СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Суутектин ачылуу тарыхы, алынышы.

Категория: Химия

Нажмите, чтобы узнать подробности

Водород

[править | править код]

Материал из Википедии — свободной энциклопедии

Перейти к навигацииПерейти к поиску

Водород
Гелий →
1 HLi

1H

Внешний вид простого вещества
Газ без цвета, запаха и вкуса

Водород в разрядной трубке

Свойства атома
Название, символ, номер Водород / Hydrogenium (H), 1
Атомная масса  (молярная масса) [1,00784; 1,00811][комм 1][1] а. е. м. (г/моль)
Электронная конфигурация 1s1
Радиус атома 53 пм
Химические свойства
Ковалентный радиус 32 пм
Радиус иона 54 (−1 e) пм
Электроотрицательность 2,20[2] (шкала Полинга)
Степени окисления +1, 0, −1
Энергия ионизации  (первый электрон)  1311,3 (13,595) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 0,0000899 (при 273 K (0 °C)) г/см³
Температура плавления 14,01 K; −259,14 °C
Температура кипения 20,28 K; −252,87 °C
Уд. теплота плавления 0,117 кДж/моль
Уд. теплота испарения 0,904 кДж/моль
Молярная теплоёмкость 28,47[3] Дж/(K·моль)
Молярный объём 14,1 см³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки a = 3,780 c = 6,167 Å
Отношение c/a 1,631
Температура Дебая 110 K
Прочие характеристики
Теплопроводность (300 K) 0,1815 Вт/(м·К)
Номер CAS 12385-13-6
Эмиссионный спектр

1

Водород

H

1,00784

1s1

Водоро́д (Hлат. hydrogenium) — химический элемент периодической системы с обозначением H и атомным номером 1, самый лёгкий из элементов периодической таблицы. Его одноатомная форма — самое распространённое химическое вещество во Вселенной, составляющее примерно 75 % всей барионной массы. Звёзды, кроме компактных, в основном состоят из водородной плазмы.

Три изотопа водорода имеют собственные названия1H — протий2H — дейтерий и 3H — тритий(радиоактивен). Ядро самого распространённого изотопа, протия, состоит из одного только протона и не содержит нейтронов.

При стандартных температуре и давлении водород — бесцветный, не имеющий запаха и вкуса, нетоксичныйдвухатомный газ с химической формулой H2, который в смеси с воздухом или кислородом горюч и крайне пожаро- и взрывоопасен[3]. В присутствии других окисляющих газов, например фтора или хлора, водород также взрывоопасен. Поскольку водород охотно формирует ковалентные связи с большинством неметаллов, большая часть водорода на Земле существует в молекулярных соединениях, таких как вода или органические вещества. Водород играет особенно важную роль в кислотно-основных реакциях.

Растворим в этаноле и ряде металловжелезеникелепалладиититанеплатинениобии.

 

Содержание

История открытия[править | править код]

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Впервые водород получил Парацельс, погружая железные опилки в серную кислоту в XVI веке.

В 1671 году Роберт Бойль подробно описал реакцию между железными опилками и разбавленными кислотами, при которой выделяется газообразный водород[4][5].

В 1766 году Генри Кавендиш был первым, кто признал газообразный водород индивидуальным элементом, назвав газ, выделяющийся при реакции металла с кислотой «горючим воздухом». Он предположил, что «горючий воздух» идентичен гипотетическому веществу, называемому «флогистон», и в 1781 году обнаружил, что при его сгорании образуется вода[6][7].

Прямо указывал на выделение водорода и Михаил Ломоносов, но он уже понимал, что это не флогистон.

Французский химик Антуан Лавуазье совместно с инженером Жаном Мёнье, используя специальные газометры, в 1783 году осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Так он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия[править | править код]

Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ — вода и γεννάω — рождаю) — «рождающий воду». В 1801 году последователь Лавуазье, академик Василий Севергин, называл его «водотворное вещество», он писал[8]:

Водотворное вещество в соединении с кислотворным составляет воду. Сие можно доказать, как через разрешение, так и через составление.

Русское наименование «водород» предложил химик Михаил Соловьёв в 1824 году — по аналогии с «кислородом» Ломоносова.

Распространённость[править | править код]

Во Вселенной[править | править код]

Распространение ионизированного водорода в межзвёздной среде в различных частях нашей Галактики. Изображение в диапазоне H-альфа.

В настоящее время водород — самый распространённый элемент во Вселенной[9]. На его долю приходится около 88,6 % всех атомов (около 11,3 % составляют атомы гелия, доля всех остальных вместе взятых элементов — порядка 0,1 %)[10]. Таким образом, водород — основная составная часть звёзд и межзвёздного газа. Повсеместное возникновение атомарного водорода впервые произошло в эпоху рекомбинации.

В условиях звёздных температур (например, температура поверхности Солнца ~6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекулатомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы[править | править код]

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода.

В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму для сухого воздуха[11][12]).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках, где по числу атомов на водород приходится почти 63 %[13].

