СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Тема урока:  Числовая окружность (обобщающее занятие)

Категория: Алгебра

Нажмите, чтобы узнать подробности

План урока

Предмет: математика

Преподаватель: Амирханова А. К.

Дата проведении:­­­­­­­­­­­­­­­__________

Тема урока:  Числовая окружность (обобщающее занятие)

 

 

Цель: рассмотреть понятия, связанные с числовой окружностью.

Ход урока

I. Сообщение темы и цели урока

 

II. Изучение нового материала

Обычно углы в геометрии рассматриваются при пересечении прямых в многоугольниках (в частности, в треугольниках). При этом рассматриваемые углы составляют менее 360°. В физике (для колебательных, волновых и других процессов) приходится учитывать углы и больше 360°. Поэтому возникает понятие обобщенного угла.

 

 

Рассмотрим окружность радиуса 1 с центром в начале координат, которую называют числовой окружностью. Возьмем точку Р0 (1; 0). Сместим эту точку по окружности и получим точку Рt. При этом смещение может происходить и по часовой стрелке, и против часовой стрелки на любую величину (как меньше одного оборота, как и больше одного оборота). Будем считать ∠P0OPt обобщенным углом {или просто углом) t. Углы, полученные поворотом точки Р0 против часовой стрелки, считаются положительными, по часовой стрелке - отрицательными. Принято указывать направление поворота стрелкой, а в случае более одного оборота - число оборотов. Например, на рисунке показаны положительный (а) и отрицательный (б) углы.

 

 

В тригонометрии величины углов, как правило, измеряются в радианах и значительно реже - в градусах. При этом за угол, равный 1 радиану (1 рад; слово «рад» обычно не пишут), принимают центральный угол, опирающийся на дугу окружности длиной, равной радиусу окружности; за угол, равный 1 градусу (1°), - центральный угол, опирающийся на дугу окружности длиной, равной 1/360 длины окружности. Рассматривая единичную окружность, получаем, что ее длина равна 2π. Поэтому между радианной и градусной мерой существует простое соотношение: 2п = 360° или п = 180°. Тогда  

Пример 1

Запишем в других единицах измерения углы:

Учтем, что 1 (рад) = (180/π). Тогда получим:

Учтем, что 1° = π/180 (рад). Тогда имеем:

В частности, на последнем рисунке приведены углы:

Заметим, что использование радианной меры углов обусловлено, в том числе, более простой записью ряда формул. Для окружности радиуса R длина l ее дуги в t радиан вычисляется по формуле l = tR. Если дуга содержит n°, то аналогичная формула имеет вид:  Также площадь S сектора крута радиуса R, дуга которого содержит t радиан вычисляется по формуле  Если дуга содержит n°, то аналогичная формула имеет вид: 

Теперь напомним определения основных тригонометрических функций, введенные в курсе геометрии.

 

 

Рассмотрим прямоугольный треугольник ABC с катетами а и b и гипотенузой с, с острым углом t. Тогда sin t = a/c (отношение противолежащего катета к гипотенузе); cos t = b/c(отношение прилежащего катета к гипотенузе); tg t = a/b (отношение противолежащего катета к прилежащему катету); ctg t = b/a (отношение прилежащего катета к противолежащему катету).

Для данного угла t отношения a/c, b/c, a/b, b/a не зависят от величин а, b и с.

 

 

Действительно, рассмотрим два подобных прямоугольных треугольника ABC и АВ1С1 с общим острым углом t, катетами ВС = а, В1С1 = а1 и гипотенузами АВ = с, АВ1 = с1. По определению синуса из этих треугольников имеем:  Но с другой стороны, из подобия треугольников получаем:  или . Поэтому отношения  не зависят от      величин а, с, а1, c1 и зависят только от величины угла t. Следовательно, sin t (как и остальные значения cos t, tg t, ctg t) являются функциями угла t.

 

 

 

Пример 2

Найдем значения тригонометрических функций для π/6.

 

 

Так как тригонометрические функции угла не зависят от сторон треугольника, то рассмотрим прямоугольный треугольник с гипотенузой АВ = 1 и острым углом А = π/6 = 30°. В таком треугольнике  Тогда по теореме Пифагора  Теперь легко найти все тригонометрические функции: 

Для любого угла приближенные значения основных тригонометрических функций находятся с помощью калькулятора или таблиц. Для некоторых углов можно найти и точные значения тригонометрических функций, аналогично примеру 2. Эти значения приведены в таблице. Знак «-» в таблице означает, что данная функция при этом значении аргумента не определена (не существует).

