Открытый урок по теме
«Первый закон термодинамики»
10 класса
Цели урока: сформулировать первый закон термодинамики и изучить уравнение, иллюстрирующее этот закон.
Задачи:
повторить вывод формулы работы газа и её особенности при изопроцессах;
повторить понятие внутренней энергии с указанием факторов, которые влияют на её изменение;
повторить закон сохранения энергии и распространить его на тепловые явления;
закрепить полученные сведения с помощью самостоятельной работы учащихся.
Тип урока: урок «открытия» нового знания
Оборудование
Компьютерная презентация; на столах учащихся металлические линейки, термометр.
1. Орг. момент.
2.Проверка домашнего задания.
Кратковременная самостоятельная работа.
1 вариант.

1. Какая работа совершается газом при переходе его из состояния 1 в состояние 2?
А. 6 кДж Б. 8 МДж В. 8 кДж Г. 6 Дж
2. Какую работу совершают 200 г водорода при изобарном нагревании на 100°С?
2 вариант.
1. Газ переходит из состояния 1 в состояние 2. Какую работу совершил газ в этом процессе?
А. 75 кДж Б. 45 кДж
В. -75 кДж Г. 30 кДж

2. На сколько изменится внутренняя энергия 320 г кислорода при увеличении температуры на 100°С?
3. Изучение нового материала.
Исторический процесс изучения тепловых явлений, приведший к формулировке закона сохранения энергии, был длительным и трудным. Различны были методы исследования тепловых и механических явлений, способы измерения единиц таких величин, как количество теплоты и работа.
Прогресс в познании природы теплоты был достигнут, когда было доказано, что при теплообмене сохраняется энергия.
Нагревание тела может происходить без сообщения ему какого-либо количества теплоты, а только за счет совершения работы.
В больших масштабах такое явление наблюдал в 1798 г. Б. Румфорд. При сверлении пушечного ствола, которое производили с помощью лошадей, вращавших большое сверло, Румфорд успевал вскипятить поставленный на ствол котел с водой. Румфорд предположил, что вода нагревается в процессе совершаемой при сверлении работы.
Используя сухие кусочки дерева, можно добыть огонь, т. е. нагреть дерево до температуры, превышающей температуру его воспламенения.
Все перечисленные примеры показали, что количество теплоты сохраняется только при теплообмене, когда не совершается работа. Количество теплоты представляет собой величину, родственную работе. Повышение температуры тела может быть вызвано как совершением работы, так и передачей количества теплоты.
Количество теплоты, как и работу, надо считать мерой изменения энергии системы и выражать ее в тех же единицах, что и работу, т. е. в джоулях.
В середине XIX в. Д. Джоулем были проведены первые опыты, доказывающие эквивалентность количества теплоты, переданного телу, и работы.
В механике закон сохранения был получен из законов Ньютона. Общий закон сохранения энергии, включающий все ее формы, является опытным законом. Он был открыт немецким ученым Р. Майером в середине XIX века, английским ученым Д. Джоулем и получил наиболее полную трактовку в трудах немецкого ученого Г. Гельмгольца.
I закон термодинамики
ΔU = A + Q
Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданной системе.
Q = ΔU + А
Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.
С помощью первого закона термодинамики можно делать важные заключения о характере протекающих процессов. Рассмотрим различные процессы, при которых одна из физических величин, характеризующих состояние газа, остаётся неизменной (изопроцессы). При этом газ будем считать идеальным.
Изохорный процесс. При изохорном процессе объём газа не меняется, и поэтому работа газа равна нулю:
ΔU = Q.
Если газ нагревается, то Q 0 и ΔU 0, его внутренняя энергия увеличивается. При охлаждении газа Q
Изотермический процесс. При изотермическом процессе (Т = const) внутренняя энергия идеального газа не меняется. Всё переданное газу количество теплоты идёт на совершение работы:
Q = А'.
