Формирование элементарных математических представлений с помощью нетрадиционных форм работы с детьми дошкольного возраста.
СОДЕРЖАНИЕ
Формы работы по формированию элементарных математических представлений у дошкольников.
Нетрадиционные формы работы в непосредственной образовательной деятельности по математике с детьми дошкольного возраста.
Вывод.
1.Формы работы по формированию элементарных математических представлений у дошкольников.
Математическое развитие ребенка — это не только умение дошкольника считать и решать арифметические задачи, это и развитие способности видеть в окружающем мире отношения, зависимости, оперировать предметами, знаками, символами. математическое развитие является длительным и весьма трудоёмким процессом для дошкольников, так как формирование основных приёмов логического познания требует не только высокой активности умственной деятельности, но и обобщённых знаний об общих и существенных признаках предметов и явлений действительности. Математическое развитие осуществляется во всех структурах педагогического процесса: в совместной деятельности взрослого с детьми (организованная образовательная деятельность и режимные моменты), самостоятельной детской деятельности, в индивидуальной работе с детьми и при проведении кружковой работы, тем самым, детям предоставляется возможность анализировать, сравнивать, обобщать. Формирование элементарных математических представлений у дошкольников осуществляется на занятиях и вне их, в детском саду и дома.
Занятия являются основной формой развития элементарных математических представлений в детском саду. На них возлагается ведущая роль в решении задач общего умственного и математического развития ребенка и подготовки его к школе. На занятиях реализуются практически все программные требования; осуществление образовательных, воспитательных и развивающих задач происходит комплексно; математические представления формируются и развиваются в определенной системе.
Занятия по формированию элементарных математических представлений у детей строятся с учетом общедидактических принципов: научности, системности и последовательности, доступности, наглядности, связи с жизнью, индивидуального подхода к детям и др.
Формы организации занятий разнообразны. Наряду с традиционным занятием, где происходит знакомство с новым материалом и способами обследовательской, счетной, измерительной, вычислительной, поисковой деятельности, используются игры-занятия, беседы-занятия, путешествие-занятие, проблемно-поисковые ситуации, занятия-инсценировки, игротека.
Особая роль отводится дидактическим играм. Они имеют непреходящее значение для познавательного развития дошкольника. С их помощью уточняются и закрепляются представления детей о числах, об отношениях между ними, о геометрических фигурах, временных и пространственных отношениях. Игры способствуют развитию наблюдательности, внимания, памяти, мышления, речи. Они могут видоизменяться по мере усложнения программного содержания, а использование наглядного материала позволяет не только разнообразить игру, но и сделать ее привлекательной для детей.
Чтобы математика вошла в жизнь дошкольников как способ знакомства с интересными явлениями окружающего мира необходимо использовать наряду с традиционными нетрадиционные формы работы. Они побуждают детей к активной мыслительной и практической деятельности. Процесс формирования элементарных математических представлений у детей становится более эффективным и интересным, если педагог использует игровые методы и приемы. Умственную активность ребенок проявляет в ходе достижения игровой цели в образовательной деятельности и повседневной жизни.
Важную роль в развитии познавательного интереса дошкольников к математике играет специально организованная педагогами деятельность. Большой интерес вызывают занятия в нетрадиционной форме: по мотивам сказок, в форме игр-путешествий, расследований, экспериментов, экскурсий, викторин, сюжетно- ролевых игр, КВН, «Поля-чудес», занятия с использованием ИКТ и др.
2.Нетрадиционные формы работы в непосредственной образовательной деятельности по математике с детьми дошкольного возраста.
Что сделает занятия по математике эффективными?
-Нетрадиционная форма.
-Учет индивидуальных, возрастных и психологических
особенностей детей.
-Задания развивающего, проблемно-поискового характера.
-Игровая мотивация.
-Благоприятная психологическая атмосфера и эмоциональный настрой.
-Интеграция разных видов деятельности (игровой, музыкальной,
двигательной, изобразительной, конструктивной и др.)
на основе математического содержания.
-Чередование видов деятельности.
К нетрадиционным формам занятий относятся:
Занятия-соревнования. Выстраиваются на основе соревнования между детьми: кто быстрее назовёт, найдёт, определит, заметит и т. д. Математические КВН. Предполагают разделение детей на 2 подгруппы и проводятся как математическая или литературная викторина.
