Два уравнения называются равносильными если множества их корней совпадают; в том числе, уравнения, не имеющие корней, считаются равносильными. Используется обозначение: f x gx hx x () () () () = ⇔ =ϕ . Если все решения первого уравнения являются решениями второго уравнения (множество решений первого уравнения является подмножеством решений второго уравнения), то второе уравнение называется следствием первого уравнения. Используется обозначение: f x gx hx x () () () () = ⇒ =ϕ . Таким образом, два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.
Теорема 1. Если любое выражение, входящее в уравнение, заменить тождественно равным ему на области определения уравнения выражением, то получим уравнение, равносильное данному.
Теорема 2. Если к обеим частям уравнения прибавить выражение, имеющее смысл на области определения уравнения, то получим уравнение, равносильное данному. Следствие. Если любое слагаемое перенести из одной части уравнения в другую, поменяв его знак на противоположный, то получим уравнение, равносильное данному. Теорема 3. Если обе части уравнения умножить (разделить) на выражение, имеющее смысл и отличное от нуля на области определения уравнения, то получим уравнение, равносильное данному.