СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Математика. Иррациональные уравнения и неравенства, метод резольвента. Уравнения, содержащие квадратные радикалы.

Категория: Математика

Нажмите, чтобы узнать подробности

Повторяем:

Корнем n-й степени из неотрицательного числа а называется такое неотрицательное число b, которое при возведении в степень n дает число а.

Приведем математическую запись определения:

Например: , т. к. , т. к. ,

 Решение примеров на упрощение и вычисление

Рассмотрим более сложные примеры.

Пример 1 – упростить выражение: 

Обоснование: 

Вспомним основные свойства арифметических корней:

, при  (теорема 1)

, при  (теорема 2)

, при  (теорема 3)

, при  (теорема 4)

 при  (теорема 5)

Пример 2 – вычислить:

Чтобы выполнить вычисление, нужно преобразовать числитель, для этого во второй скобке представим составные числа в виде простых:

Получаем:

Разложим скобку на множители способом группировки:

После преобразований получаем дробь:

Имеем право сократить:

Несложно заметить в полученном выражении формулу разности квадратов, свернем ее:

 

Уравнения с радикалами, типы, примеры решения

Важно уметь решать уравнения с радикалами, рассмотрим первый тип таких уравнений.

Чтобы не потерять при решении корни и не приобрести новых корней, следует наложить некоторые ограничения. В первую очередь ОДЗ: . Далее:

Второй тип уравнений:

Укажем область определения. ОДЗ:

Чтобы решить заданное уравнение, нужно возвести его в квадрат, получим:

Чтобы упростить нахождение области определения, можно оставить только одно из двух неравенств, т. к. два числа равны друг другу и если одно из них больше нуля, то и второе тоже. Получаем системы для решения уравнения:

или

Аналогично первому типу получена смешанная система, можем решить уравнение и выполнить проверку, не решая полностью неравенство.

Рассмотрим конкретные примеры уравнений.

Пример 6:

Данное уравнение эквивалентно системе:

Решаем полученную систему:

Ответ: 

Данный пример можно решать другим способом. Рассмотрим две функции – выражения стоящие в правой и левой части заданного уравнения:

Первая функция монотонно убывает (т. к. под корнем стоит линейная убывающая функция, ее угловой коэффициент меньше нуля), вторая монотонно возрастает.

Поскольку одна из функций монотонно убывает, а вторая монотонно возрастает, то уравнение имеет единственное решение, если решение вообще существует. Таким образом, если мы найдем один корень заданного уравнения, это будет обоснованный ответ к задаче.

Корень существует, по рисунку мы видим, что это , чтобы убедиться в этом, подставим найденный корень в исходное уравнение. Получаем верное числовое равенство.