Театрализованые занятия. Разыгрываются микросценки, несущие детям познавательную информацию. Занятие-консультации. Когда ребёнок обучается «по горизонтали», консультируясь у другого ребёнка.
Занятия-взаимообучения. Ребёнок-«консультант» обучает других детей.
Занятия-аукционы. Проводятся как настольная игра «менеджер».
Занятия-сомнения (поиска истины). Исследовательская деятельность детей типа «тает-не тает, летает-не летает».
Бинарные занятия. Составление творческих рассказов на основе использования двух предметов, от смены положения которых меняются сюжет и содержание рассказа.
Занятия-концерты. Отдельные концертные номера несущие познавательную информацию.
Занятия-диалоги. Проводятся по типу беседы, но тематика выбирается актуальной и интересной.
Занятия типа «Следствие ведут знатоки». Работа со схемой, ориентировка по схеме с детективной сюжетной линией.
Занятия типа «Поле чудес». Проводится как игра «Поле чудес» для читающих детей. Занятие «Интеллектуальное казино». Проводится как игра «Интеллектуальное казино» или викторины с ответами на вопросы: что? где? когда. Экспериментирование и опыты. Одним из современных методов обучения математике являются элементарные опыты. Детям предлагается, например, перелить воду из бутылочек разной величины (высокая, узкая и низкая, широкая) в одинаковые сосуды, чтобы определить: объем воды одинаков; взвесить на весах два куска пластилина разной формы (длинная колбаска и шар), чтобы определить, что они одинаковые по массе; расставить стаканы и бутылочки один к одному (бутылочки стоят в ряд далеко друг от друга, а стаканы в кучке близко друг к другу), чтобы определить, что их количество (равное) не зависит от того, сколько места они занимают.
Экскурсии и наблюдения. Для формирования элементарных представлений дошкольников об окружающем мире и элементарных математических знаний огромное значение имеет опыт детей, который они получает во время экскурсий и наблюдений. Такие экскурсии и наблюдения могут быть организованы как в условиях дошкольного учреждения, так и во время семейных прогулок. Все любые прогулки с детьми, даже дорога до детского сада, могут стать ценнейшим источником развивающей информации. В ходе экскурсий и наблюдений дошкольники знакомятся:
•с трехмерным пространством окружающего мира (формой и величиной реальных объектов);
• с количественными свойствами и отношениями, существующими в реальном пространстве помещений, на участке детского сада и за территорией, то есть в окружающем ребенка мире;
• с временными ориентировками в естественных условиях, соответствующих тому или иному времени года, части суток и т.п.
Экскурсии могут быть ознакомительными, уточняющими ранее полученные представления, закрепляющими, то есть итоговыми. Количество их определяется необходимостью расширения и обогащения элементарного математического опыта детей. В зависимости от целей и задач математического обучения, экскурсии можно проводить до начала занятия по ознакомлению детей с какими-либо математическими свойствами и отношениями, существующими в реальном природном и социальном мире, а также по мере освоения математического материала. На экскурсиях дети знакомятся с деятельностью людей, включающей элементы математического содержания в естественных условиях. Например, они наблюдают следующие ситуации: покупатели приобретают продукты и платят деньги (количественные представления); школьники идут в школу (временные представления); пешеходы переходят улицу (пространственные представления); строители строят дом, и на стройке работают различные по высоте краны (представления о величине) и т.п. В ходе экскурсий внимание детей обращается на особенности жизни людей, животных и растений в разное время года и суток.
Использование художественной литературы в играх и упражнениях.
