СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

ЕГЭ 2025. Апрель Информатика Вариант 3

Категория: Информатика

Нажмите, чтобы узнать подробности

1.  Тип 1 № 10377

На рисунке схема дорог Н-⁠ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  П1 П2 П3 П4 П5 П6 П7
П1   57   20   25  
П2 57   22 42 8   21
П3   22     23   8
П4 20 42       7 33
П5   8 23        
П6 25     7     9
П7   21 8 33   9  

 

 

 

 

 

 

Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта А в пункт Г. В ответе запишите целое число.

2.  Тип 2 № 16377

Логическая функция F задаётся выражением ((xy) ≡ (yz)) ∧ (yw).

Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.

Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.

 

 

 

 

 

 

Переменная 1 Переменная 2 Переменная 3 Переменная 4 Функция
??? ??? ??? ??? F
0   0   1
0 0   0 1
      0 1

 

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала  — буква, соответствующая первому столбцу; затем  — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

 

Пример. Пусть задано выражение xy, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

 

 

 

Переменная 1 Переменная 1 Функция
??? ??? F
0 1 0

 

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.

3.  Тип 3 № 56531

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

 

Задание 3

 

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите, магазины какого района в период с 28 по 30 июня получили наименьшее количество товаров отдела «Мясная гастрономия».

В ответе запишите число  — найденное наименьшее количество в килограммах.

4.  Тип 4 № 7658

Для кодирования некоторой последовательности, состоящей из букв К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К  — кодовое слово 10. Какова наименьшая возможная суммарная длина всех четырёх кодовых слов?

 

Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.

5.  Тип 5 № 10468

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1.  Строится двоичная запись числа N.

2.  К этой записи дописываются справа ещё два разряда по следующему правилу:

а)  складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;

б)  над этой записью производятся те же действия  — справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью результирующего числа R.

Укажите такое наименьшее число N, для которого результат работы алгоритма больше числа 77. В ответе это число запишите в десятичной системе счисления.

6.  Тип 6 № 47392

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 6 [Вперёд 10 Направо 60].

Определите количество точек с целочисленными координатами, лежащих внутри или на границе области, которую ограничивает заданная алгоритмом линия.

7.  Тип 7 № 13736

Автоматическая фотокамера производит растровые изображения размером 640 × 480 пикселей. При этом объём файла с изображением не может превышать 320 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?

8.  Тип 8 № 16813

Левий составляет 5-⁠буквенные коды из букв Л, Е, В, И, Й. Каждую букву нужно использовать ровно 1 раз, при этом код не может начинаться с буквы Й и не может содержать сочетания ЕИ. Сколько различных кодов может составить Левий?

9.  Тип 9 № 48457

В каждой строке электронной таблицы записаны шесть натуральных чисел.

Определите, сколько в таблице строк, для которых выполнены следующие условия:

—  в строке встречается ровно четыре различных числа: два из них по два раза, два  — по одному;

—  сумма повторяющихся чисел (без учёта повторений, то есть каждое число входит в сумму один раз) больше суммы неповторяющихся.

В ответе запишите число  — количество строк, для которых выполнены эти условия.

 

Задание 9

 

10.  Тип 10 № 27580

С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «свет» или «Свет» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «свет», такие как «светло», «светает» и т. д., учитывать не следует. В ответе укажите только число.

 

Задание 10

 

11.  Тип 11 № 7670

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 11 символов и содержащий только символы А, Б, В, Г, Д, Е. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт, при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит. Определите, сколько байт необходимо для хранения 20 паролей.

12.  Тип 12 № 10388

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Цикл

  ПОКА условие

    последовательность команд

  КОНЕЦ ПОКА

выполняется, пока условие истинно.

В конструкции

  ЕСЛИ условие

    ТО команда1

    ИНАЧЕ команда2

  КОНЕЦ ЕСЛИ

выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

 

Ниже приведена программа для исполнителя Редактор.