 

Аргумент t

Функция

sin t

cos t

tg t

ctg t

0° = 0

0

1

0

-

30° = π/6

1/2

45° = π/4

1

1

60° = π/3

1/2

90° = π/2

1

0

-

0

 

 

Заметим, что достаточно помнить значения только первых трех строк этой таблицы. Используя свойства тригонометрических функций и формулы приведения (см. следующие уроки), можно находить значения тригонометрических функций и для других углов, связанных с углами 0, π/6, π/4.

 

Пример 3

Вычислим, используя данные приведенной таблицы:

 

 (учтено, что слагаемые образуют бесконечно убывающую геометрическую прогрессию).

 

Пример 4

Известно, что 

Найдем 

Найдем связь между sin t и cos t, используя условие задачи 

Заметим, что полученный ответ справедлив при cos t ≠ 0. Однако cos t не может равняться нулю, так как это противоречит условию задачи. Действительно, если cos t = 0, то выражение   имеет вид: или l = 2. Так как это неравенство неверное, то cos t ≠ 0.

 

III. Контрольные вопросы

1. Как строится угол на числовой окружности?

2. Дайте определение 1 радиана и 1 градуса.

3. Какая связь между радианной и градусной мерами угла?

4. Дайте определение основных тригонометрических функций.

 

IV. Задание на уроке

§ 4, № 1; 3; 7; 12 (а, б); 13 (в, г); 14; 17; 19;

§ 5, № 1; 4; 6; 8; 10 (а, 6); 11; 13.

 

V. Задание на дом

§ 4, № 2; 4; 9; 12 (в, г); 13 (а, б); 15; 18; 20;

§ 5, № 2; 5; 7; 9; 10 (в, г); 12; 14.

 

VI. Творческие задания

1. Вычислите:

Ответы: 

2. Известно, что 

Найдите 

Ответ: 22/27.

3. Известно, что 

Найдите 

Ответ: 20/17.

 

VII. Подведение итогов урока

 

Просмотр содержимого документа
«Тема урока:  Числовая окружность (обобщающее занятие)»

План урока

Предмет: математика

Преподаватель: Амирханова А. К.

Дата проведении:­­­­­­­­­­­­­­­__________

Тема урока: Числовая окружность (обобщающее занятие)

 



Цель: рассмотреть понятия, связанные с числовой окружностью.

Ход урока

I. Сообщение темы и цели урока

 

II. Изучение нового материала

Обычно углы в геометрии рассматриваются при пересечении прямых в многоугольниках (в частности, в треугольниках). При этом рассматриваемые углы составляют менее 360°. В физике (для колебательных, волновых и других процессов) приходится учитывать углы и больше 360°. Поэтому возникает понятие обобщенного угла.

 

 

Рассмотрим окружность радиуса 1 с центром в начале координат, которую называют числовой окружностью. Возьмем точку Р0 (1; 0). Сместим эту точку по окружности и получим точку Рt. При этом смещение может происходить и по часовой стрелке, и против часовой стрелки на любую величину (как меньше одного оборота, как и больше одного оборота). Будем считать ∠P0OPt обобщенным углом {или просто углом) t. Углы, полученные поворотом точки Р0 против часовой стрелки, считаются положительными, по часовой стрелке - отрицательными. Принято указывать направление поворота стрелкой, а в случае более одного оборота - число оборотов. Например, на рисунке показаны положительный (а) и отрицательный (б) углы.

 

 

В тригонометрии величины углов, как правило, измеряются в радианах и значительно реже - в градусах. При этом за угол, равный 1 радиану (1 рад; слово «рад» обычно не пишут), принимают центральный угол, опирающийся на дугу окружности длиной, равной радиусу окружности; за угол, равный 1 градусу (1°), - центральный угол, опирающийся на дугу окружности длиной, равной 1/360 длины окружности. Рассматривая единичную окружность, получаем, что ее длина равна 2π. Поэтому между радианной и градусной мерой существует простое соотношение: 2п = 360° или п = 180°. Тогда   

Пример 1

Запишем в других единицах измерения углы:

Учтем, что 1 (рад) = (180/π). Тогда получим:

Учтем, что 1° = π/180 (рад). Тогда имеем:

В частности, на последнем рисунке приведены углы:

Заметим, что использование радианной меры углов обусловлено, в том числе, более простой записью ряда формул. Для окружности радиуса R длина l ее дуги в t радиан вычисляется по формуле l = tR. Если дуга содержит n°, то аналогичная формула имеет вид:   Также площадь S сектора крута радиуса R, дуга которого содержит t радиан вычисляется по формуле   Если дуга содержит n°, то аналогичная формула имеет вид: 

Теперь напомним определения основных тригонометрических функций, введенные в курсе геометрии.

 

 

Рассмотрим прямоугольный треугольник ABC с катетами а и b и гипотенузой с, с острым углом t. Тогда sin t = a/c (отношение противолежащего катета к гипотенузе); cos t = b/c(отношение прилежащего катета к гипотенузе); tg t = a/b (отношение противолежащего катета к прилежащему катету); ctg t = b/a (отношение прилежащего катета к противолежащему катету).

Для данного угла t отношения a/c, b/c, a/b, b/a не зависят от величин а, b и с.

 

 

Действительно, рассмотрим два подобных прямоугольных треугольника ABC и АВ1С1 с общим острым углом t, катетами ВС = а, В1С1 = а1 и гипотенузами АВ = с, АВ1 = с1. По определению синуса из этих треугольников имеем:   Но с другой стороны, из подобия треугольников получаем:   или  . Поэтому отношения   не зависят от      величин а, с, а1, c1 и зависят только от величины угла t. Следовательно, sin t (как и остальные значения cos t, tg t, ctg t) являются функциями угла t.

 

 

 

Пример 2

Найдем значения тригонометрических функций для π/6.

 

 

Так как тригонометрические функции угла не зависят от сторон треугольника, то рассмотрим прямоугольный треугольник с гипотенузой АВ = 1 и острым углом А = π/6 = 30°. В таком треугольнике   Тогда по теореме Пифагора   Теперь легко найти все тригонометрические функции: 

Для любого угла приближенные значения основных тригонометрических функций находятся с помощью калькулятора или таблиц. Для некоторых углов можно найти и точные значения тригонометрических функций, аналогично примеру 2. Эти значения приведены в таблице. Знак «-» в таблице означает, что данная функция при этом значении аргумента не определена (не существует).

 

Аргумент t

Функция

sin t

cos t

tg t

ctg t

0° = 0

0

1

0

-

30° = π/6

1/2

45° = π/4

1

1

60° = π/3

1/2

90° = π/2

1

0

-

0

 

 

Заметим, что достаточно помнить значения только первых трех строк этой таблицы. Используя свойства тригонометрических функций и формулы приведения (см. следующие уроки), можно находить значения тригонометрических функций и для других углов, связанных с углами 0, π/6, π/4.

 

Пример 3

Вычислим, используя данные приведенной таблицы:

 

 (учтено, что слагаемые образуют бесконечно убывающую геометрическую прогрессию).

 

Пример 4

Известно, что 

Найдем 

Найдем связь между sin t и cos t, используя условие задачи   Подставим sin t в выражение А: 

Заметим, что полученный ответ справедлив при cos t ≠ 0. Однако cos t не может равняться нулю, так как это противоречит условию задачи. Действительно, если cos t = 0, то выражение    имеет вид:  или l = 2. Так как это неравенство неверное, то cos t ≠ 0.

 

III. Контрольные вопросы

1. Как строится угол на числовой окружности?

2. Дайте определение 1 радиана и 1 градуса.

3. Какая связь между радианной и градусной мерами угла?

4. Дайте определение основных тригонометрических функций.

 

IV. Задание на уроке

§ 4, № 1; 3; 7; 12 (а, б); 13 (в, г); 14; 17; 19;

§ 5, № 1; 4; 6; 8; 10 (а, 6); 11; 13.

 

V. Задание на дом

§ 4, № 2; 4; 9; 12 (в, г); 13 (а, б); 15; 18; 20;

§ 5, № 2; 5; 7; 9; 10 (в, г); 12; 14.

 

VI. Творческие задания

1. Вычислите:

Ответы: 

2. Известно, что 

Найдите 

Ответ: 22/27.

3. Известно, что 

Найдите 

Ответ: 20/17.

 

VII. Подведение итогов урока





Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!