СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Тема: Строение, свойства и биологическое значение нуклеиновых кислот

Категория: Химия

Нажмите, чтобы узнать подробности

Материалы к занятию по теме : Строение, свойства и биологическое значение нуклеиновых кислот

Просмотр содержимого документа
«Тема: Строение, свойства и биологическое значение нуклеиновых кислот»

Учебная дисциплина: Биохимия (2ч)


Тема: Строение, свойства и биологическое значение нуклеиновых кислот

Тип занятия: КУ

Цель занятия: сформировать представление о строении, свойствах, биологической роли ДНК,РНК, АТФ, АДФ, формировать целостное представление об обмене веществ.

Ход занятия

  1. Организационный момент

  2. Формулирование целей и задач урока

3.Актуализация опорных знаний.

4. Объяснение нового материала с элементами закрепления.

5.Закрепление материала

6. Рефлексия

7.Задание на дом. [ 1 ] c. 137-153 Составить 4 вопроса по теме

Пособия: модельДНК, видеосюжет

3.Актуализация опорных знаний.

1. Генетический материал клетки

2. Что вы знаете о ДНК и РНК , их роли в клетке и организме.

3.Объяснение нового материала с элементами закрепления.

3.1.Определение нуклеиновых кислот

3.2. Классификация

3.3. Функции и биологическая роль нуклеиновых кислот

3.4. Участие в биохимических процессах

4.Закрепление материала

4.1. Сходства и отличия ДНК и РНК

? Роль в биосинтезе ДНК…

? Виды РНК

? Структура ДНК и РНК

? Где локализованы нуклеиновые кислоты

?Роль АТФ и АДФ

4.1.Рефлексия. Игра «Цепочка»

- Каждый высказывает 2 основных понятия, которые запомнились.



 


Материал к занятию

Нуклеиновые кислоты – важнейшие  биополимеры с относительной молекулярной массой, достигающей 5·109. Они являются не только хранителем и источником генетической информации, но и выполняют ряд других жизненно важных функций. Нуклеиновые кислоты – это полимеры, мономерными звеньями которых являются нуклеотиды.

Существует два различных типа нуклеиновых кислот – дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Клетки эукариот содержат ДНК также в митохондриях и хлоропластах.

Интересно знать! Молекулы ДНК – самые крупные молекулы., их длина может составлять несколько см, а относительная масса 1010-1011. Чтобы записать нуклеотидную последовательность ДНК человека, потребуется около 1000000 страниц.

 

РНК, то по выполняемым ими функциям  различают:

1. информационные РНК (иРНК)  - в них записана информация о первичной структуре белка;

2. рибосомные РНК (рРНК)  -  входят в состав рибосом;

3. транспортные РНК (тРНК)  - обеспечивают доставку аминокислот к месту синтеза белка.

В качестве генетического материала РНК входят в состав ряда вирусов. Например, вирусы, вызывающие такие опасные заболевания, как грипп и СПИД, являются РНК-содержащими.

Нуклеиновые кислоты могут быть линейными и кольцевыми (ковалентно замкнутыми). Они могут состоять из одной или двух цепей.  

Функции нуклеиновых кислот

Нуклеиновым кислотам присущи три важнейшие функции: хранение, передача и реализация генетической информации. Кроме этих, они выполняют и другие функции, например, участвуют в катализе некоторых химических реакций, осуществляют регуляцию реализации генетической информации, выполняют структурные функции и др. Роль хранителя генетической информации выполняют двухцепочечные ДНК. Только у некоторых вирусов хранителем генетической информации являются одноцепочечные ДНК или одноцепочечные, а также двухцепочечные РНК. Генетическая информация записана в генах. Ген по своей природе является участком нуклеиновой кислоты. В них закодирована первичная структура белков. Гены могут также нести информацию о структуре некоторых типов РНК, например, тРНК и рРНК.

Генетическая информация передается от родителей к потомкам. Этот процесс  связан с удвоением нуклеиновой кислоты (ДНК или РНК), выполняющей функцию  хранителя генетической информации,  и последующей передачи ее потомкам.


В результате реализации генетической информации происходит синтез белков, закодированных в ДНК в виде генов (или для некоторых вирусов – в РНК). В этом процессе информация о первичной структуре белка  переписывается с молекулы ДНК на иРНК и затем расшифровывается на рибосомах при участии тРНК. В итоге образуется белок:ДНК   РНК   белок. 