Получение[править | править код]

Основная статья: Производство водородаСм. также: Биотехнологическое получение водорода

В промышленности[править | править код]

На 2019 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м3 газа.[14] Почти все остальное получают из угля. Около 0,1 % (~100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает ~830 млн тонн CO2. Себестоимость водорода из природного газа оценивается в 1,5-3 доллара за 1 кг.

{\displaystyle {\mathsf {CH_{4}+H_{2}O\ \rightleftarrows {}\ CO+3H_{2}}}}

  • Пропускание паров воды над раскалённым коксом при температуре около 1000 °C:

{\displaystyle {\mathsf {H_{2}O+C\ \rightleftarrows {}\ CO\uparrow +H_{2}\uparrow }}}

{\displaystyle {\mathsf {2NaCl+2H_{2}O\ {\xrightarrow {}}\ 2NaOH+Cl_{2}\uparrow +H_{2}\uparrow }}}

{\displaystyle {\ce {2H2O ->[4e^{-}] 2H2 ^ + O2 ^}}}

Кроме того, существует промышленная технология электролиза химически чистой воды, без применения каких-либо добавок. Фактически, устройство представляет собой обратимый топливный элемент с твёрдой полимерной мембраной[15] (англ.).

{\displaystyle {\mathsf {2CH_{4}+O_{2}\rightleftarrows {}\ 2CO+4H_{2}}}}

В лаборатории[править | править код]

{\displaystyle {\mathsf {Zn+H_{2}SO_{4}\rightarrow ZnSO_{4}+H_{2}\uparrow }}}

{\displaystyle {\mathsf {Ca+2H_{2}O\rightarrow Ca(OH)_{2}+H_{2}\uparrow }}}

{\displaystyle {\mathsf {NaH+H_{2}O\rightarrow NaOH+H_{2}\uparrow }}}

{\displaystyle {\mathsf {2Al+2NaOH+6H_{2}O\rightarrow 2Na[Al(OH)_{4}]+3H_{2}\uparrow }}}

{\displaystyle {\mathsf {Zn+2KOH+2H_{2}O\rightarrow K_{2}[Zn(OH)_{4}]+H_{2}\uparrow }}}

{\displaystyle {\mathsf {2H_{3}O^{+}+2e^{-}\rightarrow 2H_{2}O+H_{2}\uparrow }}}

Просмотр содержимого документа
«Суутектин ачылуу тарыхы, алынышы.»

Водород

[править | править код]

Материал из Википедии — свободной энциклопедии

Перейти к навигацииПерейти к поиску

Водород

Гелий →

1

H

Li

1H



Внешний вид простого вещества

Газ без цвета, запаха и вкуса

Водород в разрядной трубке

Свойства атома

Название, символ, номер

Водород / Hydrogenium (H), 1

Атомная масса 
(
молярная масса)

[1,00784; 1,00811][комм 1][1] а. е. м. (г/моль)

Электронная конфигурация

1s1

Радиус атома

53 пм

Химические свойства

Ковалентный радиус

32 пм

Радиус иона

54 (−1 e) пм

Электроотрицательность

2,20[2] (шкала Полинга)

Степени окисления

+1, 0, −1

Энергия ионизации 
(первый электрон)

 1311,3 (13,595) кДж/моль (эВ)

Термодинамические свойства простого вещества

Плотность (при н. у.)

0,0000899 (при 273 K (0 °C)) г/см³

Температура плавления

14,01 K; −259,14 °C

Температура кипения

20,28 K; −252,87 °C

Уд. теплота плавления

0,117 кДж/моль

Уд. теплота испарения

0,904 кДж/моль

Молярная теплоёмкость

28,47[3] Дж/(K·моль)

Молярный объём

14,1 см³/моль

Кристаллическая решётка простого вещества

Структура решётки

гексагональная

Параметры решётки

a = 3,780 c = 6,167 Å

Отношение c/a

1,631

Температура Дебая

110 K

Прочие характеристики

Теплопроводность

(300 K) 0,1815 Вт/(м·К)

Номер CAS

12385-13-6

Эмиссионный спектр


1

Водород

H

1,00784

1s1

Водоро́д (Hлат. hydrogenium) — химический элемент периодической системы с обозначением H и атомным номером 1, самый лёгкий из элементов периодической таблицы. Его одноатомная форма — самое распространённое химическое вещество во Вселенной, составляющее примерно 75 % всей барионной массы. Звёзды, кроме компактных, в основном состоят из водородной плазмы.

Три изотопа водорода имеют собственные названия1H — протий2H — дейтерий и 3H — тритий(радиоактивен). Ядро самого распространённого изотопа, протия, состоит из одного только протона и не содержит нейтронов.

При стандартных температуре и давлении водород — бесцветный, не имеющий запаха и вкуса, нетоксичныйдвухатомный газ с химической формулой H2, который в смеси с воздухом или кислородом горюч и крайне пожаро- и взрывоопасен[3]. В присутствии других окисляющих газов, например фтора или хлора, водород также взрывоопасен. Поскольку водород охотно формирует ковалентные связи с большинством неметаллов, большая часть водорода на Земле существует в молекулярных соединениях, таких как вода или органические вещества. Водород играет особенно важную роль в кислотно-основных реакциях.

