Контрольные работы
по геометрии
в 9 классе
по учебнику атанасян л.с.
Контрольная работа №1.
Вариант 1.
Начертите два неколлинеарных вектора
и
. Постройте векторы, равные:
а)
+3
; б) 2
-
.
2. На стороне ВС ромба ABCD лежит точка К так, что ВК=КС, О – точка пересечения диагоналей. Выразите векторы
,
,
через векторы
=
и
=
.
В равнобедренной трапеции высота делит большее основание на отрезки, равные 5 и 12 см. Найдите среднюю линию трапеции.
4*. В треугольнике АВС О – точка пересечения медиан. Выразите вектор
через векторы
=
=
.
Контрольная работа №1.
Вариант 2.
Начертите два неколлинеарных вектора
и
. Постройте векторы, равные:
а)
+
; б) 3
-
.
2. На стороне СD квадрата ABCD лежит точка P так, что CP=PD, О – точка пересечения диагоналей. Выразите векторы
,
,
через векторы
=
и
=
.
3.В равнобедренной трапеции один из углов равен 60°, боковая сторона равна 8 см, а меньшее основание
7 см. Найдите среднюю линию трапеции.
4*. В треугольнике MNK О – точка пересечения медиан,
=
=
,
=k·(
+
).
Контрольная работа №2.
Вариант 1.
Найдите координаты и длину вектора
, если
= -
+
,
,
.
Даны координаты вершин треугольника АВС : А(-6;1), В(2;4), С(2;-2). Докажите, что треугольник АВС равнобедренный, и найдите высоту треугольника, проведённую из вершины А.
Окружность задана уравнением
+
=9. Напишите уравнение прямой, проходящей через её центр и параллельной оси ординат.
Контрольная работа №2.
Вариант 2.
Найдите координаты и длину вектора
, если
=
,
,
.
Даны координаты вершин четырёхугольника АВСD :
А(-6;1), В(0;5), С(6;-4)? D(0;-8). Докажите, что АВСD - прямоугольник, и найдите координаты точки пересечения его диагоналей.
Окружность задана уравнением
+
=16. Напишите уравнение прямой, проходящей через её центр и параллельной оси абсцисс.
Контрольная работа №3.
Вариант 1.
Найдите угол между лучом ОА и положительной полуосью Ох, если А (-1;3).
Решите треугольник АВС, если см.
Найдите косинус угла М треугольника KLM, если
К (1;7), L(-2;4), M (2;0).
Контрольная работа №3.
Вариант 2.
Найдите угол между лучом ОВ и положительной полуосью Ох, если В (3;3).
Решите треугольник ВСD, если D=60°,
ВС=
см.
Найдите косинус угла A треугольника ABC, если
A (3;9), B(0;6), C (4;2).
Контрольная работа №4 .
Вариант 1.
Периметр правильного треугольника, вписанного в окружность, равен 45 см. Найдите сторону правильного восьмиугольника, вписанного в ту же окружность.
Найдите площадь круга, если площадь вписанного в ограничивающую его окружность квадрата равна 72
.
Найдите длину дуги окружности радиуса 3 см, если её градусная мера равна 150°.
Контрольная работа №4 .
Вариант 2.
Периметр правильного шестиугольника, вписанного в окружность, равен 48 см. Найдите сторону квадрата, вписанного в ту же окружность.
Найдите длину окружности, если площадь вписанного в неё правильного шестиугольника равна 72
.
Найдите площадь кругового сектора, если градусная мера его дуги равна 120°, а радиус круга равен 12 см.
Контрольная работа №5.
Вариант 1.
Дана трапеция ABCD. Постройте фигуру, на которую отображается эта трапеция при симметрии относительно прямой, содержащей боковую
сторону АВ.
2. Две окружности с центрами
и
, радиусы которых равны, пересекаются в точках M и N. Через точку М проведена прямая, параллельная
и пересекающая окружность с центром
в точке D. Используя параллельный перенос, докажите, что четырёхугольник
MD
является параллелограммом.
Контрольная работа №5.
Вариант 2.
Дана трапеция ABCD. Постройте фигуру, на которую отображается эта трапеция при симметрии относительно точки, являющейся серединой боковой
стороны CD.
