СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Коспект урока по технологии 8 класс. "Электроосветительные приборы"

Нажмите, чтобы узнать подробности

Просмотр содержимого документа
«Коспект урока по технологии 8 класс. "Электроосветительные приборы"»

7


Конспект урока

Тема: «Электроосветительные приборы»

Класс: 8

 Тип урока: урок изучения нового материала

 Используемые технологии: ИК-технологии, здоровьесберегающая технология, элементы проблемного обучения.

 Цель урока: изучение строения электрической лампы накаливания, выяснение эффективности использования электроэнергии.

 Задачи урока:

Образовательные:

  • познакомить с историей изобретения электрической лампы накаливания

  • изучить строение электрической лампы накаливания, физическую основу работы лампы накаливания. Применения;

  • убедить учащихся в эффективности энергосберегающих ламп.

Развивающие:

  • развивать у учащихся познавательный интерес,

  • творческие способности, самостоятельность;

  • интеллектуальное развитие учащихся.

Воспитательные:

  • формировать положительное отношение к проблеме экономии энергозатрат

  • расширить знания учащихся об одном из основных направлений научно-технического прогресса – развитии электроэнергетики и связанных с ним экологических проблем, воспитание убежденности в возможности использования достижений физики на благо развития благосостояния человека, чувства ответственности за сохранение окружающей среды

  • воспитывать экологическую культуру при использовании и утилизации ламп.

Программно - дидактическое обеспечение: учебник; тетрадь; компьютер; проектор; экран; презентации урока: «История лампочки»,  «Освещение квартиры»,  «Энергосберегающие лампы».



Ход урока

  1. Организационный момент. Приветствие учащихся, проверка отсутствующих.

  2. Актуализация опорных знаний.

Фронтальный опрос:

  1. Почему проводник, по которому идет ток, нагревается?

  2. Каково назначение предохранителей?

  3. Почему электрическую лампу, рассчитанную на 127 В, нельзя включать в цепь с напряжением 220 В?

  4. Какие вы знаете приборы, созданные на основе теплового действия тока?


  1. Изучение нового материала.

Путь развития искусственного освещения был долгим и сложным. С доисторических времен и до середины ХIХ века человек применял для освещения своего жилища: пламя факела; лучину; масляный светильник; свечу; керосиновую лампу.

Мы знаем, что тела при температуре 800°С начинают излучать свет.

• У светящейся вольфрамовой нити температура – 2700°С.
• Температура поверхности Солнца – 6 000°С.
• Звезды имеют температуру более 20 000°С.

Первыми электрическими лампами были лампы накаливания, которые служат нам до сих пор. Их свет считается оптимальным для восприятия человеческим глазом. Но у них есть один существенный недостаток: приблизительно 95% их энергии преобразуется в тепло, и лишь 5% остается на долю света.

1870 г. - Изобретение А.Н. Лодыгиным лампы накаливания (непламенный источник света)

1879 г. - Усовершенствование американцем Томасом Эдисоном лампы, улучшение техники откачки воздуха, замена угольного стержня обугленной палочкой из бамбука, создание цоколя.

1890 г. - А. Н. Лодыгин изобрел лампу с металлической (вольфрамовой) нитью. Базовая конструкция лампы накаливания принадлежит русскому электротехнику Александру Николаевичу Лодыгину, уроженцу Тамбовской губернии.

23 марта 1876 года Павел Николаевич Яблочков (1847-1894) получил первый в мире патент на изобретение электрической лампы. Русский электротехник П.Н. Яблочков изобрел лампу с электрической дугой, названную «свечой Яблочкова». Такие свечи в 1878 году были установлены на улицах и площадях Парижа, а потом они появились в Москве и Петербурге. Лампу П.Н. Яблочкова в Европе современники называли «русским светом», в России — «русским солнцем».


У электрической лампочки нет одного-единственного изобретателя. История лампочки представляет собой целую цепь открытий, сделанных разными людьми в разное время. Лодыгин первым предложил применять в лампах вольфрамовые нити и закручивать нить накаливания в форме спирали. Он же первым стал откачивать из ламп воздух, чем увеличил их срок службы во много раз. Другим изобретением Лодыгина, направленным на увеличение срока службы ламп, было наполнение их инертным газом.