НАЧАЛО

ПОКА нашлось (722) ИЛИ нашлось (557)

  ЕСЛИ нашлось (722)

    ТО заменить (722, 57)

    ИНАЧЕ заменить (557, 72)

  КОНЕЦ ЕСЛИ

КОНЕЦ ПОКА

КОНЕЦ

 

На вход этой программе подается строка, состоящая из 55 цифр; последняя цифра в строке  — цифра 7, а остальные цифры  — пятёрки. Какая строка получится в результате применения программы к этой строке? В ответе запишите полученную строку.

13.  Тип 13 № 14773

В терминологии сетей TCP/⁠IP маской сети называется двоичное число, определяющее, какая часть IP-⁠адреса узла сети относится к адресу сети, а какая  — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места  — нули.

Обычно маска записывается по тем же правилам, что и IP-⁠адрес  — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-⁠адресу узла и маске.

Например, если IP-⁠адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Для узла с IP-⁠адресом 93.138.161.94 адрес сети равен 93.138.160.0. Какое наименьшее количество нулей может быть в двоичной записи маски?

14.  Тип 14 № 18497

Значение выражения 6 · 3435 + 5 · 497 − 50 записали в системе счисления с основанием 7. Сколько цифр 6 содержится в этой записи?

15.  Тип 15 № 8106

Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».

Для какого наибольшего натурального числа А формула

 

¬ДЕЛ(x, А) → (ДЕЛ(x, 6) → ¬ДЕЛ(x, 4))

 

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?

16.  Тип 16 № 4656

Алгоритм вычисления значения функции F(n) и G(n), где n  — натуральное число, задан следующими соотношениями:

F(1)  =  0;

F(n)  =  F(n – 1) + n при n > 1;

G(1)  =  1;

G(n)  =  G(n – 1) · n при n > 1.

 

Чему равно значение функции F(5) + G(5)? В ответе запишите только натуральное число.

17.  Тип 17 № 38951

Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём парой два идущих подряд элемента последовательности. Определите количество пар, в которых хотя бы один из двух элементов делится на 3, а их сумма делится на 5. В ответе запишите два числа: сначала количество найденных пар, а затем  — максимальную сумму элементов таких пар.

 

Задание 17

 

Например, в последовательности (2 3 7 8 9) есть две подходящие пары: (2 3) и (3 7), в ответе для этой последовательности надо записать числа 2 и 10.

 

Ответ:

 

18.  Тип 18 № 27415

Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз  — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

 

Задание 18

 

Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков  — сначала максимальную сумму, затем минимальную.

Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.

Пример входных данных:

 

 

1 8 8 4
10 1 1 3
1 3 12 2
2 3 5 6

 

Для указанных входных данных ответом должна быть пара чисел 41 и 22.

19.  Тип 19 № 27762

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить один камень в одну из куч и два камня в другую или же увеличить количество камней в любой куче в два раза. Например, пусть в одной куче 6 камней, а в другой  — 8 камней; такую позицию мы будем обозначать (6, 8). За один ход из позиции (6, 8) можно получить любую из четырёх позиций: (7, 10), (8, 9), (12, 8), (6, 16). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 47. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 47 или больше камней.

В начальный момент в первой куче было 10 камней, во второй куче  — S камней, 1 ≤ S ≤ 36.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

20.  Тип 20 № 27763

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить один камень в одну из куч и два камня в другую или же увеличить количество камней в любой куче в два раза. Например, пусть в одной куче 6 камней, а в другой  — 8 камней; такую позицию мы будем обозначать (6, 8). За один ход из позиции (6, 8) можно получить любую из четырёх позиций: (7, 10), (8, 9), (12, 8), (6, 16). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 47. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 47 или больше камней.

В начальный момент в первой куче было 10 камней, во второй куче  — S камней, 1 ≤ S ≤ 36.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.

