СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 11.05.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Компьютерные сети и их классификация

Категория: Информатика

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Компьютерные сети и их классификация»

Компьютерные сети и их классификация

Компьютерная сеть — это группа (два и более) компьютеров, соединённых каналами передачи данных.

Компьютерные сети обеспечивают:

• быстрый обмен данными между отдельными компьютерами сети;

• совместное использование вычислительных ресурсов, принтеров, модемов, сканеров, устройств внешней памяти и т. п.

• совместное использование программного обеспечения и баз данных;

• совместную работу пользователей над некоторым заданием или проектом;

• возможность удалённого управления компьютерами (диагностику, настройку и/или установку на них программного обеспечения, оказание других видов удалённой поддержки пользователям и т. п.).

В зависимости от выполняемых в сети функций различают компьютеры-серверы и компьютеры-клиенты:

• сервер (от англ. server — обслуживающий) — компьютер, предоставляющий доступ к собственным ресурсам другим компьютерам и/или управляющий распределением ресурсов сети;

• клиент (рабочая станция) — компьютер, использующий ресурсы сервера.

Компьютерные сети могут быть классифицированы по разным основаниям: по территориальной распространённости, по архитектуре, по скорости передачи данных, по назначению, по типу среды передачи данных и др. Рассмотрим некоторые из этих классификаций.

По территориальной распространённости выделяют:

• локальные сети или LAN (англ. Local Area Network) — сети, состоящие из близко расположенных компьютеров;
• глобальные сети или WAN (англ. Wide Area Network) — сети, охватывающие большие территории и включающие большое число компьютеров.

По архитектуре различают:

• одноранговые сети, в которых все компьютеры имеют равные права — каждый компьютер может предоставлять собственные ресурсы другим компьютерам сети и использовать ресурсы остальных. Такая организация позволяет сохранять работоспособность сети при любом количестве и любом сочетании её участников. В одноранговой сети все компьютеры работают независимо друг от друга, у них нет единого центра. Такую сеть сложно обслуживать — руководить доступом к ресурсам, устанавливать и обновлять программное обеспечение на отдельных компьютерах, защищать от вмешательства посторонних пользователей, от вирусных атак и т. п.;

• сети с выделенным сервером — сети, в которых один или несколько компьютеров являются серверами, а все остальные — клиентами. Как правило, сервер мощнее и защищён лучше большинства клиентов. На сервере проще организовать доступ к данным только клиентам с соответствующими правами. Основной недостаток таких сетей в том, что неработоспособность сервера может привести к неработоспособности всей сети.

Скорость передачи данных по сети — это количество бит данных, которые могут быть переданы за одну секунду. Пропускная способность — это максимальная скорость передачи данных. По скорости передачи данных различают:

• низкоскоростные сети (до 10 Мбит/с);

• среднескоростные сети (до 100 Мбит/с);

• высокоскоростные сети (свыше 100 Мбит/с).


14.2. Аппаратное и программное обеспечение компьютерных сетей

Объединение компьютеров в сеть осуществляется с использованием каналов передачи данных — среды передачи данных и оборудования, обеспечивающего передачу данных в этой среде. По типу среды передачи данных различают сети:

• проводные (кабельные) — средой передачи данных являются кабели (телефонный провод, коаксиальный кабель, витая пара, оптоволоконный кабель);
• беспроводные — средой передачи являются радиоволны в определённом частотном диапазоне.

Сетевые адаптеры — устройства, выполняющие функцию сопряжения компьютера со средой передачи данных.

Какой бы природы ни был сигнал (электрический, оптический, радиосигнал), при передаче по сети на большое расстояние он слабеет. Чтобы сигнал не искажался и не пропадал, его необходимо усиливать. Делается это с помощью специального оборудования, так называемых повторителей, увеличивающих расстояние сетевого соединения путём повторения сигнала «один в один».

Концентраторы и коммутаторы служат для объединения нескольких компьютеров в требуемую конфигурацию локальной вычислительной сети.

Для соединения подсетей (логических сегментов) и различных вычислительных сетей в качестве межсетевого интерфейса применяются коммутаторы, мосты, маршрутизаторы и шлюзы.

