Рабочая программа
курса математики
«Математическое моделирование при решении текстовых задач на проценты»
Автор:
Мельникова Наталия Валерьевна,
учитель математики и информатики
МБОУ «СШ № 61» г. Ульяновска
Ульяновск, 2016 г.
Пояснительная записка
Рабочая программа курса составлена на основе предлагаемой программы «Решение нестандартных задач (по математике и информатике)», по разделу процентные расчёты. Данный курс «Математическое моделирование при решении текстовых задач на проценты» рассматривает один из разделов математики, связанный с темой «Проценты». Курс предназначен для организации внеурочной деятельности по нескольким взаимосвязанным направлениям развития личности, таким как общеинтеллектуальное, общекультурное, социальное. Программа предлагает ее реализацию в элективной форме, в 9 классах. Возможно продолжение указанного курса в 10 классе.
Основной целью данного учебного курса является обучение решению нестандартных задач по математике и информатике, а также подготовка к участию в олимпиадах по указанным предметам. Познакомить учащихся с математической классификацией типичных задач на проценты.
Задачи курса:
сформировать умения производить процентные вычисления, необходимые для применения в практической деятельности;
обучить решению основных задач на проценты с применением формул простого процентного роста и сложного процентного роста;
привить учащимся основы экономической грамотности;
помочь ученику оценить свой потенциал с точки зрения образовательной перспективы.
Общая характеристика курса
Одной из особенностей творческой личности является устойчивое умение (превращенное в привычку) икать наилучшее решение проблемы. Это относиться и к любым задачам.
Множество неординарных, нестандартных задач для учащихся основной школы сконцентрировано в математике. В различных математических книгах, посвященных олимпиадным задачам, дается их обзор с решением и без них, в ряде случае разбирается методика решения. Однако сам мыслительный процесс поиска решения задачи, как правило, не отражается, и у учителя возникает вопрос: как «додуматься» до решения задачи? Другой не менее важный вопрос, на который необходимо обращать внимание при обучении решении нестандартных задач, каковы составляющие мыслительного процесса от «прочтения» задачи до ее решения?
Разработка программы данного курса обусловлена непродолжительным изучением темы «Проценты» на первом этапе основной школы, когда учащиеся в силу возрастных особенностей еще не могут получить полноценное представление о процентах, об их роли в повседневной жизни. На последующих этапах обучения повторного обращения к этой теме не предусматривается. Во многих школьных учебниках можно встретить задачи на проценты, однако в них отсутствует компактное и четкое изложение соответствующей теории вопроса. Текстовые задачи включены в материалы итоговой аттестации за курс основной школы, в КИМы и ЕГЭ, в конкурсные экзамены. Однако практика показывает, что задачи на проценты вызывают затруднения у учащихся и очень многие окончившие школу не имеют прочных навыков обращения с процентами в повседневной жизни. Понимание процентов и умение производить процентные расчеты в настоящее время необходимы каждому человеку: прикладное значение этой темы очень велико и затрагивает финансовую, демографическую, экологическую, социологическую и другие стороны нашей жизни.
Данный курс «Математическое моделирование при решении текстовых задач на проценты» демонстрирует учащимся применение математического аппарата к решению повседневных бытовых проблем каждого человека, вопросов рыночной экономики и задач технологии производства. Познавательный материал курса будет способствовать не только выработке умений и закреплению навыков процентных вычислений, но и формированию устойчивого интереса учащихся к процессу и содержанию деятельности, а также познавательной и социальной активности.
Курс рассчитан на 34 часа ( 1 час в неделю)
Результаты освоения курса
В результате изучения всех без исключения предметов основной школы получают дальнейшее развитие личностные регулятивные, коммуникативные и познавательно-универсальные учебные действия:
Регулятивные универсальные учебные действия
Выпускник научится:
самостоятельно анализировать условия достижения цели на основе учета выделенных учителем ориентиров действия в новом учебном материале;
планировать пути достижения целей;
устанавливать целевые приоритеты;
уметь самостоятельно контролировать свое время и управлять им;
принимать решение в проблемной ситуации на основе переговоров;
адекватно самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы в исполнение как в конце действия, так и по ходу его реализации.
Познавательные универсальные учебные действия
Выпускник научится:
основам реализации проектно-исследовательской деятельности;
создавать и преобразовывать модели и схемы для решения задач;
осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
устанавливать причинно-следственные связи;
осуществлять логическую операцию установления родовидовых отношений, ограничение понятия;
строить классификацию на основе дихотомического деления (на основе отрицания);
строить логическое рассуждение, включающее установление причинно-следственных связей;
объяснять явления, процессы, связи и отношения, выявляемые в ходе исследования.
Коммуникативные универсальные учебные действия
Выпускник научится:
учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве;
формировать собственное мнение и позицию, аргументировать и координировать ее с позициями партнеров в сотрудничестве при выработке общего решения в совместной деятельности;
устанавливать и сравнивать различные точки зрения, прежде чем принимать решение и делать выбор;
осуществлять взаимный контроль и оказывать в сотрудничестве необходимую взаимопомощь.
