СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Педагогический проект "Нестандартные приемы решения квадратных уравнений"

Категория: Математика

Нажмите, чтобы узнать подробности

Проблемный вопрос: существуют ли кроме общепринятых приемов решения квадратных уравнений другие, которые позволяют быстро и рационально решать квадратные уравнения?

Просмотр содержимого документа
«Педагогический проект "Нестандартные приемы решения квадратных уравнений"»

Педагогический проект «Нестандартные приемы решения квадратных уравнений»

Копылова Марина Леонидовна

Педагогический проект "Нестандартные приемы решения квадратных уравнений"

Копылова Марина Леонидовна, учитель информатики и математики

Введение

Тема «Квадратные уравнения» является одной из самых актуальных. Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Они находят широкое применение в разных разделах математики.

В школьном курсе изучаются формулы корней квадратного уравнения, с помощью которых можно решать любые квадратные уравнения. Однако, имеются и другие приемы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения.

Проблемный вопрос: существуют ли кроме общепринятых приемов решения квадратных уравнений другие, которые позволяют быстро и рационально решать квадратные уравнения?

Гипотеза: установление связи между коэффициентами и корнями квадратного уравнения позволит найти эффективные приемы быстрого решения квадратного уравнения.

Цель: установив связь между коэффициентами и корнями квадратного уравнения, найти новые рациональные приемы решения уравнений

Задачи:

  • Изучить литературу по истории приемов решения квадратных уравнений

  • Обобщить накопленные знания о квадратных уравнениях и способах их решения.

  • Установить зависимость корней квадратного уравнения от его коэффициентов и найти эффективные приемы быстрого решения квадратного уравнения, в том числе с большими коэффициентами.

  • Сделать выводы.

  • Разработать дидактический материал для проведения практикума по решению квадратных уравнений с использованием новых приемов в помощь ученикам, увлеченным математикой и учителям, ведущим факультативные занятия.

Объект исследования: квадратные уравнения

Предмет изучения: методы и приемы решения квадратных уравнений, в том числе с большими коэффициентами

Глава 1.
Изучение литературы

Основной материал, связанный с изучением темы «Квадратные уравнения» находится в УМК под ред.С.А.Теляковского. В учебнике разобраны все основные вопросы по теме:

1. Определение и виды квадратных уравнений

2. Основные методы решения квадратных уравнений

Однако, дополнительный материал, связанный с историей вопроса о возникновении квадратных уравнений можно найти в «Энциклопедия по математике» «Занимательная математика», М., 2007. Способы решения задач на квадратные уравнения в полном объёме раскрыты в изданиях «Сборник элективных курсов» Волгоград, 2006 г.

Изученная литература позволила приобрести новые интересные знания по истории возникновения квадратного уравнения, приобрести опыт по решению различных квадратных уравнений и перейти к следующему этапу в исследовании – перенести полученные знания в нестандартную ситуацию.

Глава 2.
Изучение истории вопроса о квадратных уравнениях



Глава 3.
Обобщение имеющихся знаний о квадратных уравнениях

и способах их решения





Глава 4.
Нестандартные приемы решения квадратных уравнений



Дидактический материал по применению нестандартных приемов решения квадратных уравнений.

1. Найди наиболее рациональным способом корни уравнения:

2 – 13х + 9 =0
(1; 2,25)

1978х2 – 1984х + 6=0
(1; 6/1978)

2 + 11х + 7 = 0
(-1; -7/4)

319х2 + 1988х +1669=0
(-1; -1669/319)

1999х2 + 2000х+1=0
(-1; -1/1999)

2. Решить квадратные уравнения с большими коэффициентами

313х2 +326х+13=0
(-1; -13/313)

839х2– 448х -391=0
(1; -391/839)

345х2 – 137х – 208=0
(1;.-208/345)

939х2+978х+39=0
(-1; -39/939)

3. Используя полученные знания, установи соответствие:

1) х2+5х+6=0
2) 6х2-5х+1=0
3) 2х2-5х+3=0
4) 3х2-5х+2=0
5) х2-5х+6=0
6) 6х2+5х+1=0
7) 2х2+5х+2=0
8) 3х2+5х+2=0

1) 1/6;1/2
2) 1; 3/2
3) 1; 2/3
4) -2; -3
5) -1/3 ; -1/2
6) -1; -3/2
7) -1; -2/3
8) 2;3

Глава 5.
Анализ работы учащихся по решению квадратных уравнений нестандартными способами

Разработаны критерии оценки проведенного практикума:

  1. За каждое верно выполненное задание ставится 1 балл;

  2. Наиболее возможное количество набранных баллов-17

  3. Если ученик набирает менее

7 баллов, то выставляется оценка «2»
от 7 до 11 баллов «3»
от 12 до 15 баллов «4»
от 16-17 баллов «5»

Результаты практикума.

Выполняли работу – 11человек

Набрали баллов

от 16-17 – 5человек (45%)
от 12-15– 6человек (55%)
Менее 12 – 0 человек

Средний балл – 4,45

Процент качества – 100%

Типичные ошибки, допущенные в работе связаны с невнимательностью учащихся.

Выводы по результатам проведения практикума

Успешно выполненная работа учащимися 8 класса, позволяет сделать следующие выводы:

  • нестандартные приемы решения квадратных уравнений заслуживают внимания;

  • позволяют экономить время решения, что обусловлено применением тестовой системы экзаменов.

Глава 6.
Выводы

В процессе работы над проектом, была создана система нестандартных приемов решения квадратных уравнений и разработан банк заданий, на основе которого проведена успешная апробация этих приемов.

Данный материал можно рекомендовать для внеклассных и факультативных занятий по математике. Учителя могут использовать его как методическое пособие при изучении темы «Решение квадратных уравнений», а также, для контроля за знаниями учащихся.

Материалом этого проекта могут воспользоваться и те, кто любит математику и хочет знать о математике больше.







Литература

  1. Выгодский М.Я. Справочник по элементарной математике. – М. государственное издательство физико-математической литературы, 1970.

  2. Галицкий М.Л., Гольдман М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов: учебное пособие для учащихся школ и классов с углубленным изучением математики:4-е изд.-М.: Просвещение, 1997.

  3. Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Учебник для 8 класса. М., Просвещение, 2001.

  4. Макарычев Ю.Н., Миндюк Н.Г. Дополнительные главы к школьному учебнику. 8 класс М., Просвещение, 1996.

  5. Штейнгауз В.Г. Математический калейдоскоп. – М.: Бюро «Квантум», 2005.

  6. Энциклопедический словарь юного математика. – М.: Педагогика, 1985.

03.06.2019



2