Для формирования полноценных математических представлений и для развития познавательного интереса у дошкольников очень важно использовать занимательные проблемные ситуации. Жанр сказки позволяет соединить в себе и собственно сказку, и проблемную ситуацию. Слушая интересные сказки и переживая с героями, дошкольник в то же время включается в решение целого ряда сложных математических задач, учится рассуждать, логически мыслить, аргументировать ход своих рассуждений. Воздействие художественной литературы на умственное, речевое и эстетическое развитие детей дошкольного возраста общеизвестно. Неоценимо его значение и в процессе формирования элементарных математических представлений и профилактики нарушений счетной деятельности. Литературное произведение как средство математического развития детей необходимо рассматривать в единстве содержания и художественной формы. При выборе литературных произведений для занятий с математическим содержанием необходимо учитывать состояние связной речи и сформированность элементарных математических представлений у дошкольников. Если внимательно прочитать произведения для детей, то можно заметить, что практически каждое из них с помощью образного слова передает определенное математическое содержание. Тем не менее рекомендуется использовать для чтения и занятий прежде всего такие художественные тексты, которые формируют представления детей о временах года, времени суток, днях недели, о величине и пространственных ориентировках, количественные представления. Художественные произведения, прежде всего стихотворные, педагог может использовать на занятиях, во время прогулок, гигиенических процедур, обучения навыкам самообслуживания, трудовым навыкам и т.п. литературные произведения включаются в театрализованные и сюжетно- дидактические игры, подвижные игры, то есть игры с правилами. Одно и тоже произведение можно использовать в разных игровых ситуациях. Таким образом, оно как бы проходит через жизненный и игровой опыт ребенка. Для математического развития детей дошкольного возраста рекомендуется, прежде всего, произведения народного творчества (потешки, загадки, песенки, сказки, пословицы, поговорки, стихи), так и авторские стихи, сказки и другие произведения. При формировании временных представлений у детей рекомендуются стихотворения «Часы» (Г.Сапгир), «Машенька» (А.Барто), «Пастушок» (Г.Демченко), «Зазвонил будильник» (Г.Ладонщиков). У С.Маршака есть целый цикл стихотворений, посвященных временам года. Он называется «Круглый год». Ему же принадлежит в полном смысле математическое стихотворение «Веселый счет». Таким образом, умение отбирать лексические средства, наиболее точно раскрывающие математический смысл, проявляется как в контексте формирования математических представлений, так и в контексте обучения произвольности построения связного высказывания. Например: сказка «Теремок» — поможет запомнить не только количественный и порядковый счёт (первой пришла к теремку мышка, второй лягушка и т.д.), но и основы арифметики. Дети легко усваивают, как увеличивается количество на единичку. Прискакал зайка, и стало и трое. Прибежала лисица, и стало их четверо. Сказки «Колобок» и «Репка» хороши для освоения порядка счета. Кто тянул репку первым? Кто повстречался колобку третьим? В репке можно и о размере поговорить. Кто самый маленький? Мышка. Кто самый большой? Дед. Кто стоит пред кошкой? А кто за бабкой? Сказка «Три медведя» — это математическая супер - сказка. И медведей можно посчитать, и о размере поговорить (большой, маленький, средний, кто больше, кто меньше, кто самый большой, кто самый маленький), соотнести мишек с соответствующими стульями, тарелками. В «Красной шапочке» поговорить о понятиях «длинный», «короткий». Особенно если нарисовать или выложить из кубиков дорожки и посмотреть, по какой из них быстрее пробегут маленькие пальчики или игрушечная машинка. В сказке «Про козлёнка, который умел считать до десяти» — дети вместе с козлёнком пересчитывают героев сказки, легко запоминают количественный счёт до 10 и т.д.
Перспективным методом обучения дошкольников математике на современном этапе является моделирование: оно способствует усвоению специфических, предметных действий, лежащих в основе понятия числа. Дети использовали модели (заместители) при воспроизведении такого же количества предметов (покупали в магазине шапок столько, сколько кукол; при этом количество кукол фиксировали фишками, так как поставлено условие - кукол в магазин брать нельзя); воспроизводили такую же величину (строили дом такой же высоты, как образец; для этого брали палочку такой же величины, как высота дома-образца, и делали свою постройку такой же высоты, как величина палочки). При измерении величины условной меркой дети фиксировали отношение мерки ко всей величине либо предметными заместителями (предметы), либо словесными (словами-числительными).
Занятия с использованием новых информационных технологий.
Применение компьютерной техники позволяет сделать каждое занятие нетрадиционным, ярким, насыщенным и доступным для восприятия детей. В практике используют мультимедийные презентации и обучающие программы, поскольку учебный материал, представленный различным информационными средами (звук, видео, графика, анимация) легче усваивается дошкольниками. Использование мультимедийных технологий активизирует познавательную деятельность детей, повышает их мотивацию, совершенствует формы и методы организации математических занятий. Они ориентируют детей на их творческое и продуктивное использование в своём обучении.
