Выполнение настройки выходных напряжений
Классические блоки питания с понижающим трансформатором.
Блок питания – это преобразователь электрической энергии, поступающей из сети переменного тока в энергию, которая предназначена для питания всей аппаратной части персонального компьютера (ПК).
Стандартное входное питание (сеть) это 220В, 50Гц (или, как, например, в Японии 120В, 60Гц). Выходы постоянного блока питания тока в +5В, +12В и +3,3В +3,3В и +5В используются для питания всех микросхем и электроники, +12В используются для питания электродвигателей, как моторы в CD/DVD приводах или жёстких дисках, также от +12В питаются вентиляторы. Разумеется, все электродвигатели или любой электронный компонент нуждается в стабильном питании, также имеются оптимальные значения напряжений, это +/- 0.5В отклонения от нормальных. Повышая (к примеру) 3.3В на 3.8В компонент, питающийся из данного источника, понесёт огромную перегрузку, а также может прийти в негодность.
Блоки питания делятся на трансформаторные и импульсные.
Трансформаторный блок питания состоит из понижающего трансформатора или автотрансформатора.
Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется.
Что такое трансформатор
Начиная с 1830-х годов, трансформаторы стали важным компонентом в электрических и электронных схемах. И, несмотря на то, что новые передовые технологии в области электроники позволили снизить потребность в трансформаторах, они по-прежнему востребованы в различных устройствах.
Работа трансформатора основана на принципах электромагнетизма, и это позволяет уменьшать или увеличивать напряжения переменного тока. Опыты Майкла Фарадея в 19 веке показали, что изменения тока в проводнике (например, первичная обмотка трансформатора) влияет на изменение магнитного поля вокруг этого проводника. Если другой проводник (вторичная обмотка) находится непосредственно в области меняющегося магнитного поля, то в нем будет происходить наводка напряжения.
Трансформаторами в электротехнике называют такие электротехнические устройства, в которых электрическая энергия переменного тока от одной неподвижной катушки из проводника передается другой неподвижной же катушке из проводника, не связанной с первой электрически.
ТРАНСФОРМАТОРНЫЙ (СЕТЕВОЙ) ИСТОЧНИК ПИТАНИЯ
Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания(пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.
Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков (варисторы), защиты от КЗ, стабилизаторы напряжения и тока.
Габариты трансформатора
Существует формула, несложно выводимая из базовых законов электротехники (и даже уравнений Максвелла): (1 / n) ~ f * S * B
где n - число витков на 1 вольт (в левой части формулы стоит ЭДС одного витка, которая есть по уравнению Максвелла производная от магнитного потока, поток есть нечто в виде sin (f * t), в производной f выносится за скобку),
f - частота переменного напряжения,
S - площадь сечения магнитопровода,
B - индукция магнитного поля в нем. Формула описывает амплитуду B, а не мгновенное значение.
Величина B на практике ограничена сверху возникновением гистерезиса в сердечнике, что приводит к потерям на перемагничивание и перегреву трансформатора.
Если принять, что f есть частота сети (50 Гц), то единственные два параметра, доступные для выбора при разработке трансформатора, есть S и n. На практике принята эвристика n = (от 55 до 70) / S в см2.
Увеличение S означает повышение габаритов и веса трансформатора. Если же идти по пути снижения S, то это означает повышение n, что в трансформаторе небольшого размера означает снижение сечения провода (иначе обмотка не поместится на сердечнике).
Увеличение n и снижение сечения означает сильное увеличение активного сопротивления обмотки. В маломощных трансформаторах, где ток через обмотку невелик, этим можно пренебречь, но с повышением мощности ток через обмотку растет и, при высоком сопротивлении обмотки, рассеивает на ней значительную тепловую мощность, что недопустимо.
Перечисленные выше соображения приводят к тому, что на частоте 50 Гц трансформатор большой (от десятков ватт) мощности может быть успешно реализован только как устройство большого габарита и веса (по пути повышения S и сечения провода со снижением n).
Потому в современных БП идут по другому пути, а именно по пути повышения f, т.е. переходу на импульсные блоки питания. Таковые блоки питания в разы легче (причем основная часть веса приходится на экранирующую клетку) и значительно меньше габаритами, чем классические. Кроме того, они не требовательны к входному напряжению и частоте.
Достоинства и недостатки
Достоинства трансформаторных БП:
Простота конструкции.
Надёжность.
Доступность элементной базы.
Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих).
Недостатки трансформаторных БП.
Большой вес и габариты, пропорционально мощности.
Металлоёмкость.
Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.
Слабая стойкость оборудования с таким БП к броскам напряжения и пропаданию нейтрали ведущей к образованию фазного напряжения (порядка 380...400 вольт) вместо линейного (220...230 вольт).
Задачи вторичного источника питания
Обеспечение передачи мощности – источник питания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
Преобразование формы напряжения – преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
Преобразование величины напряжения – как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины для питания различных цепей.
