На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину более короткой из дорог ГЖ и ЕИ. В ответе запишите целое число — длину дороги в километрах.
Миша заполнял таблицу истинности функции (x ∧ ¬y) ∨ (x ≡ z) ∨ ¬w, но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
(x ∧ ¬y) ∨ (x ≡ z) ∨ ¬w
0
1
1
0
0
0
0
1
0
1
0
Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Функция задана выражением ¬x ∨ y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид.
¬x ∨ y
0
1
0
В этом случае первому столбцу соответствует переменная y, а второму столбцу — переменная x. В ответе следует написать yx.
Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
ID операции
Дата
ID магазина
Артикул
Тип операции
Количество упаковок,шт.
Цена,руб./шт.
Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.
Артикул
Отдел
Наименование
Ед. изм.
Количествов упаковке
Поставщик
Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.
ID магазина
Район
Адрес
На рисунке приведена схема указанной базы данных.
Используя информацию из приведённой базы данных, определите, сколько килограмм творожка детского сладкого было продано в магазинах Заречного района за период с 1 по 10 июня включительно.
По каналу связи передаются сообщения, содержащие только восемь букв: К, Л, М, Н, О, П, Р, С. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: К — 001, Н — 100, Р — 111. Какое наименьшее количество двоичных знаков потребуется для кодирования слова МОЛОКОСОС?
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.
Автомат обрабатывает натуральное число N по следующему алгоритму.
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа ещё два разряда по следующему правилу: если N чётное, в конец числа (справа) дописывается 10, в противном случае справа дописывается 01. Например, двоичная запись 1001 числа 9 будет преобразована в 100101.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа — результата работы данного алгоритма.
Укажите максимальное число R, которое не превышает 102 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 4 [Вперёд 5 Направо 90 Вперёд 10 Направо 90].
Определите количество точек с целочисленными координатами, лежащих внутри и на границе области, которую ограничивает заданная алгоритмом линия.
В информационной системе хранятся изображения размером 2048 × 1536 пк. При кодировании используется алгоритм сжатия изображений, позволяющий уменьшить размер памяти для хранения одного изображения в среднем в 4 раза по сравнению с независимым кодированием каждого пикселя. Каждое изображение дополняется служебной информацией, которая занимает 128 Кбайт. Для хранения 32 изображений потребовалось 16 Мбайт. Сколько цветов использовано в палитре каждого изображения?
Сколько слов длины 6, начинающихся и заканчивающихся согласной буквой, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.
С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «был» или «Был» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «был», такие как «было», «были» и т. д., учитывать не следует. В ответе укажите только число.
При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 6 символов и содержащий только символы из 7-буквенного набора Н, О, Р, С, Т, У, X. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируются одинаковым и минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 10 байт.
Определите объём памяти, необходимый для хранения сведений о 100 пользователях. (Ответ дайте в байтах.)
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить(111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить(v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Определите количество нулей в строке, получившейся в результате применения приведённой ниже программы к входной строке, состоящей из единицы, за которой следуют 80 нулей подряд. В ответе запишите только количество нулей в получившейся строке.
В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. Обычно маска записывается по тем же правилам, что и IP-адрес, — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого разряда — нули. Адрес сети получается в результате применения поразрядной конъюнкции к заданным IP-адресу узла и маске.
Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.
Для узла с IP-адресом 57.179.208.27 адрес сети равен 57.179.192.0. Каково наибольшее возможное количество единиц в разрядах маски?
В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, у которых сумма элементов кратна 80 и хотя бы один элемент из пары делится на 50, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.
Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней.
В начальный момент в куче было S камней, 1 ≤ S ≤ 28.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней.
В начальный момент в куче было S камней; 1 ≤ S ≤ 28.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания.
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней.
В начальный момент в куче было S камней, 1 ≤ S ≤ 28.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Если найдено несколько значений S, в ответе запишите минимальное из них.
В файле 22_35.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример организации данных в файле:
ID процесса B
Время выполнения процесса B (мс)
ID процесса(ов) A
1
4
0
2
3
0
3
1
1;2
4
7
3
В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.
Исполнитель РазДваПять преобразует число на экране.
У исполнителя есть три команды, которым присвоены номера.
1. Прибавить 1.
2. Умножить на 2.
3. Прибавить 5.
Первая команда увеличивает число на экране на 1, вторая умножает его на 2, третья увеличивает на 5.
Программа для исполнителя РазДваПять — это последовательность команд.
Сколько существует программ, которые преобразуют исходное число 1 в число 18 и при этом траектория вычислений содержит число 9 и не содержит числа 11?
