СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

"Элементарные функции, содержащие знак модуля"

Категория: Математика

Нажмите, чтобы узнать подробности

Различные примеры построения графиков квадратичной функции, содержащей знак модуля.

Просмотр содержимого документа
«"Элементарные функции, содержащие знак модуля"»

Элементарные функции, содержащие знак модуля

Элементарные функции, содержащие знак модуля

Функция – одно из важнейших математических понятий. Функцией называют такую зависимость переменной Y от переменной X, при которой каждому значению переменной X соответствует единственное значение переменной Y .

Функция – одно из важнейших математических понятий. Функцией называют такую зависимость переменной Y от переменной X, при которой каждому значению переменной X соответствует единственное значение переменной Y .

Способы задания функции:  1) аналитический способ (функция задается с помощью математической формулы);  2) табличный способ (функция задается с помощью таблицы);  3) описательный способ (функция задается словесным описанием);  4) графический способ (функция задается с помощью графика).

Способы задания функции: 1) аналитический способ (функция задается с помощью математической формулы); 2) табличный способ (функция задается с помощью таблицы); 3) описательный способ (функция задается словесным описанием); 4) графический способ (функция задается с помощью графика).

Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значению аргумента, а ординаты – соответствующим значениям функции.   Функция, определяемая формулой у=ах2+вх+с, где х и у переменные, а параметры а, в и с – любые действительные числа, причём а 0, называется квадратичной. 

Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значению аргумента, а ординаты – соответствующим значениям функции.  Функция, определяемая формулой у=ах2+вх+с, где х и у переменные, а параметры а, в и с – любые действительные числа, причём а 0, называется квадратичной. 

0 «ветви» параболы направлены вверх, при а Чтобы построить график квадратичной функции, нужно: 1) найти координаты вершины параболы и отметить её в координатной плоскости; 2) построить ещё несколько точек, принадлежащих параболе; 3) соединить отмеченные точки плавной линией. " width="640"

График функции у=ах2+вх+с есть парабола; осью симметрии параболы у=ах2+вх+с является прямая , при а0 «ветви» параболы направлены вверх, при а Чтобы построить график квадратичной функции, нужно: 1) найти координаты вершины параболы и отметить её в координатной плоскости; 2) построить ещё несколько точек, принадлежащих параболе; 3) соединить отмеченные точки плавной линией.

Для построения графиков функций, содержащих знак модуля, как и при решении уравнений, сначала находят корни выражений, стоящих под знаком модуля. В результате ось Ох разбивается на промежутки. Убираем знаки модуля, беря каждое выражение в каждом промежутке с определённым знаком, которые находим методом интервалов.  В каждом промежутке получается функция без знака модуля. Строим график каждой функции в каждом промежутке.    В простейшем случае, когда только одно выражение стоит под знаком модуля и нет других слагаемых без знака модуля, можно построить график функции, опустив знак модуля, и затем часть графика, расположенную в области отрицательных значений y, отобразить относительно оси Ох.

Для построения графиков функций, содержащих знак модуля, как и при решении уравнений, сначала находят корни выражений, стоящих под знаком модуля. В результате ось Ох разбивается на промежутки. Убираем знаки модуля, беря каждое выражение в каждом промежутке с определённым знаком, которые находим методом интервалов. В каждом промежутке получается функция без знака модуля. Строим график каждой функции в каждом промежутке.  В простейшем случае, когда только одно выражение стоит под знаком модуля и нет других слагаемых без знака модуля, можно построить график функции, опустив знак модуля, и затем часть графика, расположенную в области отрицательных значений y, отобразить относительно оси Ох.

Пример 1.  Построим график функции у = |х2 – 6х +5|.   Сначала построим параболу у = х2– 6х +5. Чтобы получить из неё график функции у = |х2 - 6х + 5|, нужно каждую точку параболы с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой. Иными словами, часть параболы, расположенную ниже оси Ох, нужно заменить линией, ей симметричной относительно оси Ох.

Пример 1. Построим график функции у = |х2 – 6х +5|.  Сначала построим параболу у = х2– 6х +5. Чтобы получить из неё график функции у = |х2 - 6х + 5|, нужно каждую точку параболы с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой. Иными словами, часть параболы, расположенную ниже оси Ох, нужно заменить линией, ей симметричной относительно оси Ох.

Пример 2.  Рассмотрим график функции у = |х|2– 6х +5.   Т. к. |х| возводится в квадрат, то независимо от знака числа х после возведения в квадрат он будет положительным. Отсюда следует, то график функции у =|х|2 - 6х +5 будет идентичен графику функции у = х2 - 6х +5, т.е. графику функции, не содержащей знака абсолютной величины.

Пример 2. Рассмотрим график функции у = |х|2– 6х +5.  Т. к. |х| возводится в квадрат, то независимо от знака числа х после возведения в квадрат он будет положительным. Отсюда следует, то график функции у =|х|2 - 6х +5 будет идентичен графику функции у = х2 - 6х +5, т.е. графику функции, не содержащей знака абсолютной величины.