Найдите максимальное S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—  Петя не может выиграть за один ход;

—  Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

21.  Тип 21 № 27764

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить один камень в одну из куч и два камня в другую или же увеличить количество камней в любой куче в два раза. Например, пусть в одной куче 6 камней, а в другой  — 8 камней; такую позицию мы будем обозначать (6, 8). За один ход из позиции (6, 8) можно получить любую из четырёх позиций: (7, 10), (8, 9), (12, 8), (6, 16). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 47. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 47 или больше камней.

В начальный момент в первой куче было 10 камней, во второй куче  — S камней, 1 ≤ S ≤ 36.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.

Найдите минимальное значение S, при котором одновременно выполняются два условия:

—  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22.  Тип 22 № 47549

В файле 22_1.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.

Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы  — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

 

 

ID процесса B Время выполнения

процесса B (мс)

ID процесса(ов) A
1

 

4 0
2 3 0
3 1 1;2
4 7 3

 

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2  — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1  =  5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7  =  12 мс.

23.  Тип 23 № 3607

У исполнителя Калькулятор две команды, которым присвоены номера.

1.  Прибавь 2.

2.  Умножь на 5.

Первая из них увеличивает число на экране на 2, вторая увеличивает его в 5 раз.

Программа для Калькулятора  — это последовательность команд.

Сколько есть программ, которые число 2 преобразуют в число 50?

24.  Тип 24 № 36879

Текстовый файл содержит строки различной длины. Общий объём файла не превышает 1 Мбайт. Строки содержат только заглавные буквы латинского алфавита (ABCZ).

В строках, содержащих менее 25 букв G, нужно определить и вывести максимальное расстояние между одинаковыми буквами в одной строке.

Пример. Исходный файл:

GIGA

GABLAB

NOTEBOOK

AGAAA

В этом примере во всех строках меньше 25 букв G. Самое большое расстояние между одинаковыми буквами  — в третьей строке между буквами O, расположенными в строке на 2-⁠й и 7-⁠й позициях. В ответе для данного примера нужно вывести число 5.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

 

Задание 24

 

25.  Тип 25 № 36880

 

Найдите все натуральные числа N, принадлежащие отрезку [400 000 000; 600 000 000], которые можно представить в виде N  =  2m · 3n, где m  — чётное число, n  — нечётное число. В ответе запишите все найденные числа в порядке возрастания.

 

Ответ:

 

 

 

 

 

 

 

 

 

 

 

 

26.  Тип 26 № 38960

Предприятие производит закупку изделий A и B, на которую выделена определённая сумма денег. У поставщика есть в наличии различные модификации этих изделий по различной цене. При покупке необходимо руководствоваться следующими правилами:

1.  Нужно купить как можно больше изделий, независимо от их типа и модификации.

2.  Если можно разными способами купить максимальное количество изделий, нужно выбрать тот способ, при котором будет куплено как можно больше изделий A.

3.  Если можно разными способами купить максимальное количество изделий с одинаковым количеством изделий A, нужно выбрать тот способ, при котором вся покупка будет дешевле.

Определите, сколько всего будет куплено изделий A и какая сумма останется неиспользованной.

Входные данные.

 

Задание 26

 

Первая строка входного файла содержит два целых числа: N  — общее количество изделий у поставщика и M  — сумма выделенных на закупку денег (в рублях). Каждая из следующих N строк содержит целое число (цена изделия в рублях) и символ (латинская буква A или B), определяющий тип изделия. Все данные в строках входного файла отделены одним пробелом.

В ответе запишите два целых числа: сначала количество закупленных изделий типа A, затем оставшуюся неиспользованной сумму денег.

Пример входного файла:

6 130

30 B

50 B

60 A

20 A

70 A

10 B

В данном случае можно купить не более 4 изделий, из них не более 2 изделий A. Минимальная цена такой покупки 120 руб. (покупаем изделия 30B, 60A, 20A, 10B). Останется 10 руб. В ответе надо записать числа 2 и 10.