Если газ получает тепло (Q 0), то он совершает положительную работу (А' 0). Если газ отдаёт тепло окружающей среде, то Q
Изобарный процесс. При изобарном процессе согласно передаваемое газу количество теплоты идёт на изменение его внутренней энергии и на совершение им работы при постоянном давлении:
Q = ΔU + А'.
Адиабатный процесс. Газ может совершать работу и без сообщения ему теплоты.
Процесс, происходящий без теплообмена с окружающей средой, называется адиабатным процессом.
Так, если сосуд с газом теплоизолировать от окружающей среды и предоставить возможность газу расширяться, то сила давления газа будет совершать положительную работу.
Согласно первому закону термодинамики количество теплоты, сообщенной системе (газу), идёт на изменение внутренней энергии системы и на совершение системой механической работы. В данном случае системе теплота не сообщается и работа равна изменению внутренней энергии, взятому с обратным знаком:
А' = -ΔU (Q = 0).
Если газ расширяется, то положительная работа совершается газом за счёт уменьшения внутренней энергии: А' 0, ΔU
При сжатии газа, когда внешние силы совершают положительную работу, а соответственно газ - отрицательную, внутренняя энергия газа увеличивается: А' 0. При адиабатном сжатии газ нагревается.
Адиабатный процесс вы можете наблюдать, накачивая насосом велосипедную камеру, насос быстро нагревается.
На горлышке бутылки с охлаждённой газированной водой при открывании образуется облачко тумана. При адиабатном расширении уменьшается температура, что приводит к конденсации пара.
Распространение звуковых волн, при котором происходит сжатие и разрежение воздуха, также является адиабатным процессом.
Повышение температуры при адиабатном сжатии наблюдается в дизельных двигателях. В них отсутствует система зажигания горючей смеси, необходимая для обычных карбюраторных двигателей внутреннего сгорания. В цилиндр засасывается не горючая смесь, а атмосферный воздух. К концу такта сжатия в цилиндр с помощью специальной форсунки впрыскивается жидкое топливо. К этому моменту температура воздуха так велика, что горючее воспламеняется.
Адиабатный процесс может быть реализован и при отсутствии теплоизоляции. Если процесс расширения или сжатия газа происходит настолько быстро, что за время процесса не успевает произойти теплообмен с внешней средой, то такой процесс также можно считать адиабатным.
4. Закрепление: самостоятельная работа на 10–15 минут.
1 вариант
1. Какую работу совершил гелий массой 0,4 кг при изобарном нагревании на 30 °С?
А) 5 кДж Б) 10 кДж В) 15 кДж Г) 20 кДж Д) 25 кДж
2. Найдите изменение внутренней энергии гелия массой 80 г при его нагревании на 60 ºС?
А) 5 кДж Б) 10 кДж В) 15 кДж Г) 20 кДж Д) 25 кДж
3. Какую работу совершил газ при циклическом процессе (рис.1)
А) 2 МДж Б) 1 МДж В) 0 Г) –1 МДж Д) –2 МДж
2 вариант
1. Найдите изменение внутренней энергии гелия массой 0,16 кг при его нагревании на
30 °С.
А) 5 кДж Б) 10 кДж В) 15 кДж Г) 20 кДж Д) 25 кДж
2. Какую работу совершил гелий массой 0,8 кг при изобарном нагревании на 60 °С?
А) 20 кДж Б) 40 кДж В) 60 кДж Г) 80 кДж Д) 100 кДж
3. Найдите изменение внутренней энергии одноатомного газа в процессе 1-2-3
А) 2 МДж Б) 1 МДж В) 0 Г) -1 МДж Д) -2 МДж
Домашнее задание
Задачи № 548, 563, 572;
Рефлексия
Продолжи любое предложение как итог по уроку:
Сегодня я узнал…
Было интересно…
Было трудно…
Я понял, что…
Теперь я могу…
Я приобрел…
У меня получилось…
Я смог…
Я попробую…
Меня удивило…
Урок дал мне для жизни…
Мне хотелось…