Содержание курса
Тема 1. Проценты. Основные задачи на проценты (4 часа)
Сообщается история появления процентов; устанавливаются пробелы в знаниях по решению основных задач на проценты:
нахождение процента от числа;
нахождение числа по его проценту;
нахождение процента одного числа от другого.
Актуализируются знания об арифметических и алгебраических приемах решения задач. Метод обучения: лекция, беседа, объяснение.
Форма контроля: решение тестовых задач
Тема 2. Процентные вычисления в жизненных ситуациях (операции с ценами) (5 часов)
Показ широты применения в жизни расчетов. Введение базовых понятий экономики: процент прибыли, стоимость товара, заработная плата. Выполнение тренировочных упражнений.
Метод обучения: лекция, объяснительно-иллюстративный, репродуктивный Форма контроля: проверка самостоятельно решенных задач
Тема 3. Штрафы (5 часов)
Введение понятий «штраф» и «пеня». Разъяснение причин наложения штрафов. Установка процентных ставок для штрафов и их выражение числом.
Метод обучения: лекция, объяснение решений тренировочных упражнений, репродуктивный
Форма контроля: проверка самостоятельно решенных задач
Тема 4. Тарифы (5 часов)
Введение понятия «тариф» и «пеня». Разъяснение правил установки тарифов и момента возникновения пеня. Решение задач, связанных с тарифами на телефоны и различными платежами.
Метод обучения: лекция, объяснение решений тренировочных упражнений, репродуктивный
Форма контроля: проверка самостоятельно решенных задач
Тема 5. Банковские операции (5 часов)
Разъяснение различных ситуаций, связанных с банковскими операциями. Решение задач, связанных с банковскими расчетами: вычисление ставок процентов в банках; процентный прирост, определение начальных вкладов. Выполнение тренировочных упражнений. Метод обучения: лекция, объяснение решений тренировочных упражнений, проблемный, самостоятельное составление задач. Форма контроля: участие в семинаре с самостоятельно составленными задачами.
Тема 6. Задачи на сплавы, смеси, растворы (5 часов)
Усвоение учащимися понятий концентрации вещества, процентного раствора. Формирование умения работать с законом сохранения массы. Метод обучения: лекция, объяснение решений тренировочных упражнений, самостоятельное составление задач. Форма контроля: участие в семинаре с самостоятельно составленными задачами.
Тема 7. Решение задач по всему курсу (4 часа)
Обобщение полученных знаний при решении задач на проценты. Метод обучения: выполнение практических заданий, самостоятельное составление задач и пример их решения, составление презентации своего выступления (2 последних урока проводятся в компьютерном классе)
Тема 8. Защита зачетной работы (2часа)
Форма контроля: Учащиеся предоставляют на обсуждение классного коллектива не менее 5 самостоятельно составленных задач по любой из тем (или по разным темам), дают их решение в форме презентации, после чего получают зачет по изучению данного элективного курса.
Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы.
Раздел, тема | Количество часов | Из них (количество часов) |
Теория | Практика |
Проценты. Основные задачи на проценты | 4 | 1 | 3 |
Процентные вычисления в жизненных ситуациях (операции с ценами) | 5 | 2 | 3 |
Штрафы | 5 | 2 | 3 |
Тарифы | 5 | 2 | 3 |
Банковские операции | 5 | 2 | 3 |
Задачи на сплавы, смеси, растворы | 5 | 2 | 3 |
Решение задач по всему курсу | 3 | 1 | 2 |
Защита зачетной работы | 2 | 2 | |
ИТОГО | 34 | 14 | 20 |
В результате изучения курса учащиеся:
Учащиеся научатся
понимать содержательный смысл термина «процент» как специального способа выражения доли величины, его роли в экономической и социальной жизни общества;
переводить на язык процентов такие речевые обороты как «увеличить число в 2,5 раза», «уменьшить на четверть» и т. д.;
делать обратный перевод;
применять процентные вычисления в жизни, решать основные задачи на проценты, применять формулу простого процентного роста и формулу сложного процентного роста;
Учащиеся получат возможность
соотносить процент с соответствующей дробью (особенно в некоторых специальных случаях: 50 % – 1/2; 20 % – 1/5; 25 % – 1/4 и т. д.);
производить прикидку и оценку результатов вычислений;
при вычислениях сочетать устные и письменные приемы, применять калькулятор, использовать приёмы, рационализирующие вычисления.
Описание учебно-методического и материально-технического обеспечения образовательной деятельности
Информатика. Математика. Программы внеурочной деятельности для основной школы: 7-9 классы / М.С.Цветкова, О.Б.Богомолова, Н.Н.Самылкина. – М.: БИНОМ. Лаборатория знаний, 2015. – 200 с.
Дрозина В.В., Дильман В.Л. Механизм творчества решения нестандартных задач. – М.: БИНОМ. Лаборатория знаний. 2010.
Никольский С.Н., Потапов М.К., Решетников. Алгебра в 7-9 классе: методические материалы. – М. Просвещение, 2015.
ПРИЛОЖЕНИЕ
Проценты. Основные задачи на проценты
Задачи на проценты учат решать с 5 класса.
Решение задач этого типа тесно связано с тремя алгоритмами:
нахождение процента от числа,
нахождение числа по его проценту,
нахождение процентного отношения.
