Повторяем:
Корнем n-й степени из неотрицательного числа а называется такое неотрицательное число b, которое при возведении в степень n дает число а.
Приведем математическую запись определения:

Например:
, т. к.
;
, т. к.
,
Решение примеров на упрощение и вычисление
Рассмотрим более сложные примеры.
Пример 1 – упростить выражение: 
Обоснование: 
Вспомним основные свойства арифметических корней:
, при
(теорема 1)
, при
(теорема 2)
, при
(теорема 3)
, при
(теорема 4)
при
(теорема 5)


Пример 2 – вычислить:

Чтобы выполнить вычисление, нужно преобразовать числитель, для этого во второй скобке представим составные числа в виде простых:


Получаем:

Разложим скобку на множители способом группировки:


После преобразований получаем дробь:

Имеем право сократить:

Несложно заметить в полученном выражении формулу разности квадратов, свернем ее:

Уравнения с радикалами, типы, примеры решения
Важно уметь решать уравнения с радикалами, рассмотрим первый тип таких уравнений.

Чтобы не потерять при решении корни и не приобрести новых корней, следует наложить некоторые ограничения. В первую очередь ОДЗ:
. Далее:

Второй тип уравнений:

Укажем область определения. ОДЗ:

Чтобы решить заданное уравнение, нужно возвести его в квадрат, получим:

Чтобы упростить нахождение области определения, можно оставить только одно из двух неравенств, т. к. два числа равны друг другу и если одно из них больше нуля, то и второе тоже. Получаем системы для решения уравнения:

или

Аналогично первому типу получена смешанная система, можем решить уравнение и выполнить проверку, не решая полностью неравенство.
Рассмотрим конкретные примеры уравнений.
Пример 6:

Данное уравнение эквивалентно системе:

Решаем полученную систему:

Ответ: 
Данный пример можно решать другим способом. Рассмотрим две функции – выражения стоящие в правой и левой части заданного уравнения:

Первая функция монотонно убывает (т. к. под корнем стоит линейная убывающая функция, ее угловой коэффициент меньше нуля), вторая монотонно возрастает.
Поскольку одна из функций монотонно убывает, а вторая монотонно возрастает, то уравнение имеет единственное решение, если решение вообще существует. Таким образом, если мы найдем один корень заданного уравнения, это будет обоснованный ответ к задаче.
Корень существует, по рисунку мы видим, что это
, чтобы убедиться в этом, подставим найденный корень в исходное уравнение. Получаем верное числовое равенство.