Устройство лампы накаливания


1 - Полость колбы
2 - Колба
3 - Держатель нити накала
4 - Токовый ввод
5 - Нить накаливания
6 - Токовый ввод
7- Ножка
8 - Предохранитель
9 – Цоколь лампы накаливания
10 - Контакт цоколя
11 - Изолятор цоколя

 

  Устройство лампы накаливания различно, для ламп различного назначения. Лампы могут быть с цоколем и без, с различным видом цоколя лампы накаливания. Обязательная часть лампы – это нить накала лампы и электроды. Бывает. что в лампу накаливания добавляется проволочный предохранитель, включается к одному из ее выводов. При перегорании лампы возрастает ток, может произойти расплав нити накала, расплавленный металл может колбу расплавить, что может стать причиной возгорания.


Колба необходима для защиты нити накала от кислорода, при нагреве вольфрам вступает в реакцию с кислородом воздуха. В зависимости от мощности лампы выбирают колбу, при нагреве молекулы вольфрама отделяются и собираются на внутренней части колбы, при большей мощности необходима большая поверхность для осаждения вольфрама.


Цоколи ламп накаливания стандартизированы, чаще встречаются Е27, Е40. Эдисон первый создал резьбовой цоколь. Также встречаются лампы, удерживающиеся за счет трения, бывают лампы и безцокольные.


Нить накала изготавливалась ранее из угля, теперь из вольфрама или вольфрамо-осмиевого сплава, т.е. из тугоплавких материалов. Нить изготавливают тонкой (около 50 микрон) и т.к. длинна ее должна быть довольно большой (длина и толщина получается исходя из закона ома и требуемой мощности лампы накаливания), ее закручивают в виде спирали, дойной, или тройной спирали. Формулы необходимые для расчета мощности лампы накаливания и ее зависимости от параметров нити накаливания I=U/R и мощность по формуле P=U•I , или P=U²/R.
Практически вся энергия в лампе накаливания преобразуется в излучение, однако большая часть излучения лежит в невидимом для глаза спектре ИК и воспринимается как тепло.


При температуре 3400К, коэффициент полезного действия максимален – 15%, при температуре 2700К коэффициент полезного действия – 5%, это для лампы накаливания 60вт. При 3400К время горения лампы несколько часов, при 2700К порядка 1000 часов. Необходимо выбрать баланс между КПД и временем горения лампы. Самая большая опасность для лампы – разное испарение металла с разных частей нити накаливания, что приводит к «слабым местам», где нить и рвется. Преимущественно под действием пускового тока. При мощности лампы накаливания 100В, затраты на пуск составляют киловатт. Для предохранения ламп используются различные устройства для постепенного выхода на рабочий режим.




Сколько может работать электрическая лампочка без перерыва и замены? Год, два? 107 лет! Именно столько работает лампа, установленная в пожарном депо города Ливермора в штате Калифорния.

Лампочка из Ливермора впервые была установлена на свое рабочее место еще в 1901 году. Над миром катились войны, революции, мировые кризисы, а она все светила и светила. В настоящий момент ее можно увидеть на пожарной станции по адресу 4550 Ист-Авеню. Необычно долгий срок жизни позволил ей занять свое место в книге рекордов Гиннеса – как самой старой работающей лампе в мире.

Китайские учёные из университета Tsinghua совместно с коллегами из Louisiana State University создали лампочку, в которой вольфрамовая нить заменена углеродными нанотрубками. Таким образом, лампочка за последние 125 лет впервые претерпела реальные изменения.

Нанонить продемонстрировала ряд преимуществ перед традиционным вольфрамом. Прежде всего, оказалось, что трубки испускают больше света при том же самом напряжении. Причём нанолампочка начинает работать при трёх Ваттах (вместо шести – для вольфрама).

Пока учёным удалось заставить новую 25-ваттную лампочку работать чуть дольше 360 часов и переносить до 5 тысяч включений. По словам исследователей, необходимо ещё немало поработать, но лампочки с нанонитью могут появиться на рынке в ближайшие 5 лет.