 

Ответ:

 

27.  Тип 27 № 28131

На вход программы поступает последовательность из n целых положительных чисел. Рассматриваются все пары элементов последовательности ai и aj, такие, что i < j и ai > aj (первый элемент пары больше второго; i и j  — порядковые номера чисел в последовательности входных данных). Среди пар, удовлетворяющих этому условию, необходимо найти и напечатать пару с максимальной суммой элементов, которая делится на m  =  120. Если среди найденных пар максимальную сумму имеют несколько, то можно напечатать любую из них.

Входные данные.

 

Файл A

Файл B

 

В первой строке входных данных задаётся количество чисел n (2 ≤ n ≤ 12 000).

В каждой из последующих n строк записано одно целое положительное число, не превышающее 10 000.

В качестве результата программа должна напечатать элементы искомой пары. Если таких пар несколько, можно вывести любую из них. Гарантируется, что хотя бы одна такая пара в последовательности есть.

Пример организации исходных данных во входном файле:

6

60

140

61

100

300

59

Пример выходных данных для приведённого выше примера входных данных:

140 100 В ответе укажите четыре числа: сначала искомую пару чисел для файла А (два числа через пробел), затем для файла B (два числа через пробел).

 

Ответ:

 

Пояснение. Из шести заданных чисел можно составить три пары, сумма элементов которых делится на m  =  120: 60 + 300, 140 + 100 и 61 + 59. Во второй и третьей из этих пар первый элемент больше второго, но во второй паре сумма больше.

Просмотр содержимого документа
«ЕГЭ 2025. Апрель Информатика Вариант 3»

РЕШУ ЕГЭ — информатика

Вариант № 17982101

1.  Тип 1 № 10279

На рисунке схема дорог Н-⁠ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

 

П1

П2

П3

П4

П5

П6

П7

П1

40

15

П2

40

35

50

П3

10

65

8

П4

15

35

22

33

П5

10

50

П6

50

65

22

50

40

П7

8

33

40

 

Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину дороги из пункта Б в пункт Д. В ответе запишите целое число.

2.  Тип 2 № 15618

Логическая функция F задаётся выражением (x ∧ ¬y) ∨ (yz) ∨ ¬w. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z. Все строки в представленном фрагменте разные.

 

Перем. 1

Перем. 2

Перем. 3

Перем. 4

???

???

???

???

0

1

0

0

1

0

0

 

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (без разделителей).

3.  Тип 3 № 47000

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

Задание 3

Таблица «Движение товаров» содержит записи о поставках товаров в магазины города в первой декаде июня 2021 г. и о продаже товаров в этот же период. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит адреса магазинов.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите, сколько килограммов кофе всех видов поступило за указанный период в магазины Октябрьского района.

4.  Тип 4 № 15915

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А  — 010, Б  — 011, И  — 10. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ГРАММ?

 

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

5.  Тип 5 № 10495

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

1.  Строится двоичная запись числа N.

2.  К этой записи дописываются справа ещё два разряда по следующему правилу:

а)  складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 10000 преобразуется в запись 100001;

б)  над этой записью производятся те же действия  — справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите такое наименьшее число N, для которого результат работы алгоритма больше 97. В ответе это число запишите в десятичной системе счисления.

6.  Тип 6 № 47391

Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n  — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m  — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 14 [Направо 60 Вперёд 2 Направо 60 Вперёд 2 Направо 270].

Определите, сколько точек с целочисленными координатами будут находиться внутри области, ограниченной линией, заданной данным алгоритмом. Точки на линии учитывать не следует.

7.  Тип 7 № 13593

Производится звукозапись музыкального фрагмента в формате стерео (двухканальная запись) с частотой дискретизации 32 кГц и 32-⁠битным разрешением. Результаты записываются в файл, сжатие данных не производится; размер полученного файла 40 Мбайт. Затем производится повторная запись этого же фрагмента в формате моно (одноканальная запись) с частотой дискретизации 16 кГц и 16-⁠битным разрешением. Сжатие данных не производилось.

