СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Рабочая программа по алгебре и началам математического анализа в 10 классе. УМК Никольского

Категория: Математика

Нажмите, чтобы узнать подробности

Рабочая программа использовалась в 2016/2017 учебном году.

Просмотр содержимого документа
«Рабочая программа по алгебре и началам математического анализа в 10 классе. УМК Никольского»

Пояснительная записка


 Рабочая программа по курсу «Алгебра и начала анализа» в 10 классе составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 10 класса и реализуется на основе следующих документов:

1. Стандарт основного общего образования по математике.

Стандарт основного общего образования по математике //Сборник нормативно-правовых документов и методических материалов, Москва: «Вентана-Граф», 2008.

2. Алгебра и начала математического анализа 10 – 11 классы. Программы общеобразовательных учреждений (составитель Т.А. Бурмистрова). М.: «Просвещение» 2009.

Срок реализации программы – 2016/2017 учебный год

Всего 136 ч., в неделю – 4 часа


В 2016/2017 учебном году из компонента образовательной организации добавлен 1 час на изучение курса алгебры и начал анализа в 10 классе.

Алгебра и начала анализа изучаются в объеме 4 ч. в неделю, всего – 136 часов

Дополнительный час на изучение алгебры и начал математического анализа дополняет и развивает школьный курс математики, способствует обеспечению прочного овладения учащимися системой математических знаний и умений для успешной сдачи выпускного экзамена, применения полученных знаний и навыков в повседневной жизни и продолжения образования


Формы организации учебного процесса:

индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные.


Формы контроля на уроках :

тесты, самостоятельные, проверочные работы и математические диктанты (по 10 - 15 минут), контрольные работы , зачеты.


Использование технологий на уроках: здоровьесбережения, развития исследовательских навыков, дифференцированного обучения, педагогики сотрудничества, личностно-ориентированного обучения, проблемного обучения, развивающего обучения, информационно-коммуникационные, самодиагностики результатов обучения, поэтапного формирования умственных действий.

Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ, зачетов. Итоговая аттестация предусмотрена в виде контрольной работы.






Планируемые результаты обучения

Функции и графики

Уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций, выполнять преобразования графиков;

  • описывать по графику и по формуле поведение и свойства  функций;

  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни  для :

  • описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.



Начала математического анализа

Уметь
находить сумму бесконечно убывающей геометрической  прогрессии;

Уравнения и неравенства

Уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

  • доказывать несложные неравенства;

  • решать текстовые задачи с помощью  составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;

  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

  • находить приближенные решения уравнений и их систем, используя графический метод;

  • решать уравнения, неравенства и системы с применением  графических представлений, свойств функций, производной;

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для  построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с  использованием известных формул, треугольника Паскаля; вычислять коэффициенты  бинома Ньютона по формуле и с использованием  треугольника Паскаля;

  • вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков; для  анализа информации статистического характера.


Содержание обучения


Содержание материала

Количество часов

Характеристика основных видов деятельности обучающегося (на уровне учебных действий)

  1. Действительные числа

9


Понятие натурального числа. Множества чисел. Свойст­ва действительных чисел. Перестановки. Размещения. Сочетания.


Знает идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики; формулы для нахождения числа перестановок, размещений, сочетаний, применяет их к решению конкретных задач


  1. Рациональные уравнение и неравенства

18


Рациональные выражения. Формулы бинома Ньютона, суммы и разности степеней. Рациональные уравнения. Системы рациональных уравнений. Метод интервалов решения неравенств. Рацио­нальные неравенства. Нестрогие неравенства. Системы ра­циональных неравенств


Решает уравнения третьей и четвёртой степени с помощью разложения на множители и введения вспомогательных переменных, дробные рациональные уравнения, сводя их к целым уравнениям с последующей проверкой корней. Использует метод интервалов для решения несложных рациональных неравенств и неравенств, левая часть которых допускает разложение на множители. Решает простейшие уравнения и неравенства с модулем

  1. Корень степени n

12


Понятия функции и ее графика. Функция у = хп. Поня­тие корня степени п. Корни четной и нечетной степеней. Арифметический корень. Свойства корней степени п.



Различает и объясняет понятия «корень степени n» и «арифметический корень степени n»; применяет свойства корней для преобразования выражений с радикалами; распознает и изображает графики степенных функций; моделирует реальные процессы с помощью степенных функций

  1. Степень положительного числа

13


Понятие и свойства степени с рациональным показате­лем. Предел последовательности. Бес­конечно убывающая геометрическая прогрессия. Число е. Понятие степени с иррациональным показателем. Показа­тельная функция.



