Контрольная работа № 2 по теме «Параллельность в пространстве»
Вариант 1
1
. Точки M, N, P и Q — середины отрезков BC, BD, AD и AC соответственно, AB = 14 см, CD = 18 см (рис. 9). Определите вид четырёхугольника MNPQ и вычислите его периметр.
2. Плоскость α пересекает стороны AB и BC треугольника ABC в точках M и K соответственно и параллельна стороне AC, MK = 4 см, MB : MA = 2 : 3. Найдите сторону AC треугольника.
3
. Треугольник ABC является изображением правильного треугольника A1B1C1 (рис. 10). Постройте изображение высоты треугольника, опущенной на сторону A1C1.
4. Плоскости α и β параллельны. Из точки M, не принадлежащей этим плоскостям и не находящейся между ними, проведены два луча. Один из них пересекает плоскости α и β в точках A1 и B1, а другой — в точках A2 и B2 соответственно. Найдите отрезок B1B2 , если он на 2 см больше отрезка A1A2 , MB1 = 7 см, A1B1 = 4 см.
5. Точки A, B, C, не лежащие на одной прямой, являются параллельными проекциями трёх последовательных вершин правильного шестиугольника. Постройте изображение этого шестиугольника.
Вариант 2
1
. Точки F, M, N и C — середины отрезков BS, DB, AD и AS соответственно, SD = 30 см, AB = 36 см (рис. 11). Определите вид четырёхугольника FMNC и вычислите его периметр.
2. Плоскость β пересекает стороны AB и AC треугольника ABC в точках N и D соответственно и параллельна стороне BC, AD = 6 см, DN : CB = 3 : 4. Найдите сторону AC треугольника.
3
. Треугольник MNK является изображением правильного треугольника M1N1K1 (рис. 12). Постройте изображение биссектрисы треугольника, проведённой из вершины M1.
4. Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A1 и B1, а другая — в точках A2 и B2 соответственно. Найдите отрезок A1A2 , если он на 1 см меньше отрезка B1B2 , MA2 = 4 см, A2B2 = 10 см.
5. Точки A, B и O, не лежащие на одной прямой, являются соответственно параллельными проекциями двух вершин квадрата и его центра. Постройте изображение квадрата.
Вариант 3
1
. Точки N, M, C и K — середины отрезков BD, DF, FA и AB соответственно, BF = 24 см, AD = 18 см (рис. 13). Определите вид четырёхугольника NMCK и вычислите его периметр.
2. Плоскость α пересекает стороны MF и MK треугольника MFK в точках A и B соответственно и параллельна стороне FK,
AB = 12 см, AM : AF = 3 : 5. Найдите сторону FK треугольника.
3
. Треугольник ABC является изображением правильного треугольника A1B1C1 (рис. 14). Постройте изображение центра вписанной окружности треугольника A1B1C1.
4. Плоскости α и β параллельны. Из точки O, не принадлежащей этим плоскостям и не находящейся между ними, проведены два луча. Один из них пересекает плоскости α и β в точках C1 и D1, а другой — в точках C2 и D2 соответственно. Найдите отрезок C1C2, если он на 5 см меньше отрезка D1D2, OC1 = 4 см,
C1D1 = 10 см.
5. Точки A, B и O, не лежащие на одной прямой, являются соответственно параллельными проекциями двух вершин правильного треугольника и его центра. Постройте изображение этого треугольника.
В
ариант 4
1. Точки A, B, K и T — середины отрезков MF, PF, PN и MN соответственно, MP = 10 см, FN = 16 см (рис. 9). Определите вид четырёхугольника ABKT и вычислите его периметр.
2
. Плоскость β пересекает стороны CF и CD треугольника CDF в точках M и N соответственно и параллельна стороне FD, MN = 6 см, FD = 21 см, MC = 10 см. Найдите сторону FC треугольника.
3. Треугольник ABC является изображением правильного треугольника A1B1C1 (рис. 16). Постройте изображение центра описанной окружности треугольника A1B1C1.
4. Плоскости α и β параллельны. Через точку D, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках M1 и N1, а другая — в точках M2 и N2 соответственно. Найдите отрезок M1M2 , если он на 8 см больше отрезка N1N2 , N1M1= 30 см, DN1 = 5 см.
5. Точки A, B и M, не лежащие на одной прямой, являются соответственно параллельными проекциями двух соседних вершин параллелограмма и середины его противолежащей стороны. Постройте изображение этого параллелограмма.