Растворим в этаноле и ряде металловжелезеникелепалладиититанеплатинениобии.

История открытия[править | править код]

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Впервые водород получил Парацельс, погружая железные опилки в серную кислоту в XVI веке.

В 1671 году Роберт Бойль подробно описал реакцию между железными опилками и разбавленными кислотами, при которой выделяется газообразный водород[4][5].

В 1766 году Генри Кавендиш был первым, кто признал газообразный водород индивидуальным элементом, назвав газ, выделяющийся при реакции металла с кислотой «горючим воздухом». Он предположил, что «горючий воздух» идентичен гипотетическому веществу, называемому «флогистон», и в 1781 году обнаружил, что при его сгорании образуется вода[6][7].

Прямо указывал на выделение водорода и Михаил Ломоносов, но он уже понимал, что это не флогистон.

Французский химик Антуан Лавуазье совместно с инженером Жаном Мёнье, используя специальные газометры, в 1783 году осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Так он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия[править | править код]

Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ — вода и γεννάω — рождаю) — «рождающий воду». В 1801 году последователь Лавуазье, академик Василий Севергин, называл его «водотворное вещество», он писал[8]:

Водотворное вещество в соединении с кислотворным составляет воду. Сие можно доказать, как через разрешение, так и через составление.

Русское наименование «водород» предложил химик Михаил Соловьёв в 1824 году — по аналогии с «кислородом» Ломоносова.

Распространённость[править | править код]

Во Вселенной[править | править код]

Распространение ионизированного водорода в межзвёздной среде в различных частях нашей Галактики. Изображение в диапазоне H-альфа.

В настоящее время водород — самый распространённый элемент во Вселенной[9]. На его долю приходится около 88,6 % всех атомов (около 11,3 % составляют атомы гелия, доля всех остальных вместе взятых элементов — порядка 0,1 %)[10]. Таким образом, водород — основная составная часть звёзд и межзвёздного газа. Повсеместное возникновение атомарного водорода впервые произошло в эпоху рекомбинации.

В условиях звёздных температур (например, температура поверхности Солнца ~6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекулатомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы[править | править код]

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода.

В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму для сухого воздуха[11][12]).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках, где по числу атомов на водород приходится почти 63 %[13].

Получение[править | править код]

Основная статья: Производство водорода

См. также: Биотехнологическое получение водорода

В промышленности[править | править код]

На 2019 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м3 газа.[14] Почти все остальное получают из угля. Около 0,1 % (~100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает ~830 млн тонн CO2. Себестоимость водорода из природного газа оценивается в 1,5-3 доллара за 1 кг.

  • Конверсия метана с водяным паром при 1000 °C:

{\displaystyle {\mathsf {CH_{4}+H_{2}O\ \rightleftarrows {}\ CO+3H_{2}}}}

  • Пропускание паров воды над раскалённым коксом при температуре около 1000 °C:

{\displaystyle {\mathsf {H_{2}O+C\ \rightleftarrows {}\ CO\uparrow +H_{2}\uparrow }}}

  • Электролиз водных растворов солей:

{\displaystyle {\mathsf {2NaCl+2H_{2}O\ {\xrightarrow {}}\ 2NaOH+Cl_{2}\uparrow +H_{2}\uparrow }}}

  • Электролиз водных растворов гидроксидов активных металлов (преимущественно, гидроксида калия)[15] (англ.)

{\displaystyle {\ce {2H2O -[4e^{-}] 2H2 ^ + O2 ^}}}

Кроме того, существует промышленная технология электролиза химически чистой воды, без применения каких-либо добавок. Фактически, устройство представляет собой обратимый топливный элемент с твёрдой полимерной мембраной[15] (англ.).

  • Каталитическое окисление кислородом:

{\displaystyle {\mathsf {2CH_{4}+O_{2}\rightleftarrows {}\ 2CO+4H_{2}}}}

  • Крекинг и риформинг углеводородов в процессе переработки нефти.

В лаборатории[править | править код]

  • Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную серную кислоту:

{\displaystyle {\mathsf {Zn+H_{2}SO_{4}\rightarrow ZnSO_{4}+H_{2}\uparrow }}}

  • Взаимодействие кальция с водой:

{\displaystyle {\mathsf {Ca+2H_{2}O\rightarrow Ca(OH)_{2}+H_{2}\uparrow }}}

  • Гидролиз гидридов:

{\displaystyle {\mathsf {NaH+H_{2}O\rightarrow NaOH+H_{2}\uparrow }}}

  • Действие щелочей на цинк или алюминий:

{\displaystyle {\mathsf {2Al+2NaOH+6H_{2}O\rightarrow 2Na[Al(OH)_{4}]+3H_{2}\uparrow }}}

{\displaystyle {\mathsf {Zn+2KOH+2H_{2}O\rightarrow K_{2}[Zn(OH)_{4}]+H_{2}\uparrow }}}

  • С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

{\displaystyle {\mathsf {2H_{3}O^{+}+2e^{-}\rightarrow 2H_{2}O+H_{2}\uparrow }}}




Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!