Формулирует и доказывает свойства степени с рациональным показателем; преобразовывает несложные выражения, содержащие степень с рациональным показателем; разъясняет понятие «предела последовательности»; применяет формулу бесконечно убывающей геометрической прогрессии к решению задач; распознает и строит графики показательных функций и на них иллюстрирует их свойства; применяет показательную функцию для описания простейших реальных процессов

  1. Логарифмы

9


Понятие и свойства логарифмов. Логарифмическая функция. Десятичный логарифм (приближенные вычисле­ния).



Формулирует и разъясняет понятие логарифма; формулирует и доказывает свойства логарифмов, основное логарифмическое тождество; преобразовывает несложные выражения, содержащие логарифмы; распознает и строит графики логарифмических функций и на них иллюстрирует их свойства

  1. Показательные и логарифмические уравнения и неравенства

14


Простейшие показательные и логарифмические уравне­ния. Уравнения, сводящиеся к простейшим заменой неиз­вестного. Простейшие показательные и логарифмические неравенства. Неравенства, сводящиеся к простейшим заме­ной неизвестного.



Применяет определение логарифма при решении простейших логарифмических уравнения и неравенств; свойства степеней и логарифмов при решении более сложных уравнений и неравенств. Решает показательные и логарифмические уравнения и неравенства, сводящиеся к простейшим заменой неизвестного

7. Синус и косинус угла

10


Понятие угла и его меры. Определение синуса и косину­са угла, основные формулы для них. Арксинус и аркко­синус. Примеры использования арксинуса и арккосинуса и формулы для них.



Выполняет переход от радианной меры угла к градусной и наоборот; формулирует определения синуса и косинуса угла и разъясняет их; формулирует и доказывает основные формулы для синуса и косинуса, применяет их для преобразования выражений; находит значение выражения, содержащего тригонометрические функции; формулирует и разъясняет понятия «арксинус» и «арккосинус»

8. Тангенс и котангенс угла

7


Определения тангенса и котангенса угла и основные формулы для них. Арктангенс и арккотангенс. Примеры использования арктангенса и арккотангенса и формулы для них.



Формулирует определения тангенса и котангенса угла и разъясняет их; формулирует и доказывает основные формулы для тангенса и котангенса, применяет их для преобразования выражений; находит значение выражения, содержащего тригонометрические функции; формулирует и разъясняет понятия «арктангенс» и «арккотангенс»

9. Формулы сложения

11


Косинус суммы и разности двух углов. Формулы для дополнительных углов. Синус суммы и разности двух углов. Сумма и разность синусов и косинусов. Формулы для двойных и половинных углов. Произведение синусов и косинусов. Формулы для тангенсов.



Формулирует и доказывает основные тригонометрические формулы, применяет их для преобразования несложных тригонометрических выражений; вычисляет значения тригонометрических выражений

10. Тригонометрические функции числового аргумента

8


Функции у = sinx, у = cosx, у = tgx, у = ctgx.



Распознаёт и строит графики тригонометрических функций, иллюстрирует свойства тригонометрических функций с помощью графика; применяет тригонометрические функции для описания реальных процессов

11. Тригонометрические уравнения и неравенства

10


Простейшие тригонометрические уравнения. Тригоно­метрические уравнения, сводящиеся к простейшим заменой неизвестного. Применение основных тригонометрических формул для решения уравнений. Однородные уравнения. Простейшие тригонометрические неравенства.



Обосновывает решения простейших тригонометрических уравнений (неравенств); решает несложные тригонометрические уравнения; решает тригонометрические уравнения, сводящиеся к простейшим заменой неизвестного; решает однородные тригонометрические уравнения первой и второй степени; применяет основные тригонометрические формулы для решения уравнений

12. Вероятность события

5


Понятие и свойства вероятности события.



Разъясняет понятия «вероятность события», «равновозможные события», « невозможное событие», «достоверное событие» и т.д.; находит вероятность события с помощью определения; формулирует свойства вероятности и применяет их к решения задач; решает несложные задачи с применением комбинаторных формул

13. Повторение

10


.





Тематическое планирование


№ п/п

Тема

Кол – во часов

Кол – во контрольных работ

1

Действительные числа

9

-

2

Рациональные уравнения и неравенства

18

1

3

Корень степени n

12

1

4

Степень положительного числа

13

1

5

Логарифмы

9

-

6

Показательные и логарифмические уравнения и неравенства

14

1

7

Синус, косинус, тангенс и котангенс угла

17

1

8

Формулы тригонометрии

11

1

9

Тригонометрические функции числового аргумента

8

1

10

Тригонометрические уравнения и неравенства

10

1

11

Вероятность события

5

-

12

Повторение

10

1