Укажите размер файла в Мбайт, полученного при повторной записи. В ответе запишите только целое число, единицу измерения писать не нужно.

8.  Тип 8 № 10473

Шифр кодового замка представляет собой последовательность из пяти символов, каждый из которых является цифрой от 1 до 4. Сколько различных вариантов шифра можно задать, если известно, что цифра 1 встречается ровно два раза, а каждая из других допустимых цифр может встречаться в шифре любое количество раз или не встречаться совсем?

9.  Тип 9 № 46967

В каждой строке электронной таблицы записаны четыре натуральных числа. Определите, сколько в таблице таких четвёрок, из которых можно выбрать три числа, которые не могут быть сторонами никакого треугольника, в том числе вырожденного (вырожденным называется треугольник, у которого сумма длин двух сторон равна длине третьей стороны).

Задание 9

10.  Тип 10 № 37145

Определите, сколько раз в тексте поэмы Н. А. Некрасова «Кому на Руси жить хорошо» встречается слово «Мой» написанное с прописной буквы. Другие формы слова «Мой», такие как «Мои», «Моего» и прочие, учитывать не следует.

Задание 10

11.  Тип 11 № 11349

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 9 символов. Из соображений информационной безопасности каждый пароль должен содержать хотя бы 1 десятичную цифру, как прописные, так и строчные латинские буквы (в латинском алфавите 26 букв), а также не менее 1 символа из 6-⁠символьного набора: «&», «#», «$», «*», «!», «@». В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; это число одно и то же для всех пользователей.

Для хранения сведений о 20 пользователях потребовалось 500 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число – количество байт.

12.  Тип 12 № 10477

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

А)  заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (555, 63) преобразует строку 12555550 в строку 1263550.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

Б)  нашлось (v).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

  Цикл

  ПОКА условие

      последовательность команд

  КОНЕЦ ПОКА

  выполняется, пока условие истинно.

  В конструкции

  ЕСЛИ условие

      ТО команда1

      ИНАЧЕ команда2

  КОНЕЦ ЕСЛИ

  выполняется команда1 (если условие истинно) или команда2 (если условие ложно).

 

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 1000 идущих подряд цифр 8? В ответе запишите полученную строку.

НАЧАЛО

ПОКА нашлось (999) ИЛИ нашлось (888)

  ЕСЛИ нашлось (888)

    ТО заменить (888, 9)

    ИНАЧЕ заменить (999, 8)

  КОНЕЦ ЕСЛИ

КОНЕЦ ПОКА

КОНЕЦ

13.  Тип 13 № 2227

Доступ к файлу index.html, размещенному на сервере www.ftp.ru, осуществляется по протоколу http. В таблице приведены фрагменты адреса этого файла, обозначенные буквами от А до 3. Запишите последовательность этих букв, соответствующую адресу данного файла.

 

A

.html

Б

www.

В

/

Г

ftp

Д

.ru

Е

http

Ж

index

З

://

14.  Тип 14 № 13743

Значение арифметического выражения 4910 + 730 − 49 записали в системе счисления с основанием 7. Сколько цифр 6 содержится в этой записи?

15.  Тип 15 № 7763

На числовой прямой даны два отрезка: P  =  [5, 30] и Q  =  [14, 23]. Укажите наибольшую возможную длину промежутка A, для которого формула

((x ∈ P) ≡ (x ∈ Q)) → ¬(x ∈ A)

тождественно истинна, то есть принимает значение 1 при любом значении переменной х.

16.  Тип 16 № 7340

Алгоритм вычисления значения функции F(n), где n  — натуральное число, задан следующими соотношениями:

F(1)  =  1;

F(n)  =  F(n – 1) + 2n – 1, если n 1.

