СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

ЕГЭ 2023 Март Информатика Вариант 7

Категория: Информатика

Нажмите, чтобы узнать подробности

Тип 1 № 14262 

i

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  П1 П2 П3 П4 П5 П6 П7 П8
П1   62       84 56 58
П2 62   46 92        
П3   46       74    
П4   92     50     88
П5       50        
П6 84   74       68  
П7 56         68   48
П8 58     88     48  

 

 

 

 

 

 

Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта Б в пункт Г. В ответе запишите целое число.

ВНИМАНИЕ. Длины отрезков на схеме не отражают длины дорог.

Ответ: 

2

Тип 2 № 33174 

i

Логическая функция F задаётся выражением ((x → y) ≡ (w → x)) ∧ (z → w). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных xyzw.

 

 

 

 

 

Переменная 1 Переменная 2 Переменная 3 Переменная 4 Функция
1 0 0 1 1
1     0 1
  0 1   1

 

В ответе напишите буквы xyzw в том порядке, в котором идут соответствующие им столбцы (сначала  — буква, соответствующая первому столбцу; затем  — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

 

 

 

Переменная 1 Переменная 2 Функция
??? ??? F
0 1 0

 

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.

Ответ: 

3

Тип 3 № 37481 

i

В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.

 

3.xlsx

 

Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.

 

 

ID операции Дата ID магазина Артикул Тип операции Количество упаковок, шт. Цена, руб./шт.

 

Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.

 

 

Артикул Отдел Наименование Ед. изм. Количество в упаковке Поставщик

 

Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.

 

 

ID магазина Район Адрес

 

На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите, сколько килограммов паштета из куриной печени было продано в магазинах Заречного района за период с 1 по 10 июня включительно.

В ответе запишите только число.

Ответ: 

4

Тип 4 № 13351 

i

Для кодирования растрового рисунка, напечатанного с использованием шести красок, применили неравномерный двоичный код. Для кодирования цветов используются кодовые слова.

 

 

 

 

 

 

Цвет Кодовое слово
Белый 0
Зелёный 11111
Красный 1110
Цвет Кодовое слово
Синий  
Фиолетовый 11110
Чёрный 10

 

Укажите кратчайшее кодовое слово для кодирования синего цвета, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

Ответ: 

5

Тип 5 № 10309 

i

Автомат получает на вход пятизначное число. По этому числу строится новое число по следующим правилам.

1.  Складываются отдельно первая, третья и пятая цифры, а также вторая и четвёртая цифры.

2.  Полученные два числа записываются друг за другом в порядке неубывания без разделителей.

 

Пример. Исходное число: 63 179. Суммы: 6 + 1 + 9 = 16; 3 + 7 = 10. Результат: 1016.

Укажите наименьшее число, при обработке которого автомат выдаёт результат 621.

Ответ: 

6

Тип 6 № 47309

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси абсцисс, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись

Повтори k [Команда1 Команда2 … КомандаS]

означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:

Повтори 4 [Вперёд 8 Направо 150 Вперёд 8 Направо 30]

Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.

Ответ: 

7

Тип 7 № 26981 

i

Камера делает фотоснимки размером 250 × 300 пикселей. На хранение одного кадра отводится 40 Кбайт. Найдите максимально возможное количество цветов в палитре изображения.

Ответ: 

8

Тип 8 № 13486 

i

Игорь составляет таблицу кодовых слов для передачи сообщений, каждому сообщению соответствует своё кодовое слово. В качестве кодовых слов Игорь использует 5-буквенные слова, в которых есть только буквы A, B, C, X, причём буква X появляется ровно 1 раз и только на 1-й или последней позиции слова. Каждая из других допустимых букв может встречаться в кодовом слове любое количество раз или не встречаться совсем. Сколько различных кодовых слов может использовать Игорь

Ответ: 

9

Тип 9 № 36864 

i

Электронная таблица содержит результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Определите, сколько раз за время измерений минимальная суточная температура оказывалась ниже среднесуточной на 8 и более градусов.

 

Задание 9

 

Ответ: 

10

Тип 10 № 33182 

i

Определите, сколько раз в тексте произведения А. С. Пушкина «Капитанская дочка» встречается имя Емельян в любом падеже.

 

Задание 10

 

Ответ: 

11

Тип 11 № 16040 

i

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 7 символов и содержащий только символы из 26-символьного набора прописных латинских букв. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех

пользователей.

Для хранения сведений о 30 пользователях потребовалось 600 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число  — количество байт.

Ответ: 

12

Тип 12 № 11243 

i

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

 

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

  Цикл

  ПОКА условие

      последовательность команд

  КОНЕЦ ПОКА

  выполняется, пока условие истинно.

  В конструкции

  ЕСЛИ условие

      ТО команда1

      ИНАЧЕ команда2

  КОНЕЦ ЕСЛИ

  выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

 

Ниже приведена программа для исполнителя Редактор.