Состав нуклеиновых кислот

Нуклеиновые кислоты представляют собой полимеры, построенные из нуклеотидов, соединенных между собой фосфодиэфирными связями. Каждый нуклеотид состоит из остатков азотистого основания, пентозы и фосфорной кислоты.Различают пиримидиновые и пуриновые основания, называемые также  соответственно пиримидины и пурины.  Пиримидиновые основания являются производными пиримидина:

пуриновые основания – производными  пурина:

К пиримидинам относятся урацил, тимин и цитозин, к пуринам – аденин  и гуанин:

В состав ДНК входят тимин, цитозин, аденин и гуанин, в состав РНК – те же основания, только вместо тимина входит урацил. Кроме азотистых оснований, нуклеиновые кислоты содержат пентозы: ДНК – D-дезоксирибозу, а РНК – D-рибозу. Углеводы находятся в виде b-аномера фуранозной формы:

Азотистое основание связывается с углеводом за счет гликозидного гидроксила. Образуется нуклеозид. Схематически образование нуклеозида можно изобразить так:

В состав нуклеиновых кислот входят 8 нуклеозидов, 4 – в состав РНК и 4 – в состав ДНК

Нуклеозиды, входящие в состав РНК:

Сокращенно аденозин-5’-монофосфат обозначается как АМФ. Если нуклеотид образован дезоксорибозой, аденином и одним остатком фосфорной кислоты, то он будет носить название дезоксиаденозинмонофосфат, или сокращенно дАМФ. В таблице 5 представлена номенклатура нуклеотидов.

 Таблица  5.

 Номенклатура нуклеотидов, образующих ДНК и РНК 

Азотистое

основание

Нуклеозид

Нуклеотид

полное название

сокращенное название

Аденин

Аденозин

Дезоксиаденозин

Аденозинмонофосфат

Дезоксиаденозинмонофосфат

АМФ

дАМФ

Гуанин

Гуанозин

Дезоксигуанозин

Гуанозинмонофосфат

Дезоксигуанозинмонофосфат

ГМФ

дГМФ

Цитозин

Цитидин

Дезоксицитидин

Цитидинмонофосфат

Дезоксицитидинмонофосфат

ЦМФ

дЦМФ

Урацил

Уридин

Уридинмонофосфат

УМФ

Тимин

Дезокситимидин

Дезокситимидинмонофосфат

дТМФ

 

В ДНК заложена информация о первичной структуре белка. Код ДНК един для всех организмов. Каждой аминокислоте соответствует три нуклеотида, образующих триплет, или кодон. Такое кодирование избыточно: возможны 64 комбинации триплетов, тогда как аминокислот только 20. Существуют также управляющие триплеты, например, обозначающие начало и конец гена.

Синтез белка начинается с транскрипции, т. е. синтеза иРНК по матрице ДНК. Процесс идет с помощью фермента полимеразы по принципу комплементарности и начинается с определенного участка ДНК. Синтезированная иРНК поступает в цитоплазму на рибосомы, где и идет синтез белка.

тРНК имеет структуру, похожую на лист клевера, и обеспечивает перенос аминокислот к рибосомам. Каждая аминокислота прикрепляется к акцепторному участку соответствующей тРНК, расположенному на «черешке листа» . Противоположный конец тРНК называется антикодоном и несет информацию о триплете, соответствующем данной аминокислоте. Существует более 20 видов тРНК.

Перенос информации с иРНК на белок во время его синтеза называется трансляцией. Собранные в полисомы рибосомы двигаются по иРНК; движение происходит последовательно, по триплетам. В месте контакта рибосомы с иРНК работает фермент, собирающий белок из аминокислот, доставляемых к рибосомам тРНК. При этом происходит сравнение кодона иРНК с антикодоном тРНК; если они комплементарны, фермент (синтетаза) «сшивает» аминокислоты, а рибосома продвигается вперед на один кодон.

Синтез одной молекулы белка обычно идет 1–2 мин (один шаг занимает 0,2 с) .

Биосинтез белка – это цепь реакций, в которых используется энергия АТФ. Во всех реакциях синтеза белка участвуют ферменты.

Биосинтез белка – это матричный синтез. Матрицей является ДНК в синтезе РНК и ДНК или РНК в синтезе белка.



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!