На уроках с учениками разбирают, что сотая часть метра - это сантиметр, сотая часть рубля – копейка, сотая часть центнера - килограмм. Люди давно заметили, что сотые доли величин удобны в практической деятельности. Потому для них было придумано специальное название – процент.
Значит одна копейка – один процент от одного рубля, а один сантиметр – один процент от одного метра.
Один процент – это одна сотая доля числа. Математическими знаками один процент записывается так: 1%.
Определение одного процента можно записать равенством: 1 % = 0,01 • а
5%=0,05, 23%=0,23, 130%=1,3 и т. д.
Как найти 1% от числа?
Раз 1% это одна сотая часть, надо число разделить на 100. Деление на 100 можно заменить умножением на 0,01. Поэтому, чтобы найти 1% от данного числа, нужно умножить его на 0,01. А если нужно найти 5% от числа, то умножаем данное число на 0,05 и т.д.
Пример. Найти: 25% от 120.
Решение:
25% = 0,25;
120 . 0,25 = 30.
Ответ: 30.
Правило 1. Чтобы найти данное число процентов от числа, нужно проценты записать десятичной дробью, а затем число умножить на эту десятичную дробь.
Пример. Токарь вытачивал за час 40 деталей. Применив резец из более прочной стали, он стал вытачивать на 10 деталей в час больше. На сколько процентов повысилась производительность труда токаря?
Решение:
Чтобы решить эту задачу, надо узнать, сколько, процентов составляют 10 деталей от 40. Для этого найдем сначала, какую часть составляет число 10 от числа 40. Мы знаем, что нужно разделить 10 на 40. Получится 0,25. А теперь запишем в процентах – 25%.
Ответ: производительность труда токаря повысилась на 25%.
Правило 2. Чтобы найти, сколько процентов одно число составляет от другого, нужно разделить первое число на второе и полученную дробь записать в виде процентов.
Пример. При плановом задании 60 автомобилей в день завод выпустил 66 автомобилей. На сколько процентов завод выполнил план?
Решение:
66 : 60 = 1,1 - такую часть составляют изготовленные автомобили от количества автомобилей по плану. Запишем в процентах =110%.
Ответ: 110%.
Пример. Бронза является сплавом олова и меди. Сколько процентов сплава составляет медь в куске бронзы, состоящем из 6 кг олова и 34 кг меди?
Решение:
6+ 34 =40 (кг) – масса всего сплава.
34 : 40 = 0,85 = 85 (%) – сплава составляет медь.
Ответ: 85%.
Пример. Слонёнок за весну похудел на 20%, потом поправился за лето на 30%, за осень опять похудел на 20% и за зиму прибавил в весе на 10%. Остался ли за этот год его вес прежним? Если изменился, то на сколько процентов и в какую сторону?
Решение:
100 – 20 = 80 (%) – после весны.
80 + 80 • 0,3 = 104 (%) – после лета.
104 – 104 • 0,2 = 83,2 (%) – после осени.
83,2 + 83,2 • 0,1 = 91,52 (%) – после зимы.
Ответ: похудел на 8,48%.
Пример. Оставили на хранение 20 кг крыжовника, ягоды которого содержат 99% воды. Содержание воды в ягодах уменьшилось до 98%. Сколько крыжовника получится в результате?
Решение:
100 – 99 = 1 (%) = 0,01 – доля сухого вещества в крыжовнике сначала.
20 • 0,01 = 0,2 (кг) – сухого вещества.
100 – 98 = 2 (%) = 0,02 – доля сухого вещества в крыжовнике после хранения.
0,2 : 0,02 = 10 (кг) – стало крыжовника.
Ответ: 10 кг.
Пример. Что произойдет с ценой товара, если сначала ее повысить на 25%, а потом понизить на 25%?
Решение:
Пусть цена товара х руб., тогда после повышения товар стоит 125% прежней цены, т.е. 1,25х, а после понижения на 25% , его стоимость составляет 75% или 0, 75 от повышенной цены, т.е.
0,75 •1,25х= 0,9375х,
тогда цена товара понизилась на 6, 25 %, т.к.
х - 0,9375х = 0,0625х;
0,0625 • 100% = 6,25%
Ответ: первоначальная цена товара снизилась на 6,25%.
Правило 3. Чтобы найти процентное отношение двух чисел А и В, надо отношение этих чисел умножить на 100%, то есть вычислить (А : В) • 100%.
Пример. Найти число, если 15% его равны 30.
Решение:
15% = 0,15;
30 : 0,15 = 200.
Или
х - данное число;
0,15 • х = 300;
х = 200.
Ответ: 200.
Пример. Из хлопка-сырца получается 24% волокна. Сколько надо взять хлопка-сырца, чтобы получить 480кг волокна?
Решение:
Запишем 24% десятичной дробью 0,24 и получим задачу о нахождении числа по известной ему части (дроби).
480 : 0,24= 2000 кг = 2 т
Ответ: 2 т.
Пример. Сколько кг белых грибов надо собрать для получения 1 кг сушеных, если при обработке свежих грибов остается 50% их массы, а при сушке остается 10% массы обработанных грибов?
Решение:
1 кг сушеных грибов – это 10% или 0, 01 часть обработанных, т.е.
