СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Физика группа 1-5 с 6 по 10 апреля

Категория: Физика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Физика группа 1-5 с 6 по 10 апреля»

Урок № 157-158______

Предмет: ОУД 08 Физика

Дата проведения: 7.04.2020 год. Преподаватель: Алхуватова Л.И.

Группа № 1-5

Тема урока:Движение жидкости по трубам. Закон Бернулли

Цель: Рассмотреть течение жидкости в трубе переменного течения, ввести закон Бернулли

Вид урока: Комбинированный урок

Оснащение урока: ПК, проектор.

Литература: А.В. Фирсов: Физика.Учебник для профессий и специальностей технического и естественно-научного профилей.Москва, 2018г, издательский центр «Академия»





1 Стационарное течение жидкости. Уравнение неразрывности

Рассмотрим случай, когда невязкая жидкость течет по горизонтальной цилиндрической трубе с изменяющимся поперечным сечением.

Течение жидкости называют стационарным, если в каждой точке пространства, занимаемого жидкостью, ее скорость с течением времени не изменяется. При стационарном течении через любое поперечное сечение трубы за равные промежутки времени переносятся одинаковые объемы жидкости.

Жидкости практически несжимаемы, т. е. можно считать, что данная масса жидкости всегда имеет неизменный объем. Поэтому одинаковость объемов жидкости, проходящих через разные сечения трубы, означает, что скорость течения жидкости зависит от сечения трубы.

Пусть скорости стационарного течения жидкости через сечения трубы S1 и S2 равны соответственно v1 и v2. Объем жидкости, протекающей за промежуток времени t через сечение S1, равен V1=S1v1t, а объем жидкости, протекающей за то же время через сечение S2, равен V2=S2v2t. Из равенства V1=V2 следует, что

S1v1=S2v2.  (1)

Соотношение (1) называют уравнением неразрывности. Из него следует, что

v1/v2=S2/S1.

Следовательно, при стационарном течении жидкости скорости движения ее частиц через разные поперечные сечения трубы обратно пропорциональны площадям этих сечений.

2 Давление в движущейся жидкости. Закон Бернулли

Увеличение скорости течения жидкости при переходе из участка трубы с большей площадью поперечного сечения в участок трубы с меньшей площадью поперечного сечения означает, что жидкость движется с ускорением.

Согласно второму закону Ньютона, причиной ускорения является сила. Этой силой в данном случае является разность сил давления, действующих на текущую жидкость в широкой и узкой частях трубы. Следовательно, в широкой части трубы давление жидкости должно быть больше, чем в узкой. Это можно непосредственно наблюдать на опыте. На рис. показано, что на участках разного поперечного сечения S1 и S2 в трубу, по которой течет жидкость, вставлены манометрические трубки.

Как показывают наблюдения, уровень жидкости в манометрической трубке у сечения S1 трубы выше, чем у сечения S2. Следовательно, давление в жидкости, протекающей через сечение с большей площадью S1, выше, чем давление в жидкости, протекающей через сечение с меньшей площадью S2. Следовательно, при стационарном течении жидкости в тех местах, где скорость течения меньше, давление в жидкости больше и, наоборот, там, где скорость течения больше, давление в жидкости меньше. К этому выводу впервые пришел Бернулли, поэтому данный закон называется законом Бернулли.

Закрепление:

1 Что называют стационарным течением жидкости?

2 В чем заключается закон Паскаля?

3 В чем заключается уравнение неразрывности трубы? Написать

4 В каких частях трубы скорость течения больше?

5 В чем заключается закон Бернулли?

























Урок № 159-161______

Предмет: ОУД 08 Физика

Дата проведения: 8.04.2020 год. Преподаватель: Алхуватова Л.И.

Группа № 1-5

Тема урока: Свободные колебания. Динамика свободных колебаний

Цель: Ввести понятие колебательного движения, рассмотреть пружинный и математический маятники

Вид урока: Комбинированный урок

Оснащение урока: ПК, проектор.

Литература: А.В. Фирсов: Физика.Учебник для профессий и специальностей технического и естественно-научного профилей.Москва, 2018г, издательский центр «Академи







1 Свободные колебания. Пружинный маятник

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Амплитуда колебаний - это модуль максимального значения колеблющейся величины.

Период колебаний Т- это минимальный промежуток времени за который процесс полностью повторяется

Частота колебаний n - это число колебаний за единицу времени

Циклическая частота - это число колебаний за время равное 2п секунд



Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):

F (t) = ma (t) = –m ω2 x (t).

В этом соотношении ω – круговая частота гармонических колебаний. Таким свойством обладает упругая сила в пределах применимости закона Гука:

Fупр = –kx.

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими.

Таким образом, груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором.

Рисунок 2.2.1.

Колебания груза на пружине. Трения нет

Круговая частота ω0 свободных колебаний груза на пружине находится из второго закона Ньютона:

откуда



Частота ω0 называется собственной частотой колебательной системы.

Период T гармонических колебаний груза на пружине равен



При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x0, равную

и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω0 и периода колебаний T справедливы и в этом случае.

Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой xускорение является второй производной координаты тела x по времени t:

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

или




(*)

где 

Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида

x = xm cos (ωt + φ0).



Уравнение (*) называется уравнением свободных колебаний. Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω0 или период T. Такие параметры колебательного процесса, как амплитуда xm и начальная фаза φ0, определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то xm = Δl, φ0 = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость   то 

Таким образом, амплитуда xm свободных колебаний и его начальная фаза φ0 определяются начальными условиями.








2 Математический маятник

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести Fτ = –mgsin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.





Рисунок 2.3.1.



Рисунок 2.3.1.

Математический маятник. φ – угловое отклонение маятника от положения равновесия, x = lφ – смещение маятника по дуге







Математический маятник. φ – угловое отклонение маятника от положения равновесия, x = lφ – смещение маятника по дуге

Если обозначить через x линейное смещение маятника от положения равновесия по дуге окружности радиуса l, то его угловое смещение будет равно φ = x / l. Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:



Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению x, а



Только в случае малых колебаний, когда приближенно можно заменить на математический маятник является гармоническим осциллятором, т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка 15–20°; при этом величина отличается от не более чем на 2 %. Колебания маятника при больших амплитудах не являются гармоническими.



Для малых колебаний математического маятника второй закон Ньютона записывается в виде



Таким образом, тангенциальное ускорение aτ маятника пропорционально его смещению x, взятому с обратным знаком. Это как раз то условие, при котором система является гармоническим осциллятором. По общему правилу для всех систем, способных совершать свободные гармонические колебания, модуль коэффициента пропорциональности между ускорением и смещением из положения равновесия равен квадрату круговой частоты:

Эта формула выражает собственную частоту малых колебаний математического маятника.



Следовательно,



Контрольные вопросы:

1 Что называют свободными колебаниями?

2 Перечислить основные характеристики свободных колебаний?

3 Что называют пружинным маятником?

4 Чему равен период пружинного маятника?

5 Что называют математическим маятником?

6 Чему равен период математического маятника?





Ответы на контрольные вопросы оставьте на моей электронной почте:

[email protected]

Пишите ответы указав соответствующее число