Для организации обмена данными между компьютерами сети используется несколько видов программного обеспечения: сетевые компоненты операционной системы, служебные и прикладные программы. Сетевая операционная система связывает все компьютеры и периферийные устройства в сети, координирует их функции, обеспечивает защищённый доступ к данным. Прикладные программы, используемые для получения сетевых услуг, как правило, построены по клиент-серверной технологии и состоят из двух частей:

1) клиентской, предоставляющей возможность обратиться с запросом к ресурсам других компьютеров;
2) серверной, отвечающей на запросы клиентской части.

Чтобы обмен данными между компьютерами сети проходил без потерь и искажений, разнообразные компьютеры, сетевое оборудование и программное обеспечение должны взаимодействовать по одинаковым чётко определённым правилам. Такие правила называют сетевыми протоколами.

Сетевой протокол — это совокупность особых соглашений, а также технических процедур, которые регулируют порядок и способ осуществления связи между компьютерами, объединёнными в сеть.

Большинство современных компьютерных сетей осуществляет передачу данных на основе стека (набора) протоколов под названием TCP/IP (англ. Transmission Control Protocol/Internet Protocol — протокол управления передачей/межсетевой протокол).

При передаче данные разделяют на отдельные небольшие пакеты, дополняют служебными данными (адресами компьютеров получателя и отправителя, номером пакета и контрольным битом) и передают последовательно друг за другом.

Маршрут передачи определяют маршрутизаторы, которые также следят и за доставкой пакетов. Разные пакеты одного сообщения могут передаваться разными маршрутами. Пакет, по какой-то причине не попавший к адресату, отправляется повторно. Повторно передаются и пакеты, в которых во время передачи возникают искажения данных. В пункте назначения все пакеты соединяются, и данные приобретают первоначальный вид. Благодаря разделению данных на отдельные пакеты их передача по сети происходит быстро и надёжно — она возможна даже при выходе из строя части сети. В такой ситуации маршрутизаторы определят новый маршрут для прохождения пакета в обход повреждённого участка.

Правила разбивки данных на пакеты, их доставки к адресату и объединения пакетов в единое целое определяет протокол TCP.

Пересылка пакетов между компьютерами, которые могут иметь разную архитектуру, использовать разные операционные системы и относиться к разным сетям, осуществляется на основе протокола IP.

14.3. Работа в локальной сети

Локальная сеть — это сеть, состоящая из близко расположенных компьютеров, чаще всего находящихся в одной комнате, в одном или нескольких близко расположенных зданиях.

Локальные сети предназначены для ограниченного круга пользователей.

Одной из важнейшей характеристик локальных сетей является скорость передачи данных, поэтому компьютеры соединяются с помощью высокоскоростных адаптеров и высокоскоростных линий связи. Кроме того, локальные сети должны обладать открытостью и гибкостью: пользователи должны иметь возможность добавлять в сеть или перемещать компьютеры и другие устройства, при необходимости отключать их без прерываний в работе сети и т. д. Эти характеристики во многом определяются конфигурацией или топологией сети.

Топология — это конфигурация сети, способ соединения её элементов друг с другом.

Топологию сети удобно представлять с помощью графа, вершинам которого соответствуют компьютеры (иногда — другое оборудование), а рёбрам — физические связи между ними. Чаще всего используются шинная, кольцевая, радиальная и древовидная топологии. Их описание, основные достоинства и недостатки представлены в табл. 4.1.

Таблица 4.1

Топологии локальных сетей

В одноранговой сети компьютеры, как правило, объединяют в рабочую группу. Рабочая группа — это группа компьютеров локальной сети, пользователи которых выполняют похожие задания и осуществляют регулярный обмен данными. Например, в локальной сети школы в одну рабочую группу могут быть объединены компьютеры кабинета информатики. Рабочим группам дают имена, например Class или Administration.

В сетях с выделенным сервером компьютеры, как правило, объединяют в домены. Домен (от англ. domain — владение) — это группа компьютеров, централизованно обслуживаемых общим сервером, который руководит распределением прав доступа пользователей к ресурсам сети.

Как и рабочей группе, домену дают имя. В большой локальной сети может быть несколько доменов.

Каждому компьютеру в составе рабочей группы или домена дают уникальное имя. Например, компьютер учителя в кабинете информатики может иметь имя Teacher, а имена компьютеров учеников могут быть PCI, РС2 и т. д.