Траектория вычислений — это последовательность результатов выполнения всех команд программы. Например, для программы 312 при исходном числе 4 траектория будет состоять из чисел 9, 10, 20.
Текстовый файл состоит не более чем из 106 символов L, D и R. Определите максимальную длину цепочки вида LDRLDRLDR... (составленной из фрагментов LDR, последний фрагмент может быть неполным).
Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.
Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [110203; 110245], числа, имеющие ровно четыре различных чётных натуральных делителя (при этом количество нечётных делителей может быть любым). Для каждого найденного числа запишите эти четыре делителя в четыре соседних столбца на экране с новой строки. Делители в строке должны следовать в порядке возрастания.
Например, в диапазоне [2; 16] ровно четыре чётных различных натуральных делителя имеют числа 12 и 16, поэтому для этого диапазона вывод на экране должна содержать следующие значения:
На складе хранятся кубические контейнеры различного размера. Чтобы сократить занимаемое при хранении место, контейнеры вкладывают друг в друга. Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 5 и более условных единиц. Группу вложенных друг в друга контейнеров называют блоком. Количество контейнеров в блоке может быть любым. Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку.
Зная количество контейнеров и их размеры, определите минимальное количество ячеек для хранения всех контейнеров и максимально возможное количество контейнеров в одном блоке.
Первая строка входного файла содержит целое число N — общее количество контейнеров. Каждая из следующих N строк содержит натуральное число, не превышающее 10 000, — размер контейнера в условных единицах.
В ответе запишите два целых числа: сначала минимальное количество ячеек для хранения всех контейнеров, затем максимально возможное количество контейнеров в одном блоке.
В текстовом файле записан набор натуральных чисел, не превышающих 108. Гарантируется, что все числа различны. Из набора нужно выбрать три числа, сумма которых делится на 3. Какую наибольшую сумму можно при этом получить?
Первая строка входного файла содержит целое число N — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число.
Пример входного файла:
4
5
8
14
11 В данном случае есть четыре подходящие тройки: 5, 8, 11 (сумма 24); 5, 8 14 (сумма 27); 5, 14 11 (сумма 30) и 8, 14, 11 (сумма 33). В ответе надо записать число 33.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.
Ответ:
Просмотр содержимого документа
«ЕГЭ 2025 Январь. Информатика Вариант 6»
1. Тип 1 № 39230
На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину более короткой из дорог ГЖ и ЕИ. В ответе запишите целое число — длину дороги в километрах.
П1
П2
П3
П4
П5
П6
П7
П8
П1
16
15
24
22
12
19
18
П2
16
30
П3
15
21
П4
24
37
27
П5
22
30
37
П6
12
21
23
П7
19
27
П8
18
23
2. Тип 2 № 19051
Миша заполнял таблицу истинности функции (x ∧ ¬y) ∨ (x ≡ z) ∨ ¬w, но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
(x∧ ¬y) ∨ (x ≡ z) ∨ ¬w
0
1
1
0
0
0
0
1
0
1
0
Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Функция задана выражением ¬x ∨ y, зависящим от двух переменных, а фрагмент таблицы имеет следующий вид.
¬x∨y
0
1
0
В этом случае первому столбцу соответствует переменная y, а второму столбцу — переменная x. В ответе следует написать yx.
3. Тип 3 № 37485
В файле приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц.
3.xlsx
Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Заголовок таблицы имеет следующий вид.
ID операции
Дата
ID магазина
Артикул
Тип операции
Количество упаковок,шт.
Цена,руб./шт.
Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Заголовок таблицы имеет следующий вид.
Артикул
Отдел
Наименование
Ед. изм.
Количествов упаковке
Поставщик
Таблица «Магазин» содержит информацию о местонахождении магазинов. Заголовок таблицы имеет следующий вид.
ID магазина
Район
Адрес
На рисунке приведена схема указанной базы данных.
Используя информацию из приведённой базы данных, определите, сколько килограмм творожка детского сладкого было продано в магазинах Заречного района за период с 1 по 10 июня включительно.
В ответе запишите только число.
4. Тип 4 № 18581
По каналу связи передаются сообщения, содержащие только восемь букв: К, Л, М, Н, О, П, Р, С. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: К — 001, Н — 100, Р — 111. Какое наименьшее количество двоичных знаков потребуется для кодирования слова МОЛОКОСОС?
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.
5. Тип 5 № 15974
Автомат обрабатывает натуральное число N по следующему алгоритму.
