СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Книжка-малышка "Вероятность события"

Категория: Математика

Нажмите, чтобы узнать подробности

Книжка составлена для того, чтобы на уроке  ученики  могли в "свободное" время решать  задания ОГЭ, ЕГЭ. Книжка разрезается на 3 части и склеивается, получается "гармошка". 

Просмотр содержимого документа
«Книжка-малышка "Вероятность события"»



Вероят-

ность

события



№ 1

Из числа экзаменационных билетов, занумерованных всеми двузначными числами, наудачу берется один. Какова вероятность того, что номер взятого билета состоит из одинаковых цифр?




№ 2

Среди 15 микрокалькуляторов, имеющихся в вычислительной лаборатории, лишь 6 новых, а остальные – бывшие в потреблении. Наугад взято три микрокалькулятора. Какова вероятность того, то все они окажутся новыми?

№ 3

Монета бросается дважды. Какова вероятность того, что хотя бы один раз выпадет герб?








№ 4

Набирая номер телефона, абонент забыл две последние цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Какова вероятность того, что номер набран правильно?

№ 5

Из трех узлов, составляющих прибор, вероятность появления неисправности на узлах за некоторый цикл работы равна соответственно р1=0,2; р2=0,3; р3=0,1. Какова вероятность безотказной работы прибора за указанный цикл?

№ 6

Три стрелка делают по одному выстрелу в цель. Вероятность попадания для первого стрелка – 0,8, для второго – 0,7, для третьего – 0,6. Найдите вероятность того, что только один стрелок попадет в цель.

№ 7

Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

№ 8

Какова вероятность того, что случайно выбранный телефонный номер оканчивается двумя чётными цифрами?









№ 9

Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

№ 10

При ар­тил­ле­рий­ской стрель­бе ав­то­ма­ти­че­ская си­сте­ма де­ла­ет вы­стрел по цели. Если цель не уни­что­же­на, то си­сте­ма де­ла­ет по­втор­ный вы­стрел. Вы­стре­лы по­вто­ря­ют­ся до тех пор, пока цель не будет уни­что­же­на. Ве­ро­ят­ность уни­что­же­ния не­ко­то­рой цели при пер­вом вы­стре­ле равна 0,4, а при каж­дом по­сле­ду­ю­щем — 0,6. Сколь­ко вы­стре­лов по­тре­бу­ет­ся для того, чтобы ве­ро­ят­ность уни­что­же­ния цели была не менее 0,98?

№ 11

В Вол­шеб­ной стра­не бы­ва­ет два типа по­го­ды: хо­ро­шая и от­лич­ная, причём по­го­да, уста­но­вив­шись утром, дер­жит­ся не­из­мен­ной весь день. Из­вест­но, что с ве­ро­ят­но­стью 0,8 по­го­да зав­тра будет такой же, как и се­год­ня. Се­год­ня 3 июля, по­го­да в Вол­шеб­ной стра­не хо­ро­шая. Най­ди­те ве­ро­ят­ность того, что 6 июля в Вол­шеб­ной стра­не будет от­лич­ная по­го­да.

№ 12

Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

№ 13

Аг­ро­фир­ма за­ку­па­ет ку­ри­ные яйца в двух до­маш­них хо­зяй­ствах. 40% яиц из пер­во­го хо­зяй­ства — яйца выс­шей ка­те­го­рии, а из вто­ро­го хо­зяй­ства — 20% яиц выс­шей ка­те­го­рии. Всего выс­шую ка­те­го­рию по­лу­ча­ет 35% яиц. Най­ди­те ве­ро­ят­ность того, что яйцо, куп­лен­ное у этой аг­ро­фир­мы, ока­жет­ся из пер­во­го хо­зяй­ства. 


№ 14

На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до сотых.

№ 15

Перед на­ча­лом во­лей­боль­но­го матча ка­пи­та­ны ко­манд тянут чест­ный жре­бий, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Ста­тор» по оче­ре­ди иг­ра­ет с ко­ман­да­ми «Ротор», «Мотор» и «Стар­тер». Най­ди­те ве­ро­ят­ность того, что «Ста­тор» будет на­чи­нать толь­ко первую и по­след­нюю игры.

№ 16

В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

№ 17

Cтре­лок стре­ля­ет по ми­ше­ни один раз. В слу­чае про­ма­ха стре­лок де­ла­ет вто­рой вы­стрел по той же ми­ше­ни. Ве­ро­ят­ность по­пасть в ми­шень при одном вы­стре­ле равна 0,7. Най­ди­те ве­ро­ят­ность того, что ми­шень будет по­ра­же­на (либо пер­вым, либо вто­рым вы­стре­лом).





Ответы к заданиям книжки «Вероятность события»

1) Решение: Всего билетов 90 (количество двузначных чисел). Число билетов с одинаковыми знаками (11, 22, 33, 44, 55, 66, 77, 88, 99) равно 9. Значит

Ответ: 0,1.

2) Решение: Ответ:

3) Решение: Р = Ответ: 0,75.

4) Решение: Две последние цифры можно набрать 10 способами, из них только один способ благоприятный. Р= Ответ: .

5) Решение: Найдем вероятность безотказной работы каждого узла: q1=1-p1=1-0,2=0,8; q2=1-p2=1-0,3=0,7; q3=1-p3=1-0,1=0,9. Значит, Р=0,8 Ответ: 0,504.

6) Решение: Ответ: 0,188.

7) Решение: Р = 0,5 · 0,3 = 0,15. Ответ: 0,15.

8) Решение:  Вероятность того, что на одном из требуемых мест окажется чётное число равна 0,5. Следовательно, вероятность того, что на двух местах одновременно окажутся два чётных числа равна 0,5 · 0,5 = 0,25. Ответ: 0,25.

9)Решение: Поскольку биатлонист попадает в мишени с вероятностью 0,8, он промахивается с вероятностью 1 − 0,8 = 0,2. Тем самым, вероятность события «попал, попал, попал, промахнулся, промахнулся» равна Р=0,8·0,8·0,8·0,2·0,2=0,020480,02. Ответ: 0,02.

10) Решение: Вы­чис­лим ве­ро­ят­ность уце­леть после ряда по­сле­до­ва­тель­ных про­ма­хов:

 Р(1) = 0,6.

Р(2) = Р(1)·0,4 = 0,24.

Р(3) = Р(2)·0,4 = 0,096.

Р(4) = Р(3)·0,4 = 0,0384;

Р(5) = Р(4)·0,4 = 0,01536.

 По­след­няя ве­ро­ят­ность мень­ше 0,02, по­это­му до­ста­точ­но пяти вы­стре­лов по ми­ше­ни. Ответ: 5 выстрелов.

11) Решение: Для по­го­ды на 4, 5 и 6 июля есть 4 ва­ри­ан­та: ХХО, ХОО, ОХО, ООО (здесь Х — хо­ро­шая, О — от­лич­ная по­го­да). Най­дем ве­ро­ят­но­сти на­ступ­ле­ния такой по­го­ды:

P(XXO) = 0,8·0,8·0,2 = 0,128;

P(XOO) = 0,8·0,2·0,8 = 0,128;

P(OXO) = 0,2·0,2·0,2 = 0,008;

P(OOO) = 0,2·0,8·0,8 = 0,128.

Ука­зан­ные со­бы­тия не­сов­мест­ные, ве­ро­ят­ность их суммы равна сумме ве­ро­ят­но­стей этих со­бы­тий:

P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392.

Ответ: 0,392.

12) Решение: Вероятность того, что стекло сделано на первой фабрике и оно бракованное: 0,45 · 0,03 = 0,0135.

Вероятность того, что стекло сделано на второй фабрике и оно бракованное: 0,55 · 0,01 = 0,0055.

Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна 0,0135 + 0,0055 = 0,019. Ответ: 0,019.

13) Решение: Пусть х — ис­ко­мая ве­ро­ят­ность того, что куп­ле­но яйцо, про­из­ве­ден­ное в пер­вом хо­зяй­стве. Тогда 1-х — ве­ро­ят­ность того, что куп­ле­но яйцо, про­из­ве­ден­ное во вто­ром хо­зяй­стве. По фор­му­ле пол­ной ве­ро­ят­но­сти имеем:

0,4х + 0,2(1 – х) = 0,35, 0,2х = 0,15, х = 0,75. Ответ: 0,75.

14) Решение: Пусть завод произвел n тарелок. В продажу поступят все качественные тарелки и 20% невыявленных дефектных тарелок: 0,9n+0,2·0,1n=0,92n тарелок. Поскольку качественных из них 0,9n, вероятность купить качественную тарелку равна

Ответ: 0,98.

 15) Решение: Тре­бу­ет­ся найти ве­ро­ят­ность про­из­ве­де­ния трех со­бы­тий: «Ста­тор» на­чи­на­ет первую игру, не на­чи­на­ет вто­рую игру, на­чи­на­ет тре­тью игру. Ве­ро­ят­ность про­из­ве­де­ния не­за­ви­си­мых со­бы­тий равна про­из­ве­де­нию ве­ро­ят­но­стей этих со­бы­тий. Ве­ро­ят­ность каж­до­го из них равна 0,5, от­ку­да на­хо­дим: 0,5·0,5·0,5 = 0,125. Ответ: 0,125.

16) Решение: Вероятность того, что Петя взял пятирублевую монету, затем десятирублевую, и затем еще одну десятирублевую (в указанном порядке) равна

Поскольку Петя мог достать пятирублевую монету не только первой, но и второй или третьей, вероятность достать набор из одной пятирублевой и двух десятирублевых монет в 3 раза больше. Тем самым, она равна 0,6. Ответ: 0,6.

17) Решение: Пусть A — со­бы­тие, со­сто­я­щее в том, что ми­шень не по­ра­же­на.

P(A)=0,3

Тогда ис­ко­мая ве­ро­ят­ность пред­став­ля­ет собой ве­ро­ят­ность про­ти­во­по­лож­но­го со­бы­тия  − ми­шень по­ра­же­на.

Ответ: 0,91.