Галогенные лампы

В последнее время получают распространение галогенные (в частности йодные) лампы, в которых баллон заполнен парами йода. Йод способен соединяться с вольфрамом при низкой температуре, образуя йодид вольфрама. Это обеспечивает возврат вольфрама на нить и увеличивает срок службы нити. Галогенные лампы светятся ярче и дольше обычных. В настоящее время галогенные лампы находят широкое применение в прожекторах, на крыльях самолетов, в автомобильных фарах, а также в обычных светильниках и подсветках дома.

Газосветные лампы

В газосветных лампах используется свойство разреженных газов светиться при прохождении через них электрического тока. Свет, излучаемый такой лампой, зависит от природы газа: неон дает красный цвет; аргон – синий; гелий – желтый цвет.

Эти лампы нашли себе применение для устройства вывесок, реклам, иллюминации. Наша промышленность выпускает также лампы, в стеклянных трубках которых находятся разряженные ртутные пары. Эти лампы получили название люминесцентных ламп. Они более экономичные. Их КПД около 20 %.


ДОСТОИНСТВА И НЕДОСТАТКИ ЛЮМИНЕСЦЕНТНОЙ ЛАМПЫ

Люминесцентная лампа (ртутная лампа низкого давления, далее по тексту – ЛЛ) является газоразрядным источником света. Конструктивно она представляет собой стеклянную трубку с нанесенным на внутреннюю поверхность слоем люминофора. В торцах трубки установлены спиральные электроды. Внутри лампы находятся разреженные пары ртути и инертный газ. Под действием электрического напряжения (поля), приложенного к электродам, в лампе возникает газовый разряд. При этом проходящий через пары ртути ток вызывает ультрафиолетовое излучение.

Ультрафиолетовое излучение, воздействуя на люминофор, заставляет его светиться, т.е. люминофор преобразует ультрафиолетовое излучение газового разряда в видимый свет. Стекло, из которого выполнена  ЛЛ, препятствует выходу ультрафиолетовогоизлучения из лампы, тем самым предохраняя наши глаза от вредного для них излучения.



Широкое использование ЛЛ связано с тем, что они имеют ряд значительных преимуществ перед классическими лампами накаливания :

  1. Высокая эффективность: КПД - 20-25% (у ламп накаливания около 7% ) и  светоотдача в 10 раз больше .

  2. Длительный срок службы – 15000-20000 ч. (у ламп накаливания - 1000 ч., сильно зависит от напряжения) питания.

Имеют  ЛЛ и некоторые недостатки :

  1. Как правило, все разрядные лампы для нормальной работы требуют включения в сеть совместно с балластом. Балласт, он же пускорегулирующий аппарат (ПРА), -- электротехническое устройство, обеспечивающее режимы зажигания и нормальной работы ЛЛ.

  2. Зависимость устойчивой работы и зажигания лампы от температуры окружающей среды (допустимый диапазон 55оC, оптимальной считается 20оC ). Хотя этот диапазон постоянно расширяется с появлением ламп нового поколения и использованием электронных балластов (ЭПРА).


И, наконец, последнее небольшое замечание, связанное с эксплуатацией светильников с ЛЛ. В лампу для ее работы вводится капля ртути – 30-40 мг , а компактных 2-3 мг, Если вас это пугает, вспомните, что в термометре, имеющемся в каждой семье, содержится 2 г этого жидкого металла. Разумеется, если лампа разобьется, поступить следует так же, как мы поступаем, когда разбиваем термометр, – тщательно собрать и удалить ртуть. ЛЛ в жилье – это не только более экономичный, чем лампа накаливания, источник света.

Неоновое освещение

Создание цветовых эффектов в системах освещения стало возможным при использовании таких источников света, как неоновые лампы, которые относятся к газоразрядным и могут быть наполнены не только неоном, но и другими газами. Они активно применяются дизайнерами, рекламщиками и оформителями, кроме того, ценятся и специалистами в сфере освещения за надежность и продолжительный срок службы.

Внешне лампа напоминает обычный люминесцентный прибор – это стеклянная трубка, но наполненная не аргоном с капелькой ртути, а неоном или другим инертным газом. Выбор газа как раз и влияет на цвет свечения, а процесс его закачивания в трубку происходит под низким давлением.

Диапазон цветов у неоновых устройств действительно велик. Оттенки зависят и от выбранного газа, от состава нанесенного на стекло вещества и от газовой добавки к благородному наполнению трубки.

Если использовать в трубках чистые инертные газы, то они буду выдавать следующие цвета:

гелий – розовый;

криптон – зеленый;

аргон – сиреневый или синий.

Можно получить и другие цвета. Для этого смешивают различные газы, меняют их пропорции, наносят люминофоры с внутренней стороны на стекло. Например, применяя в качестве покрытых люминофором трубок криптон, можно получить широкую гамму желтых оттенков.

Устройство и принцип работы светодиодной лампы. Вопросы снижения потребляемой электроэнергии решаются не только на государственном уровне. Эта проблема актуальна и для рядовых потребителей. В связи с этим, в квартирах, офисах и других учреждениях, начинают широко внедряться не только мощные, но и экономичные источники света. Среди них все более широкое распространение получают светодиодные лампы. Устройство и принцип работы светодиодной лампы позволяет использовать ее со стандартным патроном и подключать в электрическую сеть напряжением 220 В. В работе светодиодных ламп используются физические процессы, которые значительно сложнее тех, что применяются в обычных лампах накаливания с металлической нитью. Суть явления заключается в появлении светового потока в точке соприкосновения двух веществ из разнородных материалов, после того как через них пропущен электрический ток.  Преимущества перед другими источниками света.
  1. Bыcoкaя экoнoмичнocть. Cвeтoдиoды функциoниpуют oт низкoгo нaпpяжeния и, в cвязи c этим, pacxoдуют кpaйнe нeзнaчитeльнoe кoличecтвo элeктpoэнepгии, мaлo тoгo, в oтличиe oт вышeпepeчиcлeнныx иcтoчникoв cвeтa, oни пpeвpaщaют пpaктичecки вcю пoтpeбляeмую элeктpoэнepгию в cвeт, чтo coкpaщaeт pacxoд элeктpичecтвa нa 75 пpoцeнтoв.
  2. Пpoдoлжитeльный cpoк paбoты. Cвeтoдиoды cпocoбны пpopaбoтaть З5 лeт пpи уcлoвии иcпoльзoвaния лaмп вoceмь чacoв в cутки, чтo в cуммe cocтaвит oбщую пpoдoлжитeльнocть paбoты – 100 000 чacoв. Oбычнaя гaлoгeннaя лaмпa пpopaбoтaeт лишь 2000 чacoв, имeя мoщнocть 10 Bт.
  3. Пoвышeннaя пpoчнocть и уcтoйчивocть к пoвpeждeниям. B cвeтoдиoдax oтcутcтвуют элeмeнты, кoтopыe лeгкo пoвpeждaютcя, в oтличиe oт дpугиx типoв лaмп (пpужинa, кoнтaкты, зaкpeпитeли, элeктpoды, peлe), пoэтoму oни oблaдaют пoвышeннoй пpoчнocтью и бoлee уcтoйчивы к пoвpeждeниям извнe.


IV. Закрепление изученного материала

1. Кто изобрел лампу накаливания?

а) Томас Эдисон; б) А.Н. Ладыгин; в) Д. Джоуль; г) Э. Ленц

2. Кто изобрел лампу для промышленности с угольной нитью?

а) П.Н. Яблочков; б) Томас Эдисон; в) А.Н. Ладыгин; г) Э. Ленц

3. Кто изобрел лампу с электрической дугой?

а) А.Н. Ладыгин; б) П.Н. Яблочков; в) Д. Джоуль; г) Томас Эдисон

4. Из какого металла изготовляют спирали ламп?

а) нихром; б) вольфрам; в) алюминий; г) медь

5. Чем заполняют баллоны современных ламп?

а) воздухом; б) инертным газом; в) вакуумом; г) кислородом

6. Какое действие тока используется в лампе накаливания?

а) химическое; б) механическое; в) тепловое; г) магнитное



  1. Как называются детали 1 и 2 электрической лампы накаливания?

  2. Как называются детали 3 и 4 электрической лампы накаливания?

  3. Почему для изготовления спирали берут вольфрам?

  4. Почему из стеклянного баллона откачивают воздух?

  5. На какие напряжения рассчитаны лампы накаливания, выпускаемые промышленностью?


Рефлексия.

       -   сегодня я узнал…

       -   было интересно…

       -   урок дал мне для жизни…

       -   мне захотелось…


V. Домашнее задание:

1. § 15, вопросы устно.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!