СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Конспект урока "Теорема Виета"

Категория: Математика

Нажмите, чтобы узнать подробности

Урок изучения нового материала. На этом уроке учащиеся смогут узнать об одной из основных теорем математики.

Просмотр содержимого документа
«Конспект урока "Теорема Виета"»

Тема урока: Теорема Виета

Учитель: Сидельникова Антонина Владимировна, 1 Пересыпкинский филиал МБОУ 2 Гавриловской сош

Тип урока: открытие новых знаний

Технология: проблемно – диалогическая

Цель урока: изучить теорему Виета и теорему, обратную теореме Виета


Задачи урока:

Образовательные:

- формировать умение применять теорему Виета и теорему, обратную теореме Виета в приведенных квадратных уравнениях;

- совершенствовать навык решения квадратных уравнений;

- обеспечить мотивацию к учебной деятельности как одно из средств развития и социализации личности учащихся.

Развивающие:

- формировать самостоятельность и коммуникативность;

- создавать условия для проявления познавательной активности учащихся;

- учить формулировать проблему, выдвигать гипотезы и искать их подтверждение, формулировать и высказывать суждения.

Воспитательные:

- воспитание личностно значимых ценностей (установка на самообразование, самооценку);

- воспитывать культуру умственного труда.


Ход урока

I.Организационный момент (1 мин)


II. Актуализация знаний(5 мин)

- Какую тему мы изучаем последние уроки? (Квадратные уравнения)

- Какие уравнения называются квадратными?

- Какие уравнения называются приведенными квадратными?

- Можно ли неприведенное квадратное уравнение представить в виде приведенного?

- Каким образом?

-Запишите на доске и в тетрадях общий вид приведенного квадратного уравнения

(х2 + px + q = 0) (способ выполнения: 1 ученик у доски, остальные в тетрадях)


- Проверим домашнее задание:

-Задание №1.Преобразуйте квадратное уравнение в приведенное

а) 3х2 + 6х – 12 = 0

б) 2х2 = 0

в) 3х2 – 7 = 0

г)5х2 - 10х + 2 = 0

д) 4х2 – 13 = 0

- Задание №2. Решите уравнения

а) х2 + 6х + 5 = 0

б) х2 – х – 12 = 0

в) х2 + 5х + 6 = 0

г) х2 + 3х – 10 = 0

д) х2 – 8х – 9 = 0

III.Создание проблемной ситуации (2 мин)

- А сейчас я приглашаю вас в сказку «Попадет ли Золушка на бал»?

В некотором царстве, в некотором государстве произошла такая история. Король пригласил всех жителей своей сказочной страны на бал, но злая мачеха не хотела брать с собой свою падчерицу Золушку

Мачеха: Золушка, ты сможешь поехать на бал, если за 5 минут найдешь сумму и произведение корней 20 уравнений.

Золушка: Я хорошо решаю уравнения, но за 5 минут мне никак не успеть!!!

Учитель: На помощь Золушке спешит Фея.

Золушка: Здравствуй, дорогая Фея!

Фея: Золушка, не горюй. Я открою тебе секрет, и ты справишься с заданием даже быстрей!

И Фея открыла Золушке секрет. А этот секрет, который вы сами откроете, и будет являться темой нашего урока.

Золушка: Я все поняла, дорогая Фея! Спасибо!

И через 5 минут Золушка дала ответы. А вы сможете найти суммы и произведения корней этих уравнений так же быстро? (Нет)


IV. Выдвижение гипотез (3 мин)

- Почему вы не можете также быстро выполнить это задание? (Не знаем секрета, не знаем быстрого способа определения суммы и произведения корней приведенных квадратных уравнений).

- Как вы думаете, с чем могут быть связаны корни квадратного уравнения? (C коэффициентами).

- Какой у вас возникает вопрос? Что вам предстоит выяснить? (Существует ли связь между корнями и коэффициентами приведенного квадратного уравнения? Если да, то какова эта связь?)