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа ещё два разряда по следующему правилу: если N чётное, в конец числа (справа) дописывается 10, в противном случае справа дописывается 01. Например, двоичная запись 1001 числа 9 будет преобразована в 100101.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа — результата работы данного алгоритма.
Укажите максимальное число R, которое не превышает 102 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.
6. Тип 6 № 47303
Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд n (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись Повтори k [Команда1 Команда2 … КомандаS] означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм: Повтори 4 [Вперёд 5 Направо 90 Вперёд 10 Направо 90].
Определите количество точек с целочисленными координатами, лежащих внутри и на границе области, которую ограничивает заданная алгоритмом линия.
7. Тип 7 № 36862
В информационной системе хранятся изображения размером 2048 × 1536 пк. При кодировании используется алгоритм сжатия изображений, позволяющий уменьшить размер памяти для хранения одного изображения в среднем в 4 раза по сравнению с независимым кодированием каждого пикселя. Каждое изображение дополняется служебной информацией, которая занимает 128 Кбайт. Для хранения 32 изображений потребовалось 16 Мбайт. Сколько цветов использовано в палитре каждого изображения?
8. Тип 8 № 9194
Сколько слов длины 6, начинающихся и заканчивающихся согласной буквой, можно составить из букв Г, О, Д? Каждая буква может входить в слово несколько раз. Слова не обязательно должны быть осмысленными словами русского языка.
9. Тип 9 № 61389
В каждой строке электронной таблицы записаны шесть натуральных чисел.
Определите количество строк таблицы, содержащих числа, для которых одновременно выполнены все следующие условия:
— все числа в строке различны;
— среднее арифметическое наибольшего и наименьшего чисел в строке меньше среднего арифметического всех остальных чисел.
В ответе запишите число — количество строк, удовлетворяющих заданным условиям.
Задание 9
10. Тип 10 № 27591
С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «был» или «Был» в тексте романа в стихах А. С. Пушкина «Евгений Онегин». Другие формы слова «был», такие как «было», «были» и т. д., учитывать не следует. В ответе укажите только число.
Задание 10
11. Тип 11 № 5081
При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 6 символов и содержащий только символы из 7-буквенного набора Н, О, Р, С, Т, У, X. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируются одинаковым и минимально возможным количеством бит. Кроме собственно пароля для каждого пользователя в системе хранятся дополнительные сведения, для чего отведено 10 байт.
Определите объём памяти, необходимый для хранения сведений о 100 пользователях. (Ответ дайте в байтах.)
12. Тип 12 № 15854
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить(111, 27) преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды заменить(v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Определите количество нулей в строке, получившейся в результате применения приведённой ниже программы к входной строке, состоящей из единицы, за которой следуют 80 нулей подряд. В ответе запишите только количество нулей в получившейся строке.
НАЧАЛО
ПОКА нашлось (10) ИЛИ нашлось (1)
ЕСЛИ нашлось (10)
ТО заменить (10, 001)
ИНАЧЕ
ЕСЛИ нашлось(1)
ТО заменить (1, 000)
КОНЕЦ ЕСЛИ
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
13. Тип 13 № 13739
В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. Обычно маска записывается по тем же правилам, что и IP-адрес, — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого разряда — нули. Адрес сети получается в результате применения поразрядной конъюнкции к заданным IP-адресу узла и маске.
Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.
Для узла с IP-адресом 57.179.208.27 адрес сети равен 57.179.192.0. Каково наибольшее возможное количество единиц в разрядах маски?
14. Тип 14 № 16043
Значение арифметического выражения 97 + 321 − 9 записали в системе счисления с основанием 3. Сколько цифр 2 содержится в этой записи?
15. Тип 15 № 17382
Для какого наименьшего целого неотрицательного числа A выражение
(5x + 3y ≠ 60) ∨ ((Ax) ∧ (Ay))
тождественно истинно при любых целых неотрицательных x и y?
16. Тип 16 № 6779
Алгоритм вычисления значений функций F(n) и G(n), где n — натуральное число, задан следующими соотношениями:
Чему равно значение величиныF(5)/G(5)? В ответе запишите только натуральное число.
17. Тип 17 № 37362
В файле содержится последовательность из 10 000 целых положительных чисел. Каждое число не превышает 10 000. Определите и запишите в ответе сначала количество пар элементов последовательности, у которых сумма элементов кратна 80 и хотя бы один элемент из пары делится на 50, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два различных элемента последовательности. Порядок элементов в паре не важен.
17.txt
Ответ:
18. Тип 18 № 27681
Квадрат разлинован на N×N клеток (1 N
Задание 18
Откройте файл. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальную сумму, затем минимальную.
Исходные данные представляют собой электронную таблицу размером N×N, каждая ячейка которой соответствует клетке квадрата.
Пример входных данных:
1
8
8
4
10
1
1
3
1
3
12
2
2
3
5
6
Для указанных входных данных ответом должна быть пара чисел 41 и 22.
19. Тип 19 № 38597
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней.
В начальный момент в куче было S камней, 1 ≤ S ≤ 28.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.
20. Тип 20 № 38598
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней.
В начальный момент в куче было S камней; 1 ≤ S ≤ 28.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
— Петя не может выиграть за один ход;
— Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.
Найденные значения запишите в ответе в порядке возрастания.
21. Тип 21 № 38599
Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.
Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней.
В начальный момент в куче было S камней, 1 ≤ S ≤ 28.
Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.
Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:
— у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
— у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
Если найдено несколько значений S, в ответе запишите минимальное из них.
22. Тип 22 № 47616
В файле 22_35.xlsx содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс B зависит от процесса A, если для выполнения процесса B необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно.
Информация о процессах представлена в файле в виде таблицы. В первой строке таблицы указан идентификатор процесса (ID), во второй строке таблицы — время его выполнения в миллисекундах, в третьей строке перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.
Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.
Типовой пример организации данных в файле:
ID процесса B
Время выполнения процесса B (мс)
ID процесса(ов) A
1
4
0
2
3
0
3
1
1;2
4
7
3
В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 — через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.
23. Тип 23 № 17386
Исполнитель РазДваПять преобразует число на экране.
У исполнителя есть три команды, которым присвоены номера.
1. Прибавить 1.
2. Умножить на 2.
3. Прибавить 5.
Первая команда увеличивает число на экране на 1, вторая умножает его на 2, третья увеличивает на 5.
Программа для исполнителя РазДваПять — это последовательность команд.
Сколько существует программ, которые преобразуют исходное число 1 в число 18 и при этом траектория вычислений содержит число 9 и не содержит числа 11?
Траектория вычислений — это последовательность результатов выполнения всех команд программы. Например, для программы 312 при исходном числе 4 траектория будет состоять из чисел 9, 10, 20.
24. Тип 24 № 27699
Текстовый файл состоит не более чем из 106 символов L, D и R. Определите максимальную длину цепочки вида LDRLDRLDR... (составленной из фрагментов LDR, последний фрагмент может быть неполным).
Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.
Задание 24
25. Тип 25 № 27854
Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [110203; 110245], числа, имеющие ровно четыре различных чётных натуральных делителя (при этом количество нечётных делителей может быть любым). Для каждого найденного числа запишите эти четыре делителя в четыре соседних столбца на экране с новой строки. Делители в строке должны следовать в порядке возрастания.
Например, в диапазоне [2; 16] ровно четыре чётных различных натуральных делителя имеют числа 12 и 16, поэтому для этого диапазона вывод на экране должна содержать следующие значения:
2 4 6 12
2 4 8 16
Ответ:
26. Тип 26 № 48447
На складе хранятся кубические контейнеры различного размера. Чтобы сократить занимаемое при хранении место, контейнеры вкладывают друг в друга. Один контейнер можно вложить в другой, если размер стороны внешнего контейнера превышает размер стороны внутреннего на 5 и более условных единиц. Группу вложенных друг в друга контейнеров называют блоком. Количество контейнеров в блоке может быть любым. Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку.
Зная количество контейнеров и их размеры, определите минимальное количество ячеек для хранения всех контейнеров и максимально возможное количество контейнеров в одном блоке.
Задание 26
Входные данные.
Первая строка входного файла содержит целое число N — общее количество контейнеров. Каждая из следующих N строк содержит натуральное число, не превышающее 10 000, — размер контейнера в условных единицах.
В ответе запишите два целых числа: сначала минимальное количество ячеек для хранения всех контейнеров, затем максимально возможное количество контейнеров в одном блоке.
Ответ:
27. Тип 27 № 35485
В текстовом файле записан набор натуральных чисел, не превышающих 108. Гарантируется, что все числа различны. Из набора нужно выбрать три числа, сумма которых делится на 3. Какую наибольшую сумму можно при этом получить?
Входные данные.
Файл A
Файл B
Первая строка входного файла содержит целое число N — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число.
Пример входного файла:
4
5
8
14
11 В данном случае есть четыре подходящие тройки: 5, 8, 11 (сумма 24); 5, 8 14 (сумма 27); 5, 14 11 (сумма 30) и 8, 14, 11 (сумма 33). В ответе надо записать число 33.
Вам даны два входных файла (A и B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем для файла B.