1. Тип 1 № 29110
На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что длина дороги АГ меньше, чем длина дороги ВГ. Определите длину дороги ЕЖ. В ответе запишите целое число — длину дороги в километрах.
| П1 | П2 | П3 | П4 | П5 | П6 | П7 |
П1 | | | 11 | 13 | 24 | | |
П2 | | | | 14 | 18 | | 21 |
П3 | 11 | | | | | 10 | 12 |
П4 | 13 | 14 | | | 16 | 6 | |
П5 | 24 | 18 | | 16 | | | |
П6 | | | 10 | 6 | | | 9 |
П7 | | 21 | 12 | | | 9 | |
2. Тип 2 № 55589
Две логические функции заданы выражениями:
F1 = (x → y)≡(w ∨ ¬ z),
F2 = (x → y)∧(¬w≡z).
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности обеих функций.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z.
??? | ??? | ??? | ??? | F1 | F2 |
| 1 | 0 | 1 | | 0 |
| 0 | 0 | 0 | 0 | |
0 | | 0 | 0 | 0 | 1 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1 | Переменная 2 | Функция |
??? | ??? | F |
0 | 1 | 0 |
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
3. Тип 3 № 55590
В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.
Задание 3
Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.
На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.
Используя информацию из приведённой базы данных, определите, магазины какого района в период с 4 по 8 июня получили наибольшую выручку от продажи товаров отдела «Молоко».
В ответе запишите число — найденное значение наибольшей выручки в рублях.
4. Тип 4 № 13351
Для кодирования растрового рисунка, напечатанного с использованием шести красок, применили неравномерный двоичный код. Для кодирования цветов используются кодовые слова.
Цвет | Кодовое слово | Белый | 0 | Зелёный | 11111 | Красный | 1110 | | Цвет | Кодовое слово | Синий | | Фиолетовый | 11110 | Чёрный | 10 | |
Укажите кратчайшее кодовое слово для кодирования синего цвета, при котором код будет удовлетворять условию Фано. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
5. Тип 5 № 10309
Автомат получает на вход пятизначное число. По этому числу строится новое число по следующим правилам.
1. Складываются отдельно первая, третья и пятая цифры, а также вторая и четвёртая цифры.
2. Полученные два числа записываются друг за другом в порядке неубывания без разделителей.
Пример. Исходное число: 63 179. Суммы: 6 + 1 + 9 = 16; 3 + 7 = 10. Результат: 1016.
Укажите наименьшее число, при обработке которого автомат выдаёт результат 621.
6. Тип 6 № 58242
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд r (где r — положительное число), вызывающая передвижение Черепахи на расстояние, равное r, в том направлении, куда указывает её голова; Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке.
Запись Повтори k [Команда 1 Команда 2 ... Команда S] означает, что последовательность из S команд повторится k раз.
Черепахе был дан для исполнения следующий алгоритм:
Направо 90 Повтори 4 [Вперёд Направо 150 Вперёд Направо 300].
Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.
7. Тип 7 № 33752
Для хранения в информационной системе документы сканируются с разрешением 300 dpi и цветовой системой, содержащей 216 = 65 536 цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 16 Мбайт. В целях экономии было решено перейти на разрешение 150 dpi и цветовую систему, содержащую 256 цветов. Сколько Мбайт будет составлять средний размер документа, отсканированного с изменёнными параметрами?
8. Тип 8 № 3206
Все 5-буквенные слова, составленные из букв А, К, Р, У, записаны в алфавитном порядке. Вот начало списка:
1. ААААА
2. ААААК
3. ААААР
4. ААААУ
5. АААКА
...
Укажите номер первого слова, которое начинается с буквы К.
9. Тип 9 № 59778
Откройте файл электронной таблицы, содержащей в каждой строке семь натуральных чисел. Определите количество строк таблицы, содержащих числа, для которых выполнены оба условия:
— среди семи чисел совпадают ровно четыре числа;
— среднее значение неповторяющихся чисел больше суммы повторяющихся чисел.
В ответе запишите только число.
Задание 9
10. Тип 10 № 27586
С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «чёрт» или «Чёрт» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «чёрт», такие как «чёрта» и т. д., учитывать не следует. В ответе укажите только число.
Задание 10
11. Тип 11 № 16040
При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 7 символов и содержащий только символы из 26-символьного набора прописных латинских букв. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей.
