(Ф-11-П) Лекция
«Полное внутреннее отражение. Волоконная оптика»
Если налить воду в прозрачный стакан и посмотреть через стенку стакана на свет, то мы увидим серебристый блеск поверхности вследствие явления полного внутреннего отражения, о котором сейчас пойдет речь. При переходе луча света из более плотной оптической среды в менее плотную оптическую среду может наблюдаться интересный эффект. Для определенности будем считать, что свет идет из воды в воздух. Предположим, что в глубине водоема находится точечный источник света S, испускающий лучи во все стороны. Например, водолаз светит фонариком.
Луч SО1 падает на поверхность воды под наименьшим углом, этот луч частично преломляется – луч О1А1 и частично отражается назад в воду – луч О1В1. Таким образом, часть энергии падающего луча передается преломленному лучу, а оставшаяся часть энергии – отраженному лучу.
Полное внутреннее отражение
Луч SО2, чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О2А2 будет тусклее, чем луч О1А1, то есть получит меньшую долю энергии, а отраженный луч О2В2, соответственно, будет ярче, чем луч О1В1, то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность – все большая доля энергии падающего луча достается отраженному лучу и все меньшая – преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 900. В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему – вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.
Рассмотрим переход света из среды c большим показателем преломления n1 (оптически более плотной) в среду с меньшим показателем преломления n2 (оптически менее плотную). На рисунке 23.3 показаны лучи, падающие на границу стекло-воздух. Для стекла показатель преломления n1 = 1,52; для воздуха n2 = 1,00.
Возникновение полного внутреннего отражения (n1 n2)
Увеличение угла падения приводит к увеличению угла преломления до тех пор, пока угол преломления не станет равным 90°. При дальнейшем увеличении угла падения падающий луч не преломляется, а полностью отражается от границы раздела. Это явление называется полным внутренним отражением. Оно наблюдается при падении света из более плотной среды на границу с менее плотной средой и состоит в следующем.
Если угол падения превышает предельный для данных сред угол, то преломления на границе раздела не происходит и падающий свет отражается полностью.
Если α1αпр, то свет не пройдет во вторую прозрачную среду, т.к. полностью отразится. Это явление называется полным отражением света. Угол падения αпр, при котором преломленный луч скользит вдоль поверхности раздела сред, называется предельным углом полного отражения.
Волоконная оптика
Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.
Явление полного внутреннего отражения используется в гибких световодах.
Если свет направить на торец тонкого стеклянного волокна, окруженного оболочкой с меньшим показателем преломления угла, то свет будет распространяться по волокну, испытывая полное отражение на границе стекло-оболочка. Такое волокно называется световодом. Изгибы световода не препятствуют прохождению света
В современных световодах потери света в результате его поглощения весьма малы (порядка 10 % на км), что позволяет использовать их в волоконно-оптических системах связи. В медицине жгуты из тонких световодов используют для изготовления эндоскопов, которые применяются для визуального исследования полых внутренних органов. Число волокон в эндоскопе достигает миллиона.
С помощью отдельного световодного канала, уложенного в общий жгут, осуществляется передача лазерного излучения с целью лечебного воздействия на внутренние органы.
Распространение световых лучей по световоду
Существуют и природные световоды. Например, у травянистых растений стебель играет роль световода, подводящего свет в подземную часть растения. Клетки стебля образуют параллельные колонки, что напоминает конструкцию промышленных световодов. Если освещать такую колонку, рассматривая ее через микроскоп, то видно, что ее стенки при этом остаются темными, а внутренность каждой клетки ярко освещена. Глубина, на которую доставляется таким способом свет, не превышает 4-5 см. Но и такого короткого световода достаточно, чтобы обеспечить светом подземную часть травянистого растения.
2