Стабилизация – напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и т. д. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.
Защита – напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например, прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
Гальваническая развязка цепей – одна из мер защиты от протекания тока по неверному пути.
Регулировка – в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
Управление – может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть, как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
Контроль – отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.
Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (напр., в России – 220 В 50 Гц, в США – 120 В 60 Гц).
Лекция №9. Схема и принцип действия, параметры понижающего трансформатора. Элементная база и параметры блоков питания.
Схема простейшего трансформаторного БП c двухполупериодным выпрямителем
Рассмотрение схемы
Подобный блок подразумевает использование низкочастотного трансформатора для получения пониженного напряжения, из которого формируется постоянное выходное напряжение. Типовая топология БП выглядит следующим образом:
Входное напряжение сети 220 вольт через предохранитель FU1 подается на первичную обмотку трансформатора TV1 (выводы 1-2). На его вторичной обмотке (выводы 3-4) наводится переменное напряжение, которое выпрямляется диодным выпрямителем D1, сглаживается конденсатором С1 и подается на выход. Такое построение является типичным, меняются лишь номиналы и количество компонентов, а топология остается прежней.
Рассмотрим назначение элементов схемы:
Предохранитель FU1 защищает блок питания и сеть 220 вольт от чрезмерного тока. При увеличении тока в цепи выше предельного он разрушается (расплавляется низкоплавкая проволочка) и цепь разрывается.
Трансформатор TV1 преобразует величину напряжения с первичной стороны во вторичную, при этом обеспечивается гальваническая развязка выхода от сети 220 вольт.
Диодный выпрямитель D1 выпрямляет переменное напряжение в однополярное пульсирующее.
Конденсатор С1 сглаживает выходное напряжение.
Теперь подробнее про использование элементов устройства
Предохранитель защищает устройство в случае возникновения экстренных ситуаций. При перегрузке или коротком замыкании в нагрузке возникает большой ток в первичной обмотке, что может привести к ее перегреву с последующим возгоранием устройства. Кроме того, не исключена вероятность пробоя межслойной изоляции, и фазное напряжение попадет на выход. Лучше уж отключенный БП, чем подобное, поэтому присутствие предохранителя обязательно.
К слову, зачастую элемент защиты монтируют в обмотку трансформатора, что позволяет отключать его при критическом нагревании. К сожалению, такой прием срабатывает только один раз, и восстановить работоспособность трансформатора удается не всегда – предохранитель, в конструктивном исполнении резистора 0.125 Вт, подключен к внешнему концу первичной обмотки и «намотан» вместе с ней под слоем изоляции.
Трансформатор преобразует переменное напряжение в магнитное поле, которое наводит напряжение во вторичной обмотке. Степень понижения (повышения) выходного напряжения, иначе говоря «коэффициент трансформации» зависит от соотношения числа витков в этих обмотках.
Диодный выпрямитель служит для преобразования переменного напряжения (положительной и отрицательной полярности) с вторичной обмотки в однополярную форму.
Выходной конденсатор сглаживает пульсации выходного напряжения. Дело в том, что трансформатор «предоставляет» напряжение той же формы, что и в сети 220 вольт, а именно синусоидальной. К слову, при работе от бесперебойных источников его форма может быть далеко не синусоидальной. Форма выпрямленного напряжения непостоянна во времени, наличествует длительное снижение до нуля вольт, поэтому необходима установка элемента, поддерживающего выходное напряжение постоянной величины, что выполняется на сглаживающем конденсаторе.
ТИПЫ ТРАНСФОРМАТОРОВ
Сетевой трансформатор работает на частоте 50 Гц, что определяет тип магнитопровода – тонкие листы трансформаторного железа. Толщина пластин, или ленты, выбирается из уровня потерь на вихревые токи в железе, так называемые «токи Фуко» - переменное магнитное поле наводит напряжение в любом металлическом предмете, не только в обмотках, но и в самом магнитопроводе. Для уменьшения потерь применяют тонкие листы с лакокрасочным покрытием для изоляции между слоями. Впрочем, не будем самостоятельно выпиливать сердечник трансформатора из цельного куска железа.
По конструктивному исполнению трансформаторы делятся на тороидальные, стержневые и броневые.
Тороидальный трансформатор. Это конструктивное исполнение самое простое – обмотки наматываются на кольце из ленты трансформаторного железа, никаких специальных каркасов не требуется. Кроме того, у такого решения самое эффективное использование поверхности магнитопровода, что означает низкое рассеивание магнитного поля и снижение потерь в меди обмоток. Отсутствие каркаса приближает провод к сердечнику, диаметр витка уменьшается, что снижает общую длину провода, то есть его сопротивление.
Броневой трансформатор гораздо технологичнее тороидального – применяется один каркас для намотки обмоток, сам процесс изготовления не вызывает каких-либо технических трудностей, не требует весьма специфического оборудования, свойственного тороидальным трансформаторам. Увы, на этом его достоинства заканчиваются и начинаются недостатки – относительно низкий коэффициент использования магнитопровода, сильно ограниченное место для обмоток, плохое рассеивание тепла.
Стержневой трансформатор занимает среднее положение между тороидальным и броневым – от последнего он «взял» каркас для обмоток, а от первого – улучшенное использование поверхности магнитопровода. Да и по техническим свойствам данный тип расположен посредине между тороидальным и броневым вариантами. Из особенностей его исполнения отмечу то, что количество обмоток на трансформаторе удвоено. А именно, на каждом стержне присутствует первичная (сетевая) и вторичная обмотка (их может быть несколько).
При подключении такого трансформатора надо проявлять максимальную аккуратность – всегда можно спутать начало-конец обмоток, что может окончиться весьма печально. У меня были случаи, когда в партии советских трансформаторов некоторое их количество обладало «перевернутыми» обмотками. Как легко понять, это привело к необходимости «ручной настройки» серийной продукции, регулировщики были счастливы.
От исполнения перейдем к электрическим характеристикам. В домашних условиях мало кто возьмется изготавливать подобное самостоятельно – намотка сетевой обмотки тороидального трансформатора крайне утомительна, а другие исполнения требуют каркас, который хоть и облегчает работу, но все же является проблемой. Чаще всего подбирают подходящий трансформатор, удаляют с него вторичные обмотки и наматывают свои, с нужным числом витков. Такое решение довольно легко реализуется – достаточно узнать количество вольт на виток и намотать свои обмотки.
Фильтрация помех
Трансформатор довольно неплохо изолирует выходную обмотку от помех в сети, особенно в высокочастотной части звукового диапазона и выше. «Довольно неплохо», но никак не «хорошо» - у него существует конструктивно-технологическое ограничение, мешающее получению высокой степени изоляции. А именно – обмотки, очень протяженные как по поверхности магнитопровода, так и по области их взаимного соприкосновения.
Особенно неудачно обстоят дела у тороидального варианта исполнения – межслойный экран сделать крайне сложно и не технологично, обмотки наматываются одна поверх другой с небольшим количеством слоев, что означает очень большую поверхность соприкосновения. У «стержневого» и «броневого» трансформатора с этим лучше – жесткий каркас намотки лишен искривлений и позволяет использовать экраны, да и поверхность соприкосновения обмоток менее «тороидального» варианта. Одна беда – полноценные экраны в трансформаторах встречаются довольно редко. Подчас экран вроде бы и есть, но выполнен он «одним слоем тонкого провода», что может выполнять свою функцию только на очень низких частотах.
Существует еще один способ получения высокой степени подавления помех – разнести первичную и вторичную обмотки по разные стороны магнитопровода, полностью исключив передачу помехи через емкость между обмотками. Кроме устранения емкостной связи такой способ позволяет фильтровать помехи за счет невысокой предельной рабочей частоты магнитопровода. Трансформаторное железо плохо пропускает переменное поле средней – высокой частоты, что положительно сказывается на уровне помех на вторичной стороне.
Увы, для этого трансформатор должен быть намотан специальным образом, что в серийном производстве для бытовых нужд не встречается. Для такого исполнения в «тороидальном» трансформаторе первичная и вторичная обмотки должны находиться в противоположных сторонах кольца без взаимного контакта. В «стержневом» – сетевые обмотки необходимо разместить на одном стержне, вторичные на другом. По конструктивным причинам разнесение обмоток в броневом трансформаторе выполнить сложнее, да и эффект от его применения проявится слабее – слишком компактное размещение не позволяет исключить емкостную связь между обмотками.
Трансформатор «для светильников» лишен каких-либо элементов ёмкостной изоляции обмоток, ведь они не только повышают его стоимость, но и снижают технические характеристики, поскольку возрастает индуктивность рассеивания между первичной и вторичной обмотками. Последнее в свою очередь приводит к увеличению выходного сопротивления. Но не все так плохо, и обычный трансформатор эффективно устраняет помехи средне-высокочастотного диапазона. Даже проникнув через межобмоточную емкостную связь на вторичную сторону, помеха встретит на пути проникновения как индуктивность катушки до её выводов, так и сглаживающий конденсатор довольно большой емкости.
Узел выпрямления
С вторичной обмотки трансформатора поступает переменное напряжение, но для питания аппаратуры требуется постоянное, поэтому блок питания должен быть со схемой выпрямления. Обычно она выполняется на полупроводниковых диодах, синхронные выпрямители применяются крайне редко – сопротивление потерь трансформатора больше, чем теряется на p-n переходе диодов и смысл усложнения схемы отсутствует. В трансформаторном блоке питания чаще всего применяются два схемных решения – мост или полумост с удвоенным количеством обмоток