1 кг : 0,1=10 кг обработанных грибов, что составляет 50% или 0,5 собранных грибов, т.е.
10 кг : 0,05=20 кг.
Ответ: 20 кг.
Пример. Свежие грибы содержали по массе 90% воды, а сухие 12%. Сколько получится сухих грибов из 22 кг свежих?
Решение:
22 • 0,1 = 2,2 (кг) - грибов по массе в свежих грибах; (0,1 это 10% сухого вещества);
2,2 : 0,88 = 2,5 (кг) - сухих грибов, получаемых из свежих (количество сухого вещества не изменилось, но изменилось его процентное содержание в грибах и теперь 2,2 кг это 88% или 0,88 сухих грибов).
Ответ: 2,5 кг.
Правило 4. Чтобы найти число по данным его процентам, надо выразить проценты в виде дроби, а затем значение процентов разделить на эту дробь.
В задачах на банковские расчёты обычно встречаются простые и сложные проценты. В чём же состоит разница простого и сложного процентного роста? При простом росте процент каждый раз исчисляется, исходя из начального значения, а при сложном росте он исчисляется из предыдущего значения. При простом росте 100% – начальная сумма, а при сложном 100% каждый раз новые и равны предыдущему значению.
Пример. Банк платит доход в размере 4% в месяц от величины вклада. На счет положили 300 тысяч рублей, доход начисляют каждый месяц. Вычислите величину вклада через 3 месяца.
Решение:
100 + 4 = 104 (%) = 1,04 – доля увеличения вклада по сравнению с предыдущим месяцем.
300 • 1,04 = 312 (тыс. р) – величина вклада через 1 месяц.
312 • 1,04 = 324,48 (тыс. р) – величина вклада через 2 месяца.
324,48 • 1,04 = 337,4592 (тыс. р) = 337 459,2 (р)-величина вклада через 3 месяца.
Или можно пункты 2-4 заменить одним, повторив с детьми понятие степени: 300•1,043 =337,4592(тыс. р) = 337 459,2 (р) – величина вклада через 3 месяца.
Ответ: 337 459,2 рубля
Пример. Вася прочитал в газете, что за последние 3 месяца цены на продукты питания росли в среднем на 10% за каждый месяц. На сколько процентов выросли цены за 3 месяца?
Пример. Деньги, вложенные в акции известной фирмы, приносят ежегодно 20% дохода. Через сколько лет вложенная сумма удвоится?
Далее в 6 классе решают подобного типа задачи уже с применением пропорции. На эту базу знаний и опираются, готовя учеников к итоговым экзаменам в 9 и 11 классах.
Рассмотрим подобного плана задачи на конкретных примерах.
Пример. (Вариант 1 № 16. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 -80с)
Спортивный магазин проводит акцию. Любой джемпер стоит 400 рублей. При покупке двух джемперов – скидка на второй джемпер 75%. Сколько рублей придется заплатить за покупку двух джемперов в период акции?
Решение:
Согласно условию задачи получается, что первый джемпер покупается за 100 % его исходной стоимости, а второй за 100 – 75 = 25 (%), т.е. всего покупатель должен заплатить 100 + 25 = 125 (%) от исходной стоимости. Далее можно рассмотреть решение тремя способами.
1 способ.
400 рублей принимаем за 100 %. Тогда в 1% содержится 400 : 100 = 4 (руб.), а в 125 %
4 • 125 = 500 (руб.)
2 способ.
Процент от числа находится умножением числа на дробь, соответствующую проценту или умножением числа на данный процент и делением на 100.
400 • 1,25 = 500 или 400 • 125/100 = 500.
3 способ.
Применение свойства пропорции:
400 руб. – 100 %
х руб. – 125 %, получим х = 125 • 400 / 100 = 500 (руб.)
Ответ: 500 рублей.
Пример. (Вариант 4 № 16. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 -80с)
Средний вес мальчиков того же возраста, что и Гоша, равен 57 кг. Вес Гоши составляет 150 % среднего веса. Сколько килограммов весит Гоша?
Решение:
Аналогично примеру, рассмотренному выше можно составить пропорцию:
57 кг – 100 %
х кг – 150 %, получим х = 57 • 150 / 100 = 85,5 (кг)
Ответ: 85,5 кг.
Пример. (Вариант 7 № 16. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 - 80с)
После уценки телевизора его новая цена составила 0,52 старой. На сколько процентов уменьшилась цена в результате уценки?
Решение:
1 способ.
Найдем сначала долю уменьшения цены. Если исходную цену принять за 1, то 1 – 0,52 = 0,48 составляет доля уменьшения цены. Тогда получаем, 0,48 • 100 % = 48 %. Т.е. на 48 % уменьшилась цена в результате уценки.
2 способ.
Если исходную стоимость принять за А, то после уценки новая цена телевизора будет равняться 0,52А, т.е. она уменьшится на А – 0,52А = 0,48А.
Составим пропорцию:
А – 100%
0,48А – х %, получим х = 0,48А • 100 / А = 48 (%).
Ответ: на 48 % уменьшилась цена в результате уценки.
Пример. (Вариант 9 № 16. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 - 80с)
Товар на распродаже уценили на 15%, при этом он стал стоить 680 рублей. Сколько рублей стоил товар до распродажи?
Решение:
До понижения цены товар стоил 100%. Цена на товар после распродажи уменьшилась на 15%, т.е. стала 100 – 15 = 85 (%), в рублях эта величина равна 680 рублей.
1 способ.
680 : 85 = 8 (руб.) – в 1%
8 • 100 = 800 (руб.) – стоил товар до распродажи.
2 способ.
Это задача на нахождение числа по его проценту, решается делением числа на соответствующий ему процент и путем обращения полученной дроби в проценты, умножением на 100, или действием деления на дробь, полученную при переводе из процентов.
680 : 85 • 100 = 800 (руб.) или 680 : 0,85 = 800 (руб.)
3 способ.
С помощью пропорции:
680 руб. – 85 %
х руб. – 100 %, получим х = 680 • 100 / 85 = 800 (руб.)
Ответ: 800 рублей стоил товар до распродажи.
РАСПРОДАЖА. ТАРИФЫ. ШТРАФЫ.
Цели: добиться усвоения учащимися таких понятий, как скидка, распродажа, тарифы, штрафы, бюджет; отработать навыки решения основных задач на проценты.
Ход занятия
1. Беседа.
Полезно подчеркнуть, что сюжеты задач взяты из реальной жизни — из газеты, объявлений, документов и т. д.
II. Закрепление. Решение задач.
1. Задача 1. (Распродажа.) Зонт стоил 360 р. В ноябре цена зонта была снижена на 15%, а в декабре еще на 10 %. Какой стала стоимость зонта в декабре?
Решение.
Стоимость зонта в ноябре составляла 85 % от 360 р., т. е.360•0,85 = 306(р.). Второе снижение цены происходило по отношению к новой цене зонта; теперь следует искать 90 % от 306 р., т. е. 306•0,9 = 275,4 (р.).
Ответ: 275 р. 40 к.
Дополнительный вопрос: На сколько процентов по отношению к первоначальной цене подешевел зонт?
Решение. Найдем отношение последней цены к исходной и выразим его в процентах. Получим 76,5 %. Значит, зонт подешевел на 23,5 %.
Ответ: 23,5%.
2. Задача 2. (Бюджет. Зарплата.)
При приеме на работу директор предприятия предлагает зарплату 4200 р. Какую сумму получит рабочий после удержания налога на доходы физических лиц?
Решение.
1) (4200 —400) 0,13 = 494 р. — налог.
2) 4200 —494 = 3706 р.
Замечание. При начислении налога на доходы физических лиц нужно учитывать стандартный вычет 400 р., налог 13 % берется от оставшейся суммы.
Ответ: 3706р.
3. Задача 3.
Заработок рабочего повысился на 20 %, а цены на продукты и другие товары снизились на 15 %. На сколько процентов рабочий теперь на свой заработок может купить больше продуктов и товаров, чем прежде?
Решен и е.
Примем для простоты вычислений прежний заработок рабочего за 10 р. и пусть он покупает только один какой-то продукт по 1 р. за килограмм, т. е. 10 кг. После повышения на 20 % заработок рабочего стал 12 р., а цена продукта после снижения цены на 15 %- 0,85 р. за 1 кг. Теперь рабочий может купить 12 : 0,85 =14,1 (кг), т. е. на 4,1 : 10 = 0,41, т. е. на 41 % больше, чем прежде.
Ответ: на 4I %больше.
4. Задача 4. (Тарифы.)
В газете сообщается, что с 10 июня согласно новым тарифам стоимость отправления почтовой открытки составит З р. 15 к. вместо 2 р. 27 к. Соответствует ли рост цен на услуги почтовой связи росту цен на товары в этом году, который составляет 14,5 %.
Решение.
Разность тарифов составляет 0,4 р., а ее отношение к старому тарифу равно 0,14545... Выразив это отношение в процентах, получим примерно 14,5 %.
Ответ: да, соответствует.
Дополнительный вопрос. Сколько будет стоить отправка заказного письма, если эта услуга сейчас оценивается в 5 р. 50 к?
Решение.
Цена услуги увеличивается на 14,5 %, т. е. станет 5,5•1,145 = 6,3 (р.).
Ответ: 6 р. 30 к.
5. Задача 5. (Штрафы.)
Занятия ребенка в музыкальной школе родители оплачивают в сбербанке, внося ежемесячно 250 р. Оплата должна производиться до 15 числа каждого месяца, после чего за каждый просроченный день начисляется пеня в размере 4 % от суммы оплаты занятий за один месяц. Сколько придется заплатить родителям, если они просрочат оплату на неделю?
Решение.
Так как 4 % от 250 р. составляют 10 р., то за каждый просроченный день сумма оплаты будет увеличиваться на 10 р. Если родители просрочат оплату на день, то им придется заплатить
250 + 10 = 260 (р.),
на неделю 250 + 107 = 320 (р.).
Ответ: 320 р.
Домашнее задание. Составить 2 задачи, используя жизненные ситуации, записать на отдельных листах.
Решение задач на смеси и сплавы, с использованием понятий «процентное содержание», «концентрация», «% -й раствор».
Самые простые задачи этого типа приведены ниже.
Пример. Сколько кг соли в 10 кг соленой воды, если процентное содержание соли 15%.
Решение:
10 • 0,15 = 1,5 (кг) соли.
Ответ: 1,5 кг.
Процентное содержание вещества в растворе (например, 15%), иногда называют %-м раствором (например, 15%-й раствор соли).
Пример. Сплав содержит 10 кг олова и 15 кг цинка. Каково процентное содержание олова и цинка в сплаве?
Решение:
Процентное содержание вещества в сплаве - это часть, которую составляет вес данного вещества от веса всего сплава.
10 + 15 = 25 (кг) - сплав;
10 : 25 • 100% = 40% - процентное содержание олова в сплаве;
15 : 25 • 100% = 60% - процентное содержание цинка в сплаве.
Ответ: 40%, 60%.
В задачах этого типа основным является понятие «концентрация». Что же это такое?
Рассмотрим, например, раствор кислоты в воде.
Пусть в сосуде содержится 10 литров раствора, который состоит из 3 литров кислоты и 7 литров воды. Тогда относительное (по отношению ко всему объему) содержание кислоты в растворе равно . Это число и определяет концентрацию кислоты в растворе. Иногда говорят о процентном содержании кислоты в растворе. В приведенном примере процентное содержание будет таково: . Как видно, переход от концентрации к процентному содержанию и наоборот весьма прост.
Итак, пусть смесь массы М содержит некоторое вещество массой m.
Тогда:
концентрацией данного вещества в смеси (сплаве) называется величина ;
процентным содержанием данного вещества называется величина с×100%;
Из последней формулы следует, что при известных величинах концентрации вещества и общей массы смеси (сплава) масса данного вещества определяется по формуле m=c×M.
Задачи на смеси (сплавы) можно разделить на два вида:
Задаются, например, две смеси (сплава) с массами m1 и m2 и с концентрациями в них некоторого вещества, равными соответственно с1 и с2. Смеси (сплавы) сливают (сплавляют). Требуется определить массу этого вещества в новой смеси (сплаве) и его новую концентрацию. Ясно, что в новой смеси (сплаве) масса данного вещества равна c1m1+c2m2, а концентрация .
Задается некоторый объем смеси (сплава) и от этого объема начинают отливать (убирать) определенное количество смеси (сплава), а затем доливать (добавлять) такое же или другое количество смеси (сплава) с такой же концентрацией данного вещества или с другой концентрацией. Эта операция проводится несколько раз.
При решении таких задач необходимо установить контроль за количеством данного вещества и его концентрацией при каждом отливе, а также при каждом добавлении смеси. В результате такого контроля получаем разрешающее уравнение. Рассмотрим конкретные задачи.
Если концентрация вещества в соединении по массе составляет P%, то это означает, что масса этого вещества составляет P% от массы всего соединения.
Пример. Концентрация серебра в сплаве 300 г составляет 87%. Это означает, что чистого серебра в сплаве 261 г.
Решение:
300 • 0,87 = 261 (г).
В этом примере концентрация вещества выражена в процентах.
Отношения объема чистого компонента в растворе ко всему объему смеси называется объемной концентрацией этого компонента.
Сумма концентраций всех компонентов, составляющих смесь, равна 1.
Если известно процентное содержание вещества, то его концентрация находится по формуле:
К = P/100%,
где К - концентрация вещества;
P - процентное содержание вещества (в процентах).
Пример. (Вариант 8 № 22. ОГЭ-2016. Математика. Тип. тест. задания_ред. Ященко_2016 - 80с)
Свежие фрукты содержат 75% воды, а высушенные – 25%. Сколько требуется свежих фруктов для приготовления 45 кг высушенных фруктов?
Решение:
Если в свежих фруктах содержится 75% воды, то сухого вещества будет 100 – 75 = 25 (%), а высушенные – 25%, то сухого вещества в них будет 100 – 25 = 75 (%).
При оформлении решения задачи, можно использовать таблицу:
Общая масса, кг | Концентрация сухого вещества | Масса сухого вещества
Свежие фрукты х 25% = 0,25 0,25 • х
Высушенные фрукты 45 75% = 0,75 0,75 • 45 = 33,75
Т.к. масса сухого вещества для свежих и высушенных фруктов не меняется, то получим уравнение:
0,25 • х = 33,75;
х = 33,75 : 0,25;
х = 135 (кг) – требуется свежих фруктов.
Ответ: 135 кг.
Пример. (Вариант 8 №11. ЕГЭ-2016. Математика. Типов. тест. зад. ред Ященко 2016 -56с)
Смешав 70 % -й и 60 % -й растворы кислоты и добавив 2 кг чистой воды, получили 50 % -й раствор кислоты. Если бы вместо 2 кг воды добавили 2 кг 90 % -го раствора той же кислоты, то получили бы 70 % -й раствор кислоты. Сколько килограммов 70 % -го раствора использовали для получения смеси?