Включение мультимедийных технологий дополняет традиционную программу для дошкольных учреждений по формированию счетной деятельности дошкольников. Используя мультимедийные технологии в дошкольном математическом образовании, можно создать эффективные педагогические условия для формирования математических представлений у детей старшего дошкольного возраста. Проектная деятельность Сегодня в науке и практике интенсивно отстаивается взгляд на ребенка как на “саморазвивающуюся систему”, при этом усилия взрослых должны быть направлены на создание условий для саморазвития детей.
Одна из таких технологий – проектная деятельность. Проектируя деятельность, воспитатель совместно с детьми создает план. Все сюжетно-дидактические игры объединяются в один проект по теме. Предлагаемый сюжет должен у дошкольников вызвать положительные эмоции, стремление включиться в процесс сюжетно-дидактической игры. Надо, чтоб ребенку было комфортно от выполнения различных действий, мотивированных логикой развития сюжета. Проектная деятельность оказывается достаточно эффективным методом обучения практически всем естественнонаучным дисциплинам, к числу которых относится и математика. Главная цель организации проектной деятельности - развитие у детей глубоких, устойчивых интересов к предмету математики, на основе широкой познавательной активности и любознательности Технология проектирования делает дошкольников активными участниками учебного и воспитательного процессов, становится инструментом саморазвития дошкольников. В основе технологии лежит концептуальная идея доверия к природе ребенка, опора на его поисковое поведение. Основная цель метода проектов состоит в предоставлении ребятам возможности самостоятельного приобретения знаний в процессе решения практических задач или проблем, требующих интеграции знаний из различных предметных областей. В курсе математики метод проектов может использоваться в рамках программного материала практически по любой теме. Каждый проект соотносится с определенной темой и разрабатывается в течение нескольких занятий. Осуществляя эту работу, дети могут составлять задачи с различными героями. Это могут быть сказочные задачи, «мультяшные» задачи, задачи из жизни группы, познавательные задачи и так далее. Проект – это система постепенно усложняющихся практических заданий. Таким образом, у ребёнка происходит накопление собственного опыта, углубление его знаний и совершенствование умений. У дошкольника развиваются такие качества личности, как самостоятельность, инициативность, любознательность, опыт взаимодействия и др., что прописано в Федеральных государственных образовательных стандартах, в Целевых ориентирах ДО - социальные и психологические характеристики возможных достижений ребёнка на этапе завершения уровня ДО.
Вывод:
-Использование непосредственно образовательной деятельности в нетрадиционной форме помогает привлечь к работе всех детей.
-Можно организовать проверку любого задания через взаимоконтроль.
-Нетрадиционный подход таит в себе огромный потенциал для развития речи дошкольников.
-НОД способствует развитию умения работать самостоятельно.
-В группе меняются отношения между детьми и воспитателем (мы партнеры).
-Ребята с удовольствием ждут таких игр.
Список литературы
1. Белошистая А. В. Дошкольный возраст: формирование и развитие математических способностей //Дошкольное воспитание. 2002 г. № 2 с. 69-79
2. Березина Р.Л., Михайлова З.А., Непомнящий Р.Л., Рихтерман Т.Д., Столяр А.А. Формирование элементарных математических представлений у дошкольников . Москва, изд-во "Просвещение", 1990.
3. Венгер Л.А., Дьяченко О.М. Игры и упражнения по развитию умственных способностей у детей дошкольного возраста. – М.: Просвещение 1989 г.
4. Веракса Н. Е., Веракса А. Н. Проектная деятельность дошкольников. Пособие для педагогов дошкольных учреждений.— М.: Мозаика — Синтез, 2008. — 112 с.
5. Колесникова Е. В. Развитие математического мышления у детей 5-7 лет. М; «Гном-Пресс», «Новая школа», 1998 с. 128.
6. Леушина А. М. Формирование элементарных математических представлений у детей дошкольного возраста. М; Просвещение, 1974
7. Справочник старшего воспитателя дошкольного учреждения № 2, февраль 2017 г.
4