- Сформулируйте цель своей деятельности (Узнать, существует ли связь между корнями и коэффициентами приведенного квадратного уравнения. Если да, то какова эта связь.)

- Предположите, существует связь между корнями и коэффициентами или нет? Какова она? (Выдвижение гипотез, учитель все принимает)

- Если есть версии, нужно их проверить.


V. Открытие нового знания (12 мин)

2 ученика работают на закрытой доске, находят сумму и произведение корней приведенного квадратного уравнения, записанного в общем виде.

В уравнении х2 + pх + q = 0 D0. Найдите сумму и произведение корней.

- Сейчас мы проведем небольшую исследовательскую работу. Работать будете в группах по 4 человека. Прочитайте задание на карточке. Вы должны заполнить таблицу, проанализировать ее, найти закономерность, и определить связь корней с коэффициентами, сделать вывод.

Каждая группа получает таблицу: уравнения выписаны из домашнего задания.



Уравнение

х2 + рх + q=0

p

q

Корни

Сумма корней

Произведение корней

х2 + 6х + 5 = 0

6

5

х1= -1, х2= -5

-6

5

х2х – 12 = 0

-1

-12

х1= 4, х2= -3

1

-12

х2 + 5х + 6 = 0

5

6

х1= -3, х2= -2

-5

6

х2 + 3х – 10 = 0

3

-10

х1= -5, х2= 2

-3

-10

х2 – 8х – 9 = 0

-8

-9

х1= -1, х2= 9

8

-9





Проверка выполнения заданий в группах и на доске, выводы

Общий вывод:

- Ваше предположение подтвердилось? (да)

- Сделайте вывод(Связь между корнями и коэффициентами приведенного квадратного уравнения существует)

-Какова она? (Сумма корней равна второму коэффициенту р взятому с противоположным знаком, а произведение равно свободному члену q).

- Вывод: Утверждение верно для всех уравнений, имеющих корни

- Это утверждение называется теоремой Виета, названной в честь французского математика Франсуа Виета.

- Послушайте небольшую историческую справку об этом математике. (Выступление ученика, сопровождающееся презентацией с портретом Виета)

Сообщение. Франсуа Виет родился в 1540 году во Франции. В родном городке Виет был лучшим адвокатом, но главным делом его жизни была математика. Занимаясь наукой, Виет пришел к выводу, что необходимо усовершенствовать алгебру и тригонометрию. В 1591 году Виет ввел буквенные обозначения и для неизвестных, и для коэффициентов уравнения. Ввел формулы. Франсуа Виет отличался необыкновенной работоспособностью. Иногда, увлекшись каким-нибудь исследованием, он проводил за письменным столом по трое суток подряд.


- Какой же секрет открыла Фея Золушке (Теорему Виета)

- Назовите тему урока.

- Прочитаем теорему в учебнике (стр.127).

- Запишите теорему в виде символов в тетрадь

- В этой теореме о каких квадратных уравнениях идет речь? (О приведенных)

-Как быть с неприведенными? (Вначале представить в виде приведенных и применить теорему Виета). Что вы умеете делать с неприведенными квадратными уравнениями?

- Запишите в виде символов в тетрадь


- Для закрепления теоремы Виета я предлагаю вам послушать стихотворение «Теорема Виета».

По праву достойна в стихах быть воспета

О свойствах корней теорема Виета.

Что лучше, скажи, постоянства такого:

Умножишь ты корни – и дробь уж готова:

В числителе с, в знаменателе а;

А сумма корней тоже дроби равна.

Хоть с минусом дробь эта, что за беда –

В числителе b, в знаменателе а.


- Существует и теорема, обратная теореме Виета. Прочитайте ее в учебнике на стр. 128, а ее доказательство прочитаете дома.

