1. Тип 1 № 13730
На рисунке справа схема дорог Н-ского района изображена в виде графа; в таблице слева содержатся сведения о протяжённости каждой из этих дорог (в километрах).
| П1 | П2 | П3 | П4 | П5 | П6 | П7 |
П1 | | 7 | | | | | |
П2 | 7 | | 8 | | 3 | 4 | |
П3 | | 8 | | 11 | 6 | | |
П4 | | | 11 | | 5 | | |
П5 | | 3 | 6 | 5 | | | 9 |
П6 | | 4 | | | | | |
П7 | | | | | 9 | | |
Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта А в пункт Г. В ответе запишите целое число — так, как оно указано в таблице.
2. Тип 2 № 27287
Логическая функция F задаётся выражением ((¬z ∨ w) ∧ (¬x ≡ y)) → (x ∧ z). На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
? | ? | ? | ? | F |
0 | 0 | | 0 | 0 |
1 | 1 | 1 | | 0 |
1 | 0 | | | 0 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
3. Тип 3 № 61349
В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.
Задание 3
Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах. На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.
Используя информацию из приведённой базы данных, определите общую прибыль, полученную за месяц магазинами Центрального района от торговли всеми видами сахара.
Под прибылью в этой задаче понимается разница между стоимостью продажи и стоимостью поставки товаров.
В ответе запишите число — найденную прибыль в рублях.
4. Тип 4 № 9293
Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Л использовали кодовое слово 1, для буквы М — кодовое слово 01. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
5. Тип 5 № 14767
Автомат получает на вход четырёхзначное число (число не может начинаться с нуля). По этому числу строится новое число по следующим правилам.
1. Складываются отдельно первая и вторая, вторая и третья, третья и четвёртая цифры заданного числа.
2. Наименьшая из полученных трёх сумм удаляется.
3. Оставшиеся две суммы записываются друг за другом в порядке неубывания без разделителей.
Пример. Исходное число: 1984. Суммы: 1 + 9 = 10, 9 + 8 = 17, 8 + 4 = 12.
Удаляется 10. Результат: 1217.
Укажите наименьшее число, при обработке которого автомат выдаёт результат 613.
6. Тип 6 № 59711
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится B начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует 6 команд: Поднять хвост, означающая переход к перемещению 6eз рисования; Опустить хвост, означающая переход в режим рисования; Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова; Назад n (где n — целое число), вызывающая передвижение в противоположном голове направлении; Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке, Налево m (где m — целое число), вызывающая изменение направления движения на m градусов против часовой стрелки. Запись Повтори k [Команда1 Команда2 ... КомандаS] означает, что последовательность из S команд повторится k раз.
Черепахе был дан для исполнения следующий алгоритм:
Повтори 4 [Вперёд 10 Направо 270]
Поднять хвост
Вперёд 3 Направо 270 Вперёд 5 Направо 90
Опустить хвост
Повтори 2 [Вперёд 10 Направо 270 Вперёд 12 Направо 270].
Определите, сколько точек с целочисленными координатами будут находиться внутри объединения фигур, ограниченных заданными алгоритмом линиями, включая точки на линиях.
7. Тип 7 № 15625
Графический файл с разрешением 1024 х 600 на жестком диске занимает не более 120 КБайт. Определите максимальное количество цветов, которое может использоваться для кодирования данного изображения.
8. Тип 8 № 9796
Игорь составляет таблицу кодовых слов для передачи сообщений, каждому сообщению соответствует своё кодовое слово. В качестве кодовых слов Игорь использует 5-буквенные слова, в которых есть только буквы A, B, C, X, причём буква X появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в кодовом слове любое количество раз или не встречаться совсем. Сколько различных кодовых слов может использовать Игорь?
9. Тип 9 № 76677
В каждой строке электронной таблицы записаны восемь натуральных чисел.
Число в строке считается заметным, если оно строго больше среднего арифметического всех чисел строки.