Часто на одном компьютере работает несколько пользователей, например на уроках информатики ученики разных классов работают на одних и тех же компьютерах, имеющихся в кабинете информатики. Для того чтобы обеспечить пользователям возможность работы с индивидуальными настройками операционной системы, упростить доступ к их собственным документам и ограничить доступ к чужим файлам и папкам, используют учётные записи.

Предоставление общего доступа к папкам даёт возможность пользователям работать с файлами, хранящимися на дисках других компьютеров локальной сети. Кроме того, общий доступ можно установить, например, к принтеру или сканеру.

Ещё одним преимуществом локальной сети является возможность подключения к глобальной сети всех компьютеров через один из них, имеющий в неё выход. Этот компьютер выполняет функцию шлюза — устройства, обеспечивающего соединение двух сетей: локальной и глобальной.

14.4. Как устроен Интернет

Глобальная сеть — это сеть, предназначенная для объединения большого числа отдельных компьютеров и локальных сетей, расположенных на значительном удалении (сотни и тысячи километров) друг от друга.

Глобальные сети ориентированы на обслуживание неограниченного круга пользователей. Самый впечатляющий пример глобальной сети — Интернет.

Интернет — это глобальная компьютерная сеть, в которой многочисленные научные, корпоративные, государственные и другие сети, а также персональные компьютеры отдельных пользователей соединены между собой каналами передачи данных.

Основой аппаратной структуры сети Интернет можно считать мощные компьютеры (узлы) и связывающие их высокоскоростные магистральные каналы передачи данных. Компьютерный узел, как правило, представляет собой несколько мощных компьютеров, постоянно подключённых к сети. Организации, имеющие в собственности и обслуживающие это оборудование, являются первичными провайдерами (от англ. provider — поставщик) услуг Интернета. Это так называемый, первый уровень доступа к Интернету. К первичным провайдерам присоединяются провайдеры следующих уровней, которые, в свою очередь, обеспечивают доступ к каналам Интернета своим клиентам — провайдерам более низкого уровня, локальным сетям и отдельным пользователям. Надёжность функционирования Интернета обеспечивается наличием большого количества каналов связи между входящими в него сетями.

Интернет является совокупностью сетей, имеющих различную географическую и организационную принадлежность. У каждой из этих сетей может быть владелец, но в целом Интернет не принадлежит никому.

Так как Интернет не имеет единого внешнего управления, его нельзя единовременно выключить целиком.

Координирует развитие Интернета общественная организация Общество Интернета (Internet Society, ISOC).

За каждым компьютерным узлом в Интернете закреплён постоянный адрес, называемый IР-адресом. IP-адреса получают и компьютеры пользователей сети Интернет, но в отличие от адресов узловых компьютеров их адреса действуют лишь во время подключения пользователя к сети и изменяются при каждом новом сеансе связи.

IP-адрес представляет собой 32-битный идентификатор, например: 01010101.10001110.00010011.00011110.

Точками 32-битная цепочка разделена только для более удобного её восприятия человеком, которому в отличие от технических устройств трудно работать с длинными последовательностями нулей и единиц. Именно поэтому в большинстве случаев мы используем запись IP-адреса в виде четырёх разделённых точками десятичных чисел — от 0 до 255 каждое.

Например, десятичная запись представленного выше адреса будет иметь вид: 85.142.19.30.

Интернет является сетью сетей, и система IP-адресации учитывает эту структуру. IP-адрес состоит из двух частей, одна из которых определяет адрес сети, а вторая — адрес самого узла в этой сети. При этом деление адреса на части определяется маской — 32-битным числом, в двоичной записи которого сначала стоят единицы, а потом — нули. Первая часть IP-адреса, соответствующая единичным битам маски, относится к адресу сети. Вторая часть IP-адреса, соответствующая нулевым битам маски, определяет числовой адрес узла в сети.

Адрес сети получается в результате применения поразрядной конъюнкции к IР-адресу узла и маске.

Пример 1. Пусть IP-адрес узла равен 231.165.215.131, а маска равна 255.255.110.0. Требуется выяснить адрес сети.

Чтобы найти адрес сети, применим к IP-адресу узла и маске поразрядную конъюнкцию:

Вспомним, что десятичный ноль может быть представлен цепочкой из восьми нулей, а 25510 = 111111112.

Что касается операции конъюнкции (логического умножения), то для неё справедливы следующие равенства: А & 1 = А, А & 0 = 0, где А — некоторая логическая переменная.

На этом основании, пропустив этап преобразования операндов в двоичную систему счисления, можем заключить:

1) результатом поразрядной конъюнкции любого целого числа А (от 0 до 25510) и числа 25510 будет само А;
2) результатом поразрядной конъюнкции любого целого числа А (от 0 до 25510) и числа 0 будет число 0.

Таким образом:

Для выполнения поразрядной конъюнкции чисел 21510 и 11010 переведём их в двоичную систему счисления.

Вспомнить возможные способы перевода целых десятичных чисел вам помогут следующие записи.

21510 = 110101112.

11010 = 64 + 32 + 8 + 4 + 2 =11011102 = 011011102.

Выполним поразрядную конъюнкцию:

Выполним перевод двоичного числа 01000110 в десятичную систему счисления:

Запишем искомый адрес сети: 231.165.70.0

Пример 2. Для узла с IP-адресом 227.195.208.12 адрес сети равен 227.195.192.0. Какой в этом случае может быть маска?

Так как адрес сети получается в результате применения поразрядной конъюнкции к IP-адресу узла и маске, то мы можем записать:

Мы видим, что 1-й и 2-й байты маски — единичные, а 4-й байт — нулевой. Будем «реконструировать» 3-й байт маски.

20810 = 110100002, 19210 = 110000002.

Если 3-й байт маски представить в виде хххххххх2, то можно записать:

Первая, вторая и четвёртая слева цифры, принадлежащие рассматриваемому байту маски, определяются однозначно и равны соответственно 1, 1 и 0:

Из того, что маска — 32-битное число, в двоичной записи которого сначала стоят единицы, а потом — нули, следует, что после нуля, стоящего на четвёртом месте, могут следовать только нули:

Так как 0 & х = 0 при любом х, то для третьего байта маски возможны два варианта:

1) 110000002 = 19210, вся маска: 255.255.192.0;
2) 111000002 = 22410, вся маска: 255.255.224.0.

Мы рассмотрели структуру адреса по так называемому протоколу IPv4, согласно которому IP-адрес имеет длину 32 бита. Таких адресов достаточно много — более 4 миллиардов (232 — 1 = 4 294 967 295).

По данным Международного союза электросвязи (пресс-релиз 26 мая 2015 года) при населении Земли в 7,2 миллиарда человек 3,2 миллиарда из них являются пользователями Интернета. Это говорит о том, что запас четырёхбайтовых адресов уже фактически исчерпан.

В связи с этим разработан протокол IPv6, согласно которому IP-адрес имеет длину 128 бит. Возможное пространство адресов при этом столь огромно, что может обеспечить 300 миллионов IP-адресов на каждого жителя Земли!

Согласно протоколу IPv6, адрес представляет собой цепочку из 128 нулей и единиц, разделённую на области по 16 бит.

Например:

0010000111011010.0000000011010011.0000000000000000.0000000000000000.0000001010101010.0000000011111111.1111111000101000.1001110001011010.

Каждая 16-разрядная область двоичного кода преобразуется в шестнадцатеричный код (вспомните «быстрый» перевод целых двоичных чисел в шестнадцатеричную систему счисления с помощью тетрад). Полученные группы из четырёх шестнадцатеричных цифр разделяются двоеточиями. Шестнадцатеричная запись рассмотренного выше адреса будет иметь вид:

21DA:00D3:0000:0000:02AA:00FF:FE28:9C5A.

Если одна или более групп подряд равны 0000, то они могут быть опущены и заменены на двойное двоеточие:

21DA:00D3::02AA:00FF:FE28:9C5A.

Запись адреса в новом стандарте также можно представить восьмью целыми десятичными числами в диапазоне от 0 до 65 535 каждое, разделёнными двоеточием.

Наряду с цифровыми IP-адресами в Интернете действуют более удобные и понятные для пользователей символьные адреса.

Например, IР-адресу 87.242.99.97 соответствует символьный адрес metodist.lbz.ru. В отличие от числового этот символьный адрес говорит пользователю о его принадлежности российскому сегменту сети (ru); возможно, некоторые пользователи узнают в нём адрес издательства «БИНОМ. Лаборатория знаний» (lbz) и поймут, что речь идёт о методической поддержке учебного процесса (metodist).

Адрес, представляющий собой символьную строку, составленную из разделённых точками слов или их сокращений, называется доменным именем.

Доменные имена имеют серверы Интернета. Каждый компьютер, подключаемый к Интернету, получает IP-адрес, но при этом он может не иметь доменного имени.

Система доменных имён DNS (Domain Name System) имеет древовидную структуру. Узлы этой структуры называются доменами.

Домен (от фр. dominion — область) — узел в дереве имён, вместе со всеми подчинёнными ему узлами, иначе говоря, это именованная ветвь или поддерево в дереве имён.

Часть доменного имени, записанная после последней точки, является доменом верхнего уровня. Домены верхнего уровня определены международным соглашением. Они делятся на два вида:

1) административные (по типу организации), например: gov, edu, org, com;
2) географические, например: ru, by, су, uk.

Владельцем домена может быть страна, регион, организация или отдельный человек. Обычный пользователь не может зарегистрировать домен верхнего уровня, но может зарегистрировать домен, например, второго или третьего уровня. Каждый домен любого уровня может содержать множество подчинённых доменов.

Структура доменного имени отражает порядок следования узлов в иерархии: доменное имя читается слева направо от доменов низшего уровня к доменам высшего уровня. Чем «выше» уровень домена, тем правее он записывается в имени.

Для преобразования доменного имени в IP-адрес и наоборот служит распределённая база данных DNS, функционирующая на основе иерархии DNS-серверов, каждый из которых является «держателем» некоторой доменной зоны и отвечает на касающиеся её запросы. Каждый сервер, отвечающий за доменную зону, может делегировать ответственность за некоторую часть домена другому серверу, что позволяет возложить ответственность за актуальность информации на серверы различных организаций (людей), отвечающих только за «свою часть» доменного имени.

14.5. История появления и развития компьютерных сетей

История появления и развития компьютерных сетей тесно связана с развитием вычислительной техники и коммуникаций. В ней можно выделить несколько этапов.

1950-1960 гг. Компьютеры представляют собой громоздкие устройства, требующие длительного времени для обработки информации. Создаются отдельные терминалы с собственными устройствами ввода-вывода, напрямую работающие с общим компьютером (мэйнфреймом). Терминалы, физически удалённые от мэйнфрейма, — первый прообраз компьютерной сети.

1960-1970 гг. Разрабатываются технические принципы компьютерной сети. В 1969 г. появляется ARPANET — первая глобальная сеть невоенного назначения, объединяющая суперкомпьютеры нескольких научно-исследовательских центров США, использующая для передачи данных телефонные сети.

1970-1980 гг. Появляются большие интегральные схемы, первые мини-компьютеры, первые нестандартные, настраиваемые вручную локальные сети. Появляются первые сетевые стандарты. Начинает функционировать электронная почта.

1980-1990 гг. Создаются персональные компьютеры. Принимается протокол TCP/IP, вводится система доменных имён DNS. Появляется Интернет в виде, близком к современному. Появляются стандартные технологии локальных сетей (Ethernet — 1980 г., Token Ring, FDDI — 1985 г.). Начинается коммерческое использование Интернета.

1990-2000 гг. Появляются первые интернет-сайты. Интернет объединяет локальные сети и становится средством массовой коммуникации. Телетехнологии (телемосты, видеоконференции) встраиваются в глобальную сеть.

2000-2010 гг. Производится массовое подключение отдельных пользователей и локальных сетей к Интернету. Используются беспроводные сети, резко снижается стоимость передачи единицы информации. Доступ к сети Интернет и электронной почте встраивается в мобильные телефоны. Создаются и получают широкое распространение сетевые средства массовой информации, интернет-магазины, цифровые библиотеки, дистанционное образование, социальные сети.

2010-2015 гг. Активно разворачиваются цифровые услуги населению, создаются облачные ресурсы и действующие на их основе мобильные сервисы, разворачивается глобальная сеть онлайн-обучения.



Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!

Закрыть через 5 секунд
Комплекты для работы учителя