- Запишите теорему в тетрадь


Зарядка для глаз (1 мин)



VI. Применение новых знаний (18 мин)

Задание №1 (5 мин)

- Теперь вы сможете также быстро, как Золушка, найти суммы и произведения корней 20 уравнений? (Да).

- Что будете применять? (Теорему Виета). Сумму и произведение корней первых 10 уравнений находите, работая в паре, а оставшихся 10 решаете самостоятельно.


x2 + pх + q = 0


x1 + x2

x1 · x2

1.

x2 + 17x - 38 = 0



2.

x2- 16x + 4 = 0



3.

3x2 + 8x - 15 = 0




4.

7x2 + 23x + 5 = 0




5.

x2 + 2x - 3 = 0



6.

x2 + 12x + 32 = 0



7.

x2- 7x + 10 = 0



8.

x2- 2x -3 = 0



9.

- x2 + 12x + 32 = 0




10.

2x2- 11x + 15 = 0




11.

3x2 + 3x - 18 = 0




12.

2x2- 7x + 3 = 0




13.

x2 + 17x -18 = 0



14.

x2-17x -18 = 0



15.

x2-11x + 18 = 0



16.

x2 + 7x - 38 = 0



17.

x2-9x + 18 = 0



18.

x2- 13x + 36 = 0



19.

x2- 15x +36 = 0



20.

x2- 5x - 36 = 0




Эталон для самопроверки задания №1

  1. x1 + x2 = -17; x1 • x2 = -38.

  2. x1 + x2 = 16; x1 • x2 = 4

3. x1+ x2 = -8/3 ; x1 • x2 = -5.

  1. x1 + x2 = -23/7; x1 • x2 = 5/7.

  2. x1 + x2 = - 2; x1 • x2 = -3.

  3. x1 + x2 = -12; x1 • x2 = 32.

7. x1 + x2 = 7; x1 • x2 = 10.

8. x1 + x2 = 2; x1• x2 = -3.

9. x1 + x2 = 12; x1 • x2 = 32.

10. x1 + x2 = 5,5; x1 • x2 = 7,5.

  1. x1 + x2 = -1; x1 • x2 = -6.

  2. x1 + x2 = 3,5; x1 • x2 = 1,5.

  3. x1 + x2 = -17; x1 • x2 = -18.

  4. x1 + x2 = 17; x1 • x2 = -18.

  5. x1 + x2 = 11; x1 • x2 = 18.

  6. x1 + x2 = -7; x1 • x2 = -38.

  7. x1 + x2 = 9; x1 • x2 = 18.

  8. x1 + x2 = 13; x1 • x2 = 36.

  9. x1 + x2 = 15; x1 • x2 = 36.

  10. x1 + x2 = 5; x1 • x2 = -36.



Задание №2. Решите уравнения и выполните проверку по теореме, обратной теореме Виета(1 ученик на открытой доске с комментированием, остальные на закрытой доске)

а) х2– 15х – 16 = 0; х1 =16, х2 = -1,

б) х2– 9х + 20 = 0; х1 = 5, х2 = 4,

в) х2+ 11х – 12 = 0; х1 =1, х2 = -12,

г) 3х2 – 4х – 4 = 0; х1=2, х2 = -2/3,

д) х2– 2х – 9 = 0; х1, 2=2±¬40/2 или х1, 2 =1±¬10


- Кто справился с этим зданием в полном объеме?

- Изучая новый материал, мы повторили ранее изученный.

VII. Рефлексия(2 мин)

- Сформулируйте теорему Виета.

- Сформулируйте теорему, обратную теореме Виета.

- Что побудило нас к открытию нового знания? (Поставленная проблема)

- Вы открывали новое знание сами или учитель сам рассказал вам теорему Виета?


VIII. Домашнее задание (1 мин)

Теорема Виета, №580 (а-г), №581 (в, г)



Список литературы:

    1. Алгебра, 8 класс (Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова) 2005г.
    2. http://festival.1september.ru/articles/530928/