 

Чему равно значение функции F(12)? В ответе запишите только натуральное число.

17.  Тип 17 № 37344

В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, для которых произведение элементов делится без остатка на 10, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.

17.txt

Ответ:

18.  Тип 18 № 29666

Дана последовательность вещественных чисел. Из неё необходимо выбрать несколько подряд идущих чисел так, чтобы каждое следующее число было меньше предыдущего. Какую максимальную сумму могут иметь выбранные числа?

В ответе запишите только целую часть максимально возможной суммы. Исходная последовательность записана в виде одного столбца электронной таблицы.

Задание 18

Пример входных данных:

 

5,2

3,1

1,2

2,3

7,1

3,3

 

Для указанных входных максимально возможная сумма равна 10,4, в ответе надо записать число 10.

19.  Тип 19 № 27774

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может убрать из одной из куч один камень или уменьшить количество камней в куче в два раза (если количество камней в куче нечётно, остаётся на 1 камень больше, чем убирается). Например, пусть в одной куче 6, а в другой  — 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (5, 9), (3, 9), (6, 8), (6, 5).

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не более 20. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 20 или меньше камней.

В начальный момент в первой куче было 10 камней, во второй куче  — S камней, S 10.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантирующие выигрыш независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите максимальное значение S, когда такая ситуация возможна.

20.  Тип 20 № 27775

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может убрать из одной из куч один камень или уменьшить количество камней в куче в два раза (если количество камней в куче нечётно, остаётся на 1 камень больше, чем убирается). Например, пусть в одной куче 6, а в другой  — 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (5, 9), (3, 9), (6, 8), (6, 5).

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не более 20. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 20 или меньше камней.

В начальный момент в первой куче было 10 камней, во второй куче  — S камней, S 10.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантирующие выигрыш независимо от игры противника.

Найдите пять таких значений S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

—  Петя не может выиграть за один ход;

—  Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания без разделительных знаков.

21.  Тип 21 № 27776

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может убрать из одной из куч один камень или уменьшить количество камней в куче в два раза (если количество камней в куче нечётно, остаётся на 1 камень больше, чем убирается). Например, пусть в одной куче 6, а в другой  — 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (5, 9), (3, 9), (6, 8), (6, 5).

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не более 20. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 20 или меньше камней.

В начальный момент в первой куче было 10 камней, во второй куче  — S камней, S 10.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантирующие выигрыш независимо от игры противника.

Найдите максимальное значение S, при котором одновременно выполняются два условия:

—  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

—  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

22.  Тип 22 № 48443

В компьютерной системе необходимо выполнить некоторое количество вычислительных процессов, которые могут выполняться параллельно или последовательно. Для запуска некоторых процессов необходимы данные, которые получаются как результаты выполнения одного или двух других процессов  — поставщиков данных. Независимые процессы (не имеющие поставщиков данных) можно запускать в любой момент времени. Если процесс B (зависимый процесс) получает данные от процесса A (поставщика данных), то процесс B может начать выполнение не раньше чем через 3 мс после завершения процесса A. Любые процессы, готовые к выполнению, можно запускать параллельно, при этом количество одновременно выполняемых процессов может быть любым, длительность процесса не зависит от других параллельно выполняемых процессов.

Задание 22

В таблице представлены идентификатор (ID) каждого процесса, его длительность и ID поставщиков данных для зависимых процессов.

Определите, за какое минимальное время можно выполнить все процессы.

В ответе запишите целое число  — минимальное время в мс.

23.  Тип 23 № 13418

Исполнитель НечетМ преобразует число на экране. У исполнителя НечетМ две команды, которым присвоены номера.

1.  Прибавь 1.

2.  Сделай нечётное.