 

НАЧАЛО

  ПОКА нашлось (19) ИЛИ нашлось (299) ИЛИ нашлось (3999)

    заменить (19, 2)

    заменить (299, 3)

    заменить (3999, 1)

  КОНЕЦ ПОКА

КОНЕЦ

 

На вход этой программе подаётся строка длины 99, состоящая из цифры 1, за которой следуют 98 идущих подряд цифр 9. Какая строка получится в результате применения программы к этой строке? В ответе запишите полученную строку.

Ответ: 

13

Тип 13 № 18563 

i

На рисунке  — схема дорог, связывающих пункты А, Б, В, Г, Д, Е, Ж, И, К, Л, М, Н, П.

Сколько существует различных путей из пункта А в пункт П, проходящих через пункт И?

Ответ: 

14

Тип 14 № 15856 

i

Сколько единиц содержится в двоичной записи значения выражения:

 

412 + 232 − 16.

 

Ответ: 

15

Тип 15 № 18087 

i

Для какого наименьшего целого неотрицательного числа A выражение

 

(y + 2x < A) ∨ (x > 15) ∨ (y > 30)

 

тождественно истинно при всех вещественных значениях x и y?

Ответ: 

16

Тип 16 № 4654 

i

Последовательность чисел Падована задается рекуррентным соотношением:

F(1) = 1

F(2) = 1

F(3) = 1

F(n) = F(n–3) + F(n–2), при n >3, где n – натуральное число.

Чему равно десятое число в последовательности Падована?

В ответе запишите только натуральное число.

Ответ: 

17

Тип 17 № 45251 

i

В файле содержится последовательность натуральных чисел. Элементы последовательности могут принимать целые значения от 1 до 100 000 включительно. Определите количество пар последовательности, в которых хотя бы одно число делится на минимальный элемент последовательности, кратный 21. Гарантируется, что такой элемент в последовательности есть. В ответе запишите количество найденных пар, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

 

17.txt

 

Ответ:

 

 

18

Тип 18 № 33520 

i

Дан квадрат 15 × 15 клеток, в каждой клетке которого записано целое число. В левом верхнем углу квадрата стоит ладья. За один ход ладья может переместиться в пределах квадрата на любое количество клеток вправо или вниз (влево и вверх ладья ходить не может). Необходимо переместить ладью в правый нижний угол так, чтобы сумма чисел в клетках, в которых ладья останавливалась (включая начальную и конечную), была максимальной. В ответе запишите максимально возможную сумму.

Исходные данные записаны в электронной таблице.

 

Задание 18

 

Пример входных данных (для таблицы размером 4 × 4):

 

 

−3 1 −3 −4
−4 −4 −2 2
6 1 2 −2
−6 7 6 −3

 

Для указанных входных данных ответом будет число 14 (ладья проходит через клетки с числами −3, 6, 1, 7, 6, −3).

Ответ: 

19

Тип 19 № 29667 

i

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 49. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 49 или больше камней.

В начальный момент в первой куче было 5 камней, во второй куче  — S камней; 1 ≤ S ≤ 43.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна

Ответ: 

20

Тип 20 № 29668 

i

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 49. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 49 или больше камней.

В начальный момент в первой куче было 5 камней, во второй куче  — S камней; 1 ≤ S ≤ 43.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

— Петя не может выиграть за один ход;

— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

Ответ: 

21

Тип 21 № 29669 

i

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Например, пусть в одной куче 7 камней, а в другой 9 камней; такую позицию мы будем обозначать (7, 9). За один ход из позиции (7, 9) можно получить любую из четырёх позиций: (8, 9), (21, 9), (7, 10), (7, 27). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 49. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 49 или больше камней.

В начальный момент в первой куче было 5 камней, во второй куче  — S камней; 1 ≤ S ≤ 43.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Ответ: 

22

Тип 22 № 47226 

i

В файле содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы  — время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Типовой пример организации данных в файле:

 

 

ID процесса B Время выполнения процесса B (мс) ID процесса(ов) A
1 4 0
2 3 0
3 1 1; 2
4 7 3

 

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Выполните задания, используя данные из файла ниже:

 

Задание 22

 

Ответ: 

23

Тип 23 № 13579 

i

Исполнитель Осень16 преобразует число на экране.

У исполнителя есть три команды, которым присвоены номера:

1)  Прибавить 1;

2)  Прибавить 2;

3)  Прибавить 3.

Первая команда увеличивает число на экране на 1, вторая увеличивает его на 2, третья  — увеличивает на 3.

Программа для исполнителя Осень16  — это последовательность команд.

Сколько существует программ, для которых при исходном числе 1 результатом является число 15 и при этом траектория вычислений содержит число 8?

Траектория вычислений программы  — это последовательность результатов выполнения всех команд программы. Например, для программы 121 при исходном числе 7 траектория будет состоять из чисел 8, 10, 11.

Ответ: 

24

Тип 24 № 29672 

i

Текстовый файл содержит строки различной длины. Общий объём файла не превышает 1 Мбайт. Строки содержат только заглавные буквы латинского алфавита (ABC…Z). Определите количество строк, в которых буква E встречается чаще, чем буква A.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

 

Задание 24

 

Ответ: 

25

Тип 25 № 29673 

i

 

Назовём нетривиальным делителем натурального числа его делитель, не равный единице и самому числу. Например, у числа 6 есть два нетривиальных делителя: 2 и 3. Найдите все натуральные числа, принадлежащие отрезку [123456789; 223456789] и имеющие ровно три нетривиальных делителя. Для каждого найденного числа запишите в ответе его наибольший нетривиальный делитель. Ответы расположите в порядке возрастания.

Например, в диапазоне [5; 16] ровно три различных нетривиальных делителя имеет число 16, поэтому для этого диапазона вывод на экране должна содержать следующие значения:

16 8

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

 

26

Тип 26 № 33198 

i

Для перевозки партии грузов различной массы выделен грузовик, но его грузоподъёмность ограничена, поэтому перевезти сразу все грузы не удастся. Грузы массой от 200 до 210 кг грузят в первую очередь, гарантируется, что все такие грузы поместятся. На оставшееся после этого место стараются взять как можно больше грузов. Если это можно сделать несколькими способами, выбирают тот способ, при котором самый большой из выбранных грузов имеет наибольшую массу. Если и при этом условии возможно несколько вариантов, выбирается тот, при котором наибольшую массу имеет второй по величине груз, и т. д. Известны количество грузов, масса каждого из них и грузоподъёмность грузовика. Необходимо определить количество и общую массу грузов, которые будут вывезены при погрузке по вышеописанным правилам.

Входные данные.

 

Задание 26

 

Первая строка входного файла содержит два целых числа: N  — общее количество грузов и M  — грузоподъёмность грузовика в кг. Каждая из следующих N строк содержит одно целое число  — массу груза в кг.

В ответе запишите два целых числа: сначала максимально возможное количество грузов, затем их общую массу.

Пример входного файла:

6 605

140

205

120

160

100

340

В данном случае сначала нужно взять груз массой 205 кг. После этого можно вывезти ещё максимум 3 груза. Это можно сделать тремя способами: 140 + 120 + 100, 140 + 160 + 100, 120 + 160 + 100. Выбираем способ, при котором вывозится груз наибольшей возможной массы. Таких способов два: 140 + 160 + 100 и 120 + 160 + 100. Из этих способов выбираем тот, при котором больше масса второго по величине груза, то есть 140 + 160 + 100. Всего получается 4 груза общей массой 605 кг. В ответе надо записать числа 4 и 605.

 

Ответ:

 

 

27

Тип 27 № 45261 

i

На каждом 3-м километре кольцевой автодороги с двусторонним движением установлены контейнеры для мусора. Длина кольцевой автодороги равна 3N километров. Нулевой километр и 3N-й километр автодороги находятся в одной точке. Известно количество мусора, которое накапливается ежедневно в каждом из контейнеров. Из каждого пункта мусор вывозит отдельный мусоровоз. Стоимость доставки мусора вычисляется как произведение количества мусора на расстояние от пункта до центра переработки. Центр переработки отходов открыли в одном из пунктов сбора мусора таким образом, чтобы общая стоимость доставки мусора из всех пунктов в этот центр была минимальной.

Определите минимальные расходы на доставку мусора в центр переработки отходов.

Входные данные

 

27_A.txt

27_B.txt

 

Дано два входных файла (файл A и файл B), каждый из которых в первой строке содержит число N (1 ≤ N ≤ 10 000 000)  — количество пунктов сбора мусора на кольцевой автодороге. В каждой из следующих N строк находится число  — количество мусора в контейнере (все числа натуральные, количество мусора в каждом пункте не превышает 1000). Числа указаны в порядке расположения контейнеров на автомагистрали, начиная с первого километра.

В ответе укажите два числа: сначала значение искомой величины для файла А, затем  — для файла B.

Типовой пример организации данных во входном файле

6

8

20

5

13

7

19

При таких исходных данных, если контейнеры установлены на каждом километре автодороги, необходимо открыть центр переработки в пункте 6. В этом случае сумма транспортных затрат составит: 1 · 7 + 0 · 19 + 1 · 8 + 2 · 20 + 3 · 5 + 2 · 13.

Типовой пример имеет иллюстративный характер. Для выполнения задания используйте данные из прилагаемых файлов.

Предупреждение: для обработки файла B не следует использовать переборный алгоритм, вычисляющий сумму для всех возможных вариантов, поскольку написанная по такому алгоритму программа будет выполняться слишком долго.

 

Ответ: