Бишкек шаары. №66 «Ден соолуктун жана
өнүгүүнүн мектеби» гимназия-окуу тарбия комплекси
9-класс ГЕОМЕТРИЯ
Тема: ⸹63.4 Конустун аянты
И.Б.Бекбоев, А.А Бөрүбаев, А.А.Айылчиев.
Математика мугалими:
Маликова Д.Н.
Бугунку сабакта:
- Конустун, кесилген конустун каптал жана толук беттеринин аянттарын табуунун формулалары менен таанышасыңар;
- Маселелерди чыгарууга көнүгөсүңөр.
- Биздин жашообузда геометриядан алган билим, көндүмдөрдү колдонууга үйрөнөсүңөр.
Эгерде конустук бетти бир түзүүчүсү боюнча кесип анын жайылмасын түзүп алсак, анда сүрөттөгүдөй тегеректин секторуна жана тегерекке ээ болобуз.
S
Конустун радиусу R, түзүүчүсү
l
SA=l – сектордун радиусу, ∟ASB=
l
B
l
A
R
R
Конустун каптал бетинин аянты сектордун аянтына барабар
болот.
r – тегеректин радиусу, α – жаанын чоңдугу, R – конустун негизинин радиусу, l – конустун түзүүчүсү
Оозеки маселе:
20) Эгерде конустун түзүүчүсүн 2 эсе чоңойтсок анда конустун каптал бетинин аянты кандай өзгөрөт?
Sкб = Rl
Sкб = R2l = 2 Rl
R
2l
l
Жообу: Конустун каптал бетинин аянты 2 эсе чоңоёт.
R
2) Конустун радиусу 3 см, түзүүчүсү 10 см болсо,
конустун толук бетинин аянтын тапкыла.
Sн = R 2 = · 3 2 = 9 (см 2 )
10
Sкб = 3·10 = 30 (см 2 )
3
Sтб = 39 (см 2 )
Жообу: 30 см 2 , 39 см 2
3) Үйдүн чатырын конус түрүндө диаметри 6м жана бийиктиги
2 м кылып жабуу үчүн канча лист темир керектелет?
1 лист темирдин өлчөмү 0,7 м x 1,4 м, кесилген калдыктары
жалпы аянтынын 10% и сарпталат.
1,4 м
1) 1 лист темирдин аянты
0,7 м
0,7 · 1,4 = 0,98 м 2
2 м
2) R = 0,5 d= 0,5 · 6 = 3 (м), h = 2 м.
3) l =
4) S к б= Rl = ·3 · = 3 (м 2 )
2
l
S материал = 3 + 0,1 · 3 =
= 3,3 (м 2 )≈ 37,36 м 2
3
5) 37, 36 : 0,98 = 38,12 ≈ 39
Жообу: Үйдүн чатырын жабуу үчүн 39 лист темир керектелет.
№ 4. Конустун түзүүчүсү l , октук кесилишинин
чокусундагы бурчу Конустун толук бетинин аянтын тапкыла.
l ,
Берилди:
Табуу керек:
R=
S т.б = R( l + R) ,
Чыгаруу:
l
S т.б = R( l + R)
l
l
l
S т.б = ( l + )
=
S т.б =
Жообу:
№ 21. Конустун түзүүчүсү l =16 cм, R=4cм болсо, анда конустун толук бетинин аянтын тапкыла.
Берилди:
l =16 cм, R=4cм
l =16 cм
Табуу керек:
S т.б = R( l + R)
Чыгаруу:
S т.б = (16 +4)= 80
R=4cм
Жообу: 80 см 2
Кесилген конустун беттеринин аянттары:
r – кичине негиздин радиусу
R- чоң негиздин радиусу
l – кесилген конустун түзүүчүсү
S к.б = l ( r + R)
Кесилген конустун каптал бетинин аянты
негиздеринин айланаларынын узундуктарынын
суммасынын жарым түзүүчүсүнө көбөйткөнгө барабар.
-кичине негизинин аянты
-чоң негизинин аянты
Толук бетинин аянты -
S т.б =+
S т.б =+
№ 8. Кесилген конустун бийиктиги 8 дм, негиздеринин диаметрлери
20дм жана 8 дм. Анын каптал беттеринин аянтын жана
толук бетинин аянтын тапкыла.
20дм,
h =8 дм,
Берилди:
8дм
Табуу керек:
S к.б = l (r+ R)
Чыгаруу:
10 дм,
l=
S к.б = l (r+ R)
= 10 (4+10)=140
S т.б =+
8дм
8дм
S т.б = 140 +
6дм
=140 + 16
Жообу:
140 ;
Тапшырма:
- Окуу китебиндеги 229 –бет , №21(3) жана №23 маселени чыгарабыз.
- Конус жана кесилген конустун негизги элементтерин кайталайбыз.
Үйдө олтур!
Байланыш: - Дамира эже
жана - 0773 401 121
E-mail [email protected]