Определите количество строк таблицы, для которых одновременно выполнены следующие условия:
— количество заметных чётных чисел в строке больше количества заметных нечётных чисел в строке;
— сумма всех чётных чисел строки меньше суммы всех нечётных чисел строки.
Задание 9
10. Тип 10 № 33512
Определите, сколько раз в тексте произведения Н. В. Гоголя «Нос» встречается слово «полный» в любом числе и падеже.
Задание 10
11. Тип 11 № 7758
При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 21 символов и содержащий только символы A, D, F, H, X, Y, Z (таким образом, используется 7 различных символов). Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 40 паролей.
12. Тип 12 № 27272
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка
исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Дана программа для Редактора:
НАЧАЛО
ПОКА нашлось (111)
заменить (111, 2)
заменить (222, 11)
КОНЕЦ ПОКА
КОНЕЦ
К исходной строке, содержащей более 60 единиц и не содержащей других символов, применили приведённую выше программу. В результате получилась строка 2211. Какое наименьшее количество единиц могло быть в исходной строке?
13. Тип 13 № 13515
В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. Обычно маска записывается по тем же правилам, что и IP-адрес, — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого разряда — нули. Адрес сети получается в результате применения поразрядной конъюнкции к заданным IP-адресу узла и маске.
Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.
Для узла с IP-адресом 119.83.208.27 адрес сети равен 119.83.192.0. Каково наибольшее возможное количество единиц в разрядах маски?
14. Тип 14 № 18718
Значение выражения 41014 + 21012 − 7? записали в системе счисления с основанием 2.
Сколько цифр 1 содержится в этой записи?
15. Тип 15 № 27412
Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m».
Для какого наибольшего натурального числа А формула
¬ДЕЛ(x, А) → (ДЕЛ(x, 6) → ¬ДЕЛ(x, 9))
тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной x)?
16. Тип 16 № 7308
Алгоритм вычисления значения функции F(n), где n — натуральное число, задан следующими соотношениями:
F(1) = 1;
F(n) = F(n – 1) + 2n – 1, если n 1.
Чему равно значение функции F(10)? В ответе запишите только натуральное число.
17. Тип 17 № 47014
Файл содержит последовательность неотрицательных целых чисел, не превышающих 10 000. Назовём парой два идущих подряд элемента последовательности. Определите количество пар, в которых один из двух элементов делится на 5, а другой меньше среднего арифметического всех нечётных элементов последовательности. В ответе запишите два числа: сначала количество найденных пар, а затем — максимальную сумму элементов таких пар.
Задание 17
Например, в последовательности (8 10 2 7 5 1) есть две подходящие пары: (10 2) и (5 1), в ответе для этой последовательности надо записать числа 2 и 12.
Ответ:
18. Тип 18 № 46976
Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано натуральное число. За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Выходить за пределы поля робот не может. Некоторые клетки на поле окружены границами, в эти клетки роботу заходить нельзя.
В начальный момент запас энергии робота составляет 3000 единиц. Проходя через каждую клетку, робот расходует энергию, при этом расход равен числу, записанному в клетке. В клетках с выделенным фоном находятся зарядные станции. При прохождении через эти клетки робот не расходует, а пополняет запас энергии. Сумма пополнения равна числу, записанному в этой клетке.
Определите максимальный и минимальный запас энергии, который может быть у робота после перехода в правую нижнюю клетку поля. В ответе запишите два числа: сначала максимально возможное значение, затем — минимальное.
Исходные данные записаны в электронной таблице. Границы отмечены утолщёнными линиями.
Задание 18
Пример входных данных (для таблицы размером 4 × 4):
13 | 8 | 69 | 50 |
30 | 35 | 57 | 17 |
32 | 90 | 55 | 32 |
44 | 12 | 80 | 43 |
При указанных входных данных максимальное значение получается при движении по маршруту:
3000 − 13 − 8 + 35 − 57 − 17 − 32 − 43 = 2865,
а минимальное — при движении по маршруту:
3000 − 13 − 30 − 32 − 90 − 12 − 80 − 43 = 2700.
Ответ:
19. Тип 19 № 40735
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок.
Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя.
Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней, 1 ⩽ S ⩽ 33.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.
20. Тип 20 № 40736
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок.
Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя.
Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней, 1 ⩽ S ⩽ 33.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Существует несколько таких значений S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найдите наименьшее и наибольшее из таких значений S.
В ответе запишите сначала наименьшее, затем наибольшее значение.
21. Тип 21 № 40737
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень, добавить два камня или увеличить количество камней в куче в два раза. При этом нельзя повторять ход, который только что сделал второй игрок.
Например, если в начале игры в куче 3 камня, Петя может первым ходом получить кучу из 4, 5 или 6 камней. Если Петя получил кучу из 5 камней (добавил 2 камня), то следующим ходом Ваня может получить 6 или 10 камней. Получить 7 камней Ваня не может, так как для этого нужно добавить 2 камня, а такой ход только что сделал Петя.
Чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается, когда количество камней в куче становится не менее 34. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 34 или больше камней. В начальный момент в куче было S камней; 1 ⩽ S ⩽ 33.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Найдите значение S, при котором у Вани есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Пети, но у Вани нет стратегии, которая позволяла бы ему гарантированно выиграть первым ходом.
22. Тип 22 № 47584
В файле 22_4.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример организации данных в файле:
ID процесса B | Время выполнения процесса B (мс) | ID процесса(ов) A |
1 | 4 | 0 |
2 | 3 | 0 |
3 | 1 | 1;2 |
4 | 7 | 3 |
В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.
23. Тип 23 № 4944
У исполнителя Арифметик две команды, которым присвоены номера.
1. Прибавь 1.
2. Прибавь 3.
Первая из них увеличивает на 1 число на экране, вторая увеличивает это число на 3.
Программа для Арифметика — это последовательность команд.
Сколько существует программ, которые число 2 преобразуют в число 15?
24. Тип 24 № 27688
Текстовый файл состоит не более чем из 106 символов X, Y и Z. Определите длину самой длинной последовательности, состоящей из символов Z. Хотя бы один символ Z находится в последовательности.
Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.
Задание 24
25. Тип 25 № 28122
Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [489 421; 489 440], числа, имеющие ровно четыре различных натуральных делителя. Для каждого найденного числа запишите эти четыре делителя в четыре соседних столбца на экране с новой строки. Делители в строке должны следовать в порядке возрастания.
Например, в диапазоне [12; 14] ровно четыре различных натуральных делителя имеет число 14, поэтому для этого диапазона вывод на экране должна содержать следующие значения:
1 2 7 14
Ответ:
26. Тип 26 № 28132
Системный администратор раз в неделю создаёт архив пользовательских файлов. Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.
По заданной информации об объёме файлов пользователей и свободном объёме на архивном диске определите максимальное число пользователей, чьи файлы можно сохранить в архиве, а также максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Входные данные.
Задание 26
В первой строке входного файла находятся два числа: S — размер свободного места на диске (натуральное число, не превышающее 10 000) и N — количество пользователей (натуральное число, не превышающее 2000). В следующих N строках находятся значения объёмов файлов каждого пользователя (все числа натуральные, не превышающие 100), каждое в отдельной строке.
Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей.
Пример входного файла:
100 4
80
30
50
40
При таких исходных данных можно сохранить файлы максимум двух пользователей. Возможные объёмы этих двух файлов — 30 и 40, 30 и 50 или 40 и 50. Наибольший объём файла из перечисленных пар — 50, поэтому ответ для приведённого примера:
2 50
Ответ:
27. Тип 27 № 39256
Дана последовательность натуральных чисел. Необходимо найти максимально возможную сумму её непрерывной подпоследовательности, в которой количество нечётных элементов кратно k = 10.
Входные данные.
Файл A
Файл B
Первая строка входного файла содержит целое число N — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число. Гарантируется, что общая сумма всех чисел не превышает 2 · 109.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.
Ответ: