к вектору, то поступательное перемещение буравчика будет совпадать с вектором скорости волны.

Лишь через 10 лет после смерти Максвелла электромагнитные волны были экспериментально получены Герцем.









3. Классификация и применение электромагнитных волн в быту

В настоящее время электромагнитные волны разделены по 6 основным диапазонам: радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское и гамма-излучение.

Радиоволны. Радиоволны могут значительно различаться по длине – от нескольких сантиметров до сотен и даже тысяч километров, что сопоставимо с радиусом Земного шара (около 6400 км). Радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях с использованием амплитудной модуляции (АМ), которая, хотя и в ущерб качеству сигнала, обеспечивает его передачу на сколь угодно большие расстояния в пределах Земли благодаря отражению волн от ионосферы планеты.

Инфракрасные лучи. Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм). Лучи этой части спектра человек ощущает непосредственно кожей – как тепло. Если вы протягиваете руку в направлении огня или раскаленного предмета и чувствуете жар, исходящий от него, вы воспринимаете как жар именно инфракрасное излучение.

Видимый свет. Как уже говорилось, длины электромагнитных волн видимого светового диапазона колеблются в пределах от восьми до четырех тысяч атомных диаметров (800–400 нм). Человеческий глаз представляет собой идеальный инструмент для регистрации и анализа электромагнитных волн этого диапазона. Неудивительно поэтому, что человеческий глаз в процессе эволюции сформировался таким образом, чтобы улавливать и распознавать именно эту часть спектра электромагнитных волн.

Ультрафиолетовые лучи. В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре, например, вызывают в умеренных дозах загар, а в избыточных – тяжелые ожоги.

Рентгеновские лучи. Излучение в диапазоне длин волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра называется рентгеновским. Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагностике.

Гамма-лучи. Самые короткие по длине волны и самые высокие по частоте и энергии лучи в электромагнитном спектре – это лучи (гамма-лучи). Они состоят из фотонов сверхвысоких энергий и используются сегодня в онкологии для лечения раковых опухолей (а точнее, для умерщвления раковых клеток). Однако их влияние на живые клетки столь губительно, что при этом приходится соблюдать крайнюю осторожность, чтобы не причинить вреда окружающим здоровым тканям и органа

Без электричества человечество уже давно не мыслит своего существования. С помощью него работают все бытовые приборы, вся наша промышленность, медицинские приборы.

Транспорт на электроприводе является мощным источником магнитного поля в диапазоне от 0 до 1000 Гц. Железнодорожный транспорт использует переменный ток. Городской транспорт – постоянный. Максимальные значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения - около 20 мкТл. У трамваев, где обратный провод - рельсы, магнитные поля компенсируют друг друга на гораздо большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые большие колебания магнитного поля - в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. В самом вагоне магнитное поле еще сильнее - 150-200 мкТл, то есть в десять раз больше, чем в обычной электричке.

Источники высокочастотных излучений (от 3 кГц до 300 ГГц) включают в себя функциональные передатчики – источники электромагнитного поля в целях передачи или получения информации. Это коммерческие передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио СВ, любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом). Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц - 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы ПК, телевизоры и пр.). Для научных исследований в медицине применяют токи ультравысокой частоты. Возникающие при использовании таких токов электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

Замеры напряженности магнитных полей от бытовых электроприборов показали, что их кратковременное воздействие может оказаться даже более сильным, чем долговременное пребывание человека рядом с линией электропередачи. Если отечественные нормы допустимых значений напряженности магнитного поля для населения от воздействия линии электропередачи составляют 1000 мГс, то бытовые электроприборы существенно превосходят эту величину.

Индукция магнитного поля от электроплит типа "Электра" на расстоянии 20-30 см от передней панели - там, где стоит хозяйка, - составляет 1-3 мкТл. А на расстоянии 50 см составляет около 0,1-0,15 мкТл. Зато поля стиральных машин оказались достаточно большими, на частоте 50 Гц у пульта управления составляет более 10 мкТл, на высоте 1 метра - 1 мкТл, сбоку на расстоянии 50 см - 0,7 мкТл. Рекорд держат электробритвы. Их поле измеряется сотнями мкТл. Таким образом, бреясь электробритвой, убивают сразу двух зайцев: приводят себя в порядок и попутно проводят магнитную обработку лица.

Заключение.

В работе рассмотрели справедливость гипотезы Максвелла. Электромагнитная волна – система порождающих друг друга и распространяющихся в пространстве переменных электрического и магнитного полей. Электромагнитные волны распространяются в вакууме, что отличает от механических. Во всех случаях, когда электрическое поле изменяется со временем, оно порождает магнитное поле. Максвелл смело положил в основу теории объект – электрическое поле. Существует 6 классификаций волн. Рассмотрели какие бытовые приборы излучают электромагнитные волны.




















Список литературы.




Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!

Закрыть через 5 секунд
Комплекты для работы учителя