Решение:
Общая масса, кг | Концентрация сухого вещества | Масса сухого вещества
I х 70% = 0,7 0,7 • х
II у 60% = 0,6 0,6 • у
вода 2 – –
I + II + вода х + у + 2 50 % = 0,5 0,5 • ( х + у + 2 )
III 2 90 % = 0,9 0,9 • 2 = 1,8
I + II + III х + у + 2 70 % = 0,7 0,7 • ( х + у + 2)
Используя последний столбик из таблицы составим 2 уравнения:
0,7 • х + 0,6 • у = 0,5 • ( х + у + 2 ) и 0,7 • х + 0,6 • у + 1,8 = 0,7 • ( х + у + 2).
Объединив их в систему, и решив ее, получим, что х = 3 кг.
Ответ: 3 килограмма 70 % -го раствора использовали для получения смеси.
Пример. (Вариант 2 №11. ЕГЭ-2016. Математика. Типов. тест. зад. ред Ященко 2016 -56с)
Три килограмма черешни стоят столько же, сколько пять килограммов вишни, а три килограмма вишни – столько же, сколько два килограмма клубники. На сколько процентов килограмм клубники дешевле килограмма черешни?
Решение:
Из первого предложения задачи получаем следующие равенства:
3ч = 5в,
3в = 2к.
Из которых можно выразить: ч = 5в/3, к = 3в/2.
Таким образом можно составить пропорцию:
5в/3 – 100%
3в/2 – х %, получим х = (3 • 100 • в •3)/(2 • 5 • в), х = 90% составляет стоимость килограмма клубники от стоимости килограмма черешни.
Значит, на 100 – 90 = 10 (%) – килограмм клубники дешевле килограмма черешни.
Ответ: на 10 процентов килограмм клубники дешевле килограмма черешни.
Задача. В сосуд, содержащий 5 литров 12 процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?
Рассмотрим три способа решения этой задачи.
Первый способ.
объем получившегося раствора
объем чистого вещества в первом растворе.
концентрация получившегося раствора.
Второй способ. По формуле.
где
концентрация первого и второго растворов соответственно.
объемы первого и второго растворов соответственно
Третий способ.
Объем раствора увеличился в 2,4 раза (было 5 л., стало 12 л. 12:5 = 2,4),
содержание вещества не изменилось, поэтому процентная концентрация получившегося раствора уменьшилась в 2,4 раза.12:2,4=5(%)
Ответ: 5 %.
Задача. Сколько литров воды нужно добавить в 2 л водного раствора, содержащего 60% кислоты, чтобы получить 20 процентный раствор кислоты?
Объем чистой кислоты в растворе не меняется, процентное содержание кислоты в растворе уменьшится в 3 раза (60:20=3)
Объем раствора увеличится в 3 раза: 2 * 3=6(л)
6 – 2 = 4 (л) воды нужно добавить.
Ответ: 4 л.
Задача. Смешали 4 литра 15 процентного водного раствора с 6 литрами 25 процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
Рассмотрим два способа решения этой задачи.
Первый способ. По формуле.
где
концентрация первого и второго растворов соответственно.
объемы первого и второго растворов соответственно.
Второй способ.
объем получившегося раствора.
объем чистого вещества в четырех литрах раствора.
объем чистого вещества в шести литрах раствора.
объем чистого вещества в получившемся растворе.
концентрация получившегося раствора.
Ответ: 21%
Задача. Влажность сухой цементной смеси на складе составляет 18%. Во время перевозки из-за дождей влажность смеси повысилась на 2%. Найдите массу привезенной смеси, если со склада было отправлено 400 кг.
воды в цементе на складе.
сухого вещества в цементе на складе.
сухого вещества в цементе в 328 килограммах.
масса привезенной смеси.
Ответ: 410 кг.
Решение задач на «сложные» проценты, с использованием понятия коэффициента увеличения (уменьшения).
Чтобы увеличить положительное число А на р процентов, следует умножить число А на коэффициент увеличения К = (1 + 0,01р).
Чтобы уменьшить положительное число А на р процентов, следует умножить число А на коэффициент уменьшения К = (1 – 0,01р).
Пример. (Вариант 29 № 22. ОГЭ-2015. Математика. Тип. экзаменационные варианты: 36 вариантов/ под ред. Ященко, 2015 - 224с)
Цена товара была дважды снижена на одно и то же число процентов. На сколько процентов снижалась цена товара каждый раз, если его первоначальная стоимость 5000 рублей, а окончательная 4050 рублей?
Решение:
1 способ.
Т.к. цена товара снижалась на одно и то же число %, обозначим число % за х. Пусть в первый и второй раз цена товара была понижена на х %, тогда после первого понижения цена товара стала (100 – х ) %.
Составим пропорцию
5000 руб. – 100%
у руб. – (100 – х)%, получим у = 5000 • (100 – х) / 100 = 50 • (100 – х) рублей – стоимость товара после первого понижения.
Составим новую пропорцию уже по новой цене:
50 • (100 – х) руб. – 100%
z руб. – (100 – х)%, получим z = 50 • (100 – х) (100 – х) / 100 = 0,5 • (100 – х)2 рублей – стоимость товара после второго понижения.
Получим уравнение 0,5 • (100 – х)2 = 4050. Решив его, получим, что х = 10 % .
2 способ.
Т.к. цена товара снижалась на одно и то же число %, обозначим число % за х, х % = 0,01 х.
Используя понятие коэффициента уменьшения, сразу получаем уравнение:
5000 • (1 – 0,01х)2 = 4050.