Первая из этих команд увеличивает число x на экране на 1, вторая переводит число x в число 2x + 1. Например, вторая команда переводит число 10 в число 21. Программа для исполнителя НечетМ  — это последовательность команд. Сколько существует таких программ, которые число 1 преобразуют в число 27, причём траектория вычислений не содержит число 26? Траектория вычислений программы  — это последовательность результатов выполнения всех команд программы. Например, для программы 121 при исходном числе 7 траектория будет состоять из чисел 8, 17, 18.

24.  Тип 24 № 35998

Текстовый файл содержит строки различной длины. Общий объём файла не превышает 1 Мбайт. Строки содержат только заглавные буквы латинского алфавита (ABCZ).

В строках, содержащих менее 25 букв A, нужно определить и вывести максимальное расстояние между одинаковыми буквами в одной строке.

Пример. Исходный файл:

GIGA

GABLAB

NOTEBOOK

AGAAA

В этом примере во всех строках меньше 25 букв A. Самое большое расстояние между одинаковыми буквами  — в третьей строке между буквами O, расположенными в строке на 2-⁠й и 7-⁠й позициях. В ответе для данного примера нужно вывести число 5.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Задание 24

25.  Тип 25 № 40741

Пусть M(N)  — сумма двух наибольших различных натуральных делителей натурального числа N, не считая самого числа. Если у числа N меньше двух таких делителей, то M (N) считается равным 0.

Найдите 5 наименьших натуральных чисел, превышающих 10 000 000, для которых 0 M (N) M (N) в порядке возрастания соответствующих им чисел N.

Ответ:

26.  Тип 26 № 37161

Организация купила для своих сотрудников все места в нескольких подряд идущих рядах на концертной площадке. Известно, какие места уже распределены между сотрудниками. Найдите ряд с наибольшим номером, в котором есть два соседних места, таких что слева и справа от них в том же ряду места уже распределены (заняты). Гарантируется, что есть хотя бы один ряд, удовлетворяющий условию. В ответе запишите два целых числа: номер ряда и наименьший номер места из найденных в этом ряду подходящих пар.

Входные данные.

Задание 26

В первой строке входного файла находится одно число: N  — количество занятых мест (натуральное число, не превышающее 10 000). В следующих N строках находятся пары чисел: ряд и место выкупленного билета (числа не превышают 100 000).

В ответе запишите два целых числа: сначала максимальный номер ряда, где нашлись обозначенные в задаче места и минимальный номер места.

Пример входного файла:

6

50 12

50 15

60 157

60 160

60 22

60 25

Для данного примера ответом будет являться пара чисел 60 и 23.

 

Ответ:

27.  Тип 27 № 27989

На вход программы поступает последовательность из N целых положительных чисел. Рассматриваются все пары различных элементов последовательности (элементы пары не обязаны стоять в последовательности рядом, порядок элементов в паре не важен). Необходимо определить количество пар, для которых произведение элементов делится на 26.

В первой строке входных данных задаётся количество чисел N (1 ≤ N ≤ 60 000). В каждой из последующих N строк записано одно целое положительное число, не превышающее 10 000. В качестве результата программа должна напечатать одно число: количество пар, в которых произведение элементов кратно 26.

Входные данные.

Файл A

Файл B

Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество чисел N (1 ≤ N ≤ 60 000). В каждой из последующих N строк записано одно натуральное число, не превышающее 10 000.

Пример организации исходных данных во входном файле:

4

2

6

13

39

Пример выходных данных для приведённого выше примера входных данных:

4

В ответе укажите два числа: сначала значение искомой суммы для файла А, затем для файла B.

 

Ответ:

 

Пояснение. Из четырёх заданных чисел можно составить 6 попарных произведений: 2 · 6, 2 · 13, 2 · 39, 6 · 13, 6 · 39, 13 · 39 (результаты: 12, 26, 78, 78, 234, 507). Из них на 26 делятся 4 произведения (2 · 13  =  26; 2 · 39  =  78; 6 · 13  =  78; 6 · 39  =  234).