Пример 3.  Рассмотрим график функции у = х2 – 6|х| +5.   Воспользовавшись определением модуля числа, заменим формулу    у = х2 – 6|х| +5   Теперь мы имеем дело с хорошо знакомым нам кусочным заданием зависимости. Строить график будем так:   1) построим параболу у = х2 - 6х +5 и обведём ту её часть, которая соответствует неотрицательным значениям х, т.е. часть, расположенную правее оси Оу.  2) в той же координатной плоскости построим параболу у = х2 +6х +5 и обведём ту её часть, которая соответствует отрицательным значениям х, т.е. часть, расположенную левее оси Оу. Обведённые части парабол вместе образуют график функции у = х2 - 6|х| +5

Пример 3. Рассмотрим график функции у = х2 – 6|х| +5.  Воспользовавшись определением модуля числа, заменим формулу   у = х2 – 6|х| +5  Теперь мы имеем дело с хорошо знакомым нам кусочным заданием зависимости. Строить график будем так:  1) построим параболу у = х2 - 6х +5 и обведём ту её часть, которая соответствует неотрицательным значениям х, т.е. часть, расположенную правее оси Оу. 2) в той же координатной плоскости построим параболу у = х2 +6х +5 и обведём ту её часть, которая соответствует отрицательным значениям х, т.е. часть, расположенную левее оси Оу. Обведённые части парабол вместе образуют график функции у = х2 - 6|х| +5

Пример 4. Построим график функции у = |х2 – 6х| +5.   Для этого построим график функции у = х2 - 6х. Чтобы получить из неё график функции у = |х2 - 6х|, нужно каждую точку параболы с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой. Иными словами, часть параболы, расположенную ниже оси х, нужно заменить линией ей симметричной относительно оси х. Т.к. нам нужно построить график функции у = |х2 - 6х| +5, то график рассмотренной нами функции у = |х2 - 6х| нужно просто поднять по оси у на 5 единиц вверх .

Пример 4.

Построим график функции у = |х2 – 6х| +5.  Для этого построим график функции у = х2 - 6х. Чтобы получить из неё график функции у = |х2 - 6х|, нужно каждую точку параболы с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой. Иными словами, часть параболы, расположенную ниже оси х, нужно заменить линией ей симметричной относительно оси х. Т.к. нам нужно построить график функции у = |х2 - 6х| +5, то график рассмотренной нами функции у = |х2 - 6х| нужно просто поднять по оси у на 5 единиц вверх .

 Пример 5. Построим график функции у = х2 - |6х+5|. Для этого воспользуемся хорошо нам известной кусочной функцией. Найдём нули функции  у = 6х +5  6х + 5 = 0 при .  Рассмотрим два случая:  1)Если х0, то уравнение принимает вид у = х2+ 6х +5. Постоим эту параболу и обведём ту её часть, которая расположена левее точки с координатами.

Пример 5.

Построим график функции у = х2 - |6х+5|. Для этого воспользуемся хорошо нам известной кусочной функцией. Найдём нули функции 

у = 6х +5 6х + 5 = 0 при . Рассмотрим два случая: 1)Если х0, то уравнение принимает вид у = х2+ 6х +5. Постоим эту параболу и обведём ту её часть, которая расположена левее точки с координатами.

Пример 6 .  Построим график функции у = |х2 – 6|х| +5|.   Для этого мы построим график функции у =х2- 6|х| +5. Построение этого графика мы проводили в примере 3. Т. к. наша функция полностью находится под знаком модуля, то для того, чтобы построить график функции у = |х2 – 6|х| +5|, нужно каждую точку графика функции у = х2 – 6|х|+5 с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой, т.е. часть параболы, расположенную ниже оси Ох, нужно заменить линией ей симметричной относительно оси Ох

Пример 6 . Построим график функции у = |х2 – 6|х| +5|.  Для этого мы построим график функции у =х2- 6|х| +5. Построение этого графика мы проводили в примере 3. Т. к. наша функция полностью находится под знаком модуля, то для того, чтобы построить график функции у = |х2 – 6|х| +5|, нужно каждую точку графика функции у = х2 – 6|х|+5 с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой, т.е. часть параболы, расположенную ниже оси Ох, нужно заменить линией ей симметричной относительно оси Ох

Пример 7. Построим график функции у = |х2 – 6х +5|. 

Пример 7.

Построим график функции у = |х2 – 6х +5|. 

 Когда в «стандартные» уравнения прямых, парабол, гипербол включают знак модуля, их графики становятся необычными и даже красивыми.

Когда в «стандартные» уравнения прямых, парабол, гипербол включают знак модуля, их графики становятся необычными и даже красивыми.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!