Решив его, получим, что х = 10 %.
Ответ: на 10 % снижалась цена товара каждый раз.
Пример. (Вариант 30 № 22. ОГЭ-2015. Математика. Тип. экзаменационные варианты: 36 вариантов/ под ред. Ященко, 2015 - 224с)
Цена товара была дважды повышена на одно и то же число процентов. На сколько процентов повышалась цена товара каждый раз, если его первоначальная стоимость 3000 рублей, а окончательная 3630 рублей?
Решение:
Т.к. цена товара повышалась на одно и то же число %, обозначим число % за х, х % = 0,01 х.
Используя понятие коэффициента увеличения, сразу получаем уравнение:
3000 • (1 + 0,01х)2 = 3630.
Решив его, получим, что х = 10 %.
Ответ: на 10 % повышалась цена товара каждый раз.
Пример. (Вариант 4 №11. ЕГЭ-2016. Математика. Типов. тест. зад. ред Ященко 2016 -56с)
В четверг акции компании подорожали на некоторое число процентов, а в пятницу подешевели на то же самое число процентов. В результате они стали стоить на 9% дешевле, чем при открытии торгов в четверг. На сколько процентов подорожали акции компании в четверг?
Решение:
Пусть акции компании дорожали и дешевели на х %, х % = 0,01 х, а исходная стоимость акций была А. Используя все условия задачи, получаем уравнение:
(1 + 0,01 х)(1 – 0,01 х)А = (1 – 0,09)А,
1 – (0,01 х)2 = 0,91,
(0,01 х)2 = (0,3)2,
0,01 х = 0,3,
х = 30 %.
Ответ: на 30 процентов подорожали акции компании в четверг.
Решение «банковских» задач в новой версии ЕГЭ-2016 по математике.
Пример. (Вариант 2 №17. ЕГЭ-2016. Математика. 50 типов. вар. ред. Ященко 2016)
15-го января планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы:
1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Известно, что восьмая выплата составила 108 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?
Решение:
1) Пусть А – сумма кредита, 1 % = 0,01.
Тогда 1,01А долг после первого месяца.
Со 2-го по 14-е число производится выплата А/15 +0,01А.
После чего сумма долга составит 1,01А – А/15 – 0,01А = 14А/15.
При такой схеме долг становится на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Через 2 месяца получаем: 1,01• 14А/15.
Второй платеж А/15 + 0,01• 14А/15.
Тогда долг после второго платежа 13А/15.
Аналогично получаем, что восьмая выплата будет иметь вид:
А/15 + 0,01• 8А/15 = А/15 • (1 + 0,08) = 1,08А/15.
А по условию она равна 108 тыс. рублей. Значит, можно составить и решить уравнение:
1,08А/15 = 108,
А=1500 (тыс. руб.) – исходная сумма долга.
2) Чтобы найти сумму, которую нужно вернуть банку в течение всего срока кредитования, мы должны найти сумму всех выплат по кредиту.
Сумма всех выплат по кредиту будет иметь вид:
(А/15 + 0,01А) + (А/15 + 0,01• 14А/15) + (А/15 + 0,01• 13А/15) + … + ( А/15 + 0,01• А/15) = А + 0,01А/15 (15+14+13+12+11+10+9+8+7+6+5+4+3+2+1) = А + (0,01• 120А)/15 = 1,08А.
Значит, 1,08 • 1500 = 1620 (тыс. руб.) = 1620000 рублей нужно вернуть банку в течение всего срока кредитования.
Ответ: 1620000 рублей.
Пример. (Вариант 6 №17. ЕГЭ-2016. Математика. 50 типов. вар. ред. Ященко 2016)
15-го января планируется взять кредит в банке на 24 месяцев. Условия его возврата таковы:
1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Известно, что за первые 12 месяцев нужно выплатить банку 177,75 тыс. рублей. Какую сумму планируется взять в кредит?
Решение:
1) Пусть А – сумма кредита, 1 % = 0,01.
Тогда 1,01А долг после первого месяца.
Со 2-го по 14-е число производится выплата А/24 +0,01А.
После чего сумма долга составит 1,01А – А/24 – 0,01А = А – А/24 = 23А/24.
При такой схеме долг становится на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Через 2 месяца получаем: 1,01• 23А/24.
Второй платеж А/24 + 0,01• 23А/24.
Тогда долг после второго платежа 1,01• 23А/24 – А/24 – 0,01• 23А/24 = 23А/24(1,01 – 0,01) – А/24 = 23А/24 – А/24 = 22А/24.
Таким образом получаем, что за первые 12 месяцев нужно выплатить банку следующую сумму:
А/24 +0,01А • 24/24 + А/24 + 0,01• 23А/24 + А/24 + 0,01• 22А/24 + … + А/24 + 0,01• 13А/24 =12А/24 + 0,01А/24 (24+23+22+21+20+19+18+17+16+15+14+13) = А/2 + 222А/2400 = 711А/1200.
А по условию она равна 177,375 тыс. рублей. Значит, можно составить и решить уравнение:
711А/1200 = 177,75,
А=300 (тыс. руб.) =300000 рублей – планируется взять в кредит.
Ответ: 300000 рублей.