Дан шестиугольник
. Его стороны
и
,
и
,
и
попарно равны и параллельны. Используя центральную симметрию, докажите, что диагонали
,
,
данного шестиугольника пересекаются в одной точке.
Итоговая контрольная работа.
Вариант 1.
Часть 1.
1.Какое утверждение относительно треугольника со сторонами 5,9,15 верно?
а) треугольник остроугольный;
б) треугольник тупоугольный;
в) треугольник прямоугольный;
г) такого треугольника не существует.
2.Если одна из сторон треугольника на 3 см меньше другой, высота делит третью сторону на отрезки 5 см и 10 см, то периметр треугольника равен:
а) 25 см; б) 40 см; в) 32 см; г) 20 см.
3.Если один из углов ромба равен 60°, а диагональ, проведённая из вершины этого угла, равна4
см, то периметр ромба равен:
а) 16 см; б) 8 см; в) 12 см; г) 24 см.
4.Величина одного из углов треугольника равна 20°. Найдите величину острого угла между биссектрисами двух других углов треугольника.
а) 84°; б) 92°; в) 80°; г) 87°.
5.В треугольнике АВС сторона а=7, сторона b=8, сторона с=5. Вычислите угол А.
а) 120°; б) 45°; в) 30°; г) 60°.
Часть 2.
1.В равнобедренном треугольнике боковая сторона делится точкой касания со вписанной окружностью в отношении 8:5, считая от вершины, лежащей против основания. Найдите основание треугольника, если радиус вписанной окружности равен 10.
2.В треугольнике ВСЕ .
3.Найдите площадь треугольника КМР, если сторона КР равна 5, медиана РО равна 3
,
4.Диагонали равнобедренной трапеции перпендикулярны. Найдите площадь трапеции, если её средняя линия равна 5.
5.Окружность, центр которой лежит на гипотенузе АВ прямоугольного треугольника АВС, касается катетов АС и ВС соответственно в точках Е и D. Найдите величину угла АВС (в градусах), если известно, что АЕ=1, ВD=3.
Итоговая контрольная работа.
Вариант 2.
Часть 1.
1.Какое утверждение относительно треугольника со сторонами 12,9,15 верно?
а) треугольник остроугольный;
б) треугольник тупоугольный;
в) треугольник прямоугольный;
г) такого треугольника не существует.
2.Если сходственные стороны подобных треугольников равны 2 см и 5 см, площадь первого треугольника равна 8
, то площадь второго треугольника равна:
а) 5
; б) 40
в) 60
; г) 20
.
3.Если в равнобедренном треугольнике длина основания равна 12 см, а его периметр равен 32 см , то радиус окружности, вписанной в треугольник, равен::
а) 4 см; б) 3 см; в) 6 см; г) 5 см.
4.В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки 5 см и 12 см. Найдите катеты треугольника.
а)12 см и 16 см; б)7 см и 11 см; в) 10 см и 13 см; г) 8 см и 15 см.
5.Стороны прямоугольника равны a и k. Найдите радиус окружности, описанной около этого прямоугольника.
а)
; б)
; в)
; г)
.
Часть 2.
1.Окружность с центром О, вписанная в равнобедренный треугольник АВС с основанием АС, касается стороны ВС в точке К, причём СК:ВК=5:8. Найдите площадь треугольника, если его периметр равен 72.
2.Около треугольника АВС описана окружность. Медиана треугольника АМ продлена до пересечения с окружностью в точке К. Найдите сторону АС, если АМ=18, МК=8, ВК=10.
3.Найдите основание равнобедренного треугольника , если угол при основании равен 30°, а взятая внутри треугольника точка находится на одинаковом расстоянии, равном 3, от боковых сторон и на расстоянии 2
от основания.
4.Пусть М – точка пересечения диагоналей выпуклого четырёхугольника ABCD, в котором стороны АВ, АD, и ВС равны между собой. Найдите угол СМD (в градусах), если известно, что DМ=МС, а угол САВ не равен углу DBA.
5.На боковой стороне ВС равнобедренного треугольника АВС как на диаметре построена окружность, пересекающая основание этого треугольника в точке D. Найдите квадрат расстояния от вершины А до центра окружности, если АD=
, а угол АВС равен 120°.