Для хранения сведений о 30 пользователях потребовалось 600 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число — количество байт.
12. Тип 12 № 11243
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Ниже приведена программа для исполнителя Редактор.
НАЧАЛО
ПОКА нашлось (19) ИЛИ нашлось (299) ИЛИ нашлось (3999)
заменить (19, 2)
заменить (299, 3)
заменить (3999, 1)
КОНЕЦ ПОКА
КОНЕЦ
На вход этой программе подаётся строка длины 99, состоящая из цифры 1, за которой следуют 98 идущих подряд цифр 9. Какая строка получится в результате применения программы к этой строке? В ответе запишите полученную строку.
13. Тип 13 № 2228
Петя записал IP-адрес школьного сервера на листке бумаги и положил его в карман куртки. Петина мама случайно постирала куртку вместе с запиской. После стирки Петя обнаружил в кармане четыре обрывка с фрагментами IP-адреса. Эти фрагменты обозначены буквами А, Б, В и Г. Восстановите IP-адрес. В ответе укажите последовательность букв, обозначающих фрагменты, в порядке, соответствующем IP-адресу.
А
Б
В
Г
14. Тип 14 № 48385
Операнды арифметического выражения записаны в системах счисления с основаниями 13 и 18:
8x78y13 + 79xy718.
В записи чисел переменными x и y обозначены допустимые в данных системах счисления неизвестные цифры. Определите значения x и y, при которых значение данного арифметического выражения будет наименьшим и кратно 9. Для найденных значений x и y вычислите частное от деления значения арифметического выражения на 9 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.
15. Тип 15 № 9699
На числовой прямой даны два отрезка: P = [4, 15] и Q = [12, 20].
Укажите наименьшую возможную длину отрезка A, для которого выражение
((x ∈ P) ∧ (x ∈ Q)) → (x ∈ A)
тождественно истинно, то есть принимает значение 1 при любом значении переменной х.
16. Тип 16 № 48464
Алгоритм вычисления значения функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:
F(0) = 0;
F(n) = F(n − 1) + n.
Укажите количество таких чисел n из интервала 765 432 010 ≤ n ≤ 1 542 613 234, для которых F(n) не делится без остатка на 3.
17. Тип 17 № 37373
В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, у которых разность элементов кратна 36 и хотя бы один из элементов кратен 13, затем максимальную из разностей элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.
17.txt
Ответ:
18. Тип 18 № 27667
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1 | 8 | 8 | 4 |
10 | 1 | 1 | 3 |
1 | 3 | 12 | 2 |
2 | 3 | 5 | 6 |
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
19. Тип 19 № 33521
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или добавить столько камней, сколько их в данный момент в другой куче. Например, пусть в одной куче 5 камней, а в другой — 9 камней; такую позицию мы будем обозначать (5, 9). За один ход из позиции (5, 9) можно получить любую из четырёх позиций: (6, 9), (14, 9), (5, 10), (5, 14). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 75. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 75 или больше камней.
В начальный момент в первой куче было 7 камней, во второй куче — S камней; 1 ≤ S ≤ 67.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.
Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.
20. Тип 20 № 33522
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или добавить столько камней, сколько их в данный момент в другой куче. Например, пусть в одной куче 5 камней, а в другой — 9 камней; такую позицию мы будем обозначать (5, 9). За один ход из позиции (5, 9) можно получить любую из четырёх позиций: (6, 9), (14, 9), (5, 10), (5, 14). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 75. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 75 или больше камней.
В начальный момент в первой куче было 7 камней, во второй куче — S камней; 1 ≤ S ≤ 67.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.
21. Тип 21 № 33523
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или добавить столько камней, сколько их в данный момент в другой куче. Например, пусть в одной куче 5 камней, а в другой — 9 камней; такую позицию мы будем обозначать (5, 9). За один ход из позиции (5, 9) можно получить любую из четырёх позиций: (6, 9), (14, 9), (5, 10), (5, 14). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 75. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 75 или больше камней.
В начальный момент в первой куче было 7 камней, во второй куче — S камней; 1 ≤ S ≤ 67.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.
Найдите такое значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
22. Тип 22 № 47605
В файле 22_24.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример организации данных в файле:
ID процесса B | Время выполнения процесса B (мс) | ID процесса(ов) A |
1 | 4 | 0 |
2 | 3 | 0 |
3 | 1 | 1;2 |
4 | 7 | 3 |
В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.
23. Тип 23 № 13579
Исполнитель Осень16 преобразует число на экране.
У исполнителя есть три команды, которым присвоены номера.
1. Прибавить 1.
2. Прибавить 2.
3. Прибавить 3.
Первая команда увеличивает число на экране на 1, вторая увеличивает его на 2, третья — увеличивает на 3.
Программа для исполнителя Осень16 — это последовательность команд.
Сколько существует программ, для которых при исходном числе 1 результатом является число 15 и при этом траектория вычислений содержит число 8?
Траектория вычислений программы — это последовательность результатов выполнения всех команд программы. Например, для программы 121 при исходном числе 7 траектория будет состоять из чисел 8, 10, 11.
24. Тип 24 № 40999
Текстовый файл содержит только заглавные буквы латинского алфавита (ABC...Z). Определите максимальное количество идущих подряд символов, среди которых нет ни одной буквы E и при этом не менее трёх букв A.
Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.
Задание 24
25. Тип 25 № 33495
Рассмотрим произвольное натуральное число, представим его всеми возможными способами в виде произведения двух натуральных чисел и найдём для каждого такого произведения разность сомножителей. Например, для числа 16 получим: 16 = 16 · 1 = 8 · 2 = 4 · 4, множество разностей содержит числа 15, 6 и 0. Найдите все натуральные числа, принадлежащие отрезку [2 000 000; 3 000 000], у которых составленное описанным способом множество разностей будет содержать не меньше трёх элементов, не превышающих 115. В ответе перечислите найденные числа в порядке возрастания.
Ответ:
26. Тип 26 № 33496
Для перевозки партии грузов различной массы выделен грузовик, но его грузоподъёмность ограничена, поэтому перевезти сразу все грузы не удастся. Грузы массой от 210 до 220 кг грузят в первую очередь, гарантируется, что все такие грузы поместятся. На оставшееся после этого место стараются взять как можно больше грузов. Если это можно сделать несколькими способами, выбирают тот способ, при котором самый большой из выбранных грузов имеет наибольшую массу. Если и при этом условии возможно несколько вариантов, выбирается тот, при котором наибольшую массу имеет второй по величине груз, и так далее. Известны количество грузов, масса каждого из них и грузоподъёмность грузовика. Необходимо определить количество и общую массу грузов, которые будут вывезены при погрузке по вышеописанным правилам.
Входные данные.
Задание 26
Первая строка входного файла содержит два целых числа: N — общее количество грузов и M — грузоподъёмность грузовика в кг. Каждая из следующих N строк содержит одно целое число — массу груза в кг.
В ответе запишите два целых числа: сначала максимально возможное количество грузов, затем их общую массу.
Пример входного файла:
6 615
140
215
120
160
100
340 В данном случае сначала нужно взять груз массой 215 кг. После этого можно вывезти ещё максимум 3 груза. Это можно сделать тремя способами: 140 + 120 + 100, 140 + 160 + 100, 120 + 160 + 100. Выбираем способ, при котором вывозится груз наибольшей возможной массы. Таких способов два: 140 + 160 + 100 и 120 + 160 + 100. Из этих способов выбираем тот, при котором больше масса второго по величине груза, то есть 140 + 160 + 100. Всего получается 4 груза общей массой 615 кг. В ответе надо записать числа 4 и 615.
Ответ:
27. Тип 27 № 37162
На вход программы поступает последовательность из целых положительных чисел. Необходимо выбрать такую подпоследовательность подряд идущих чисел, чтобы их сумма была максимальной и делилась на 89, а также её длину. Если таких подпоследовательностей несколько, выбрать такую, у которой длина меньше.
Входные данные.
Файл A
Файл B
Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество чисел N (2 ≤ N ≤ 68000). В каждой из последующих N строк записано одно целое положительное число, не превышающее 10000. Программа должна вывести длину найденной последовательности.
Пример входного файла:
8
2
3
4
93
42
34
5
95
Для делителя 50 при указанных входных данных значением искомой суммы должно быть число 100 (3 + 4 + 93 или 5 + 95). Следовательно, ответ на задачу — 2. В ответе укажите два числа: сначала значение искомой длины для файла A, затем для файла B.
Ответ: