СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 23.06.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Материал к уроку "Изопроцессы"

Категория: Физика

Нажмите, чтобы узнать подробности

Материал к уроку

Просмотр содержимого документа
«Материал к уроку "Изопроцессы"»

Уравнение состояния идеального газа (уравнение Менделеева—Клапейрона). Изопроцессы

1. Уравнение состояния. 2. Уравнение Менделеева— Клапейрона. 3. Процессы в газах. 4. Изопроцессы. 5. Графики изопроцессов. 6. Распространенные ошибки.

Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти неличины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.

Для произвольной массы газа состояние газа описывается уравнением Менделеева—Клапейрона:

,

где   — давление,   — объем,   — массa,   - молярная масса,   — универсальная газовая постоянная ( ). Физический смысл универсальной газовой постоянной в том, что она показывает, какую работу совершает один моль идеального газа при изобарном расширении при нагревании на 1 К.

Уравнение Менделеева—Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.

Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.

Изотермическим называют процесс, протекаю-щий при постоянной температуре:  . Он описывается законом Бойля—Мариотта:  .

Изохорным называют процесс, протекающий при постоянном объеме:  . Для него справедлив закон Шарля:  .

Изобарным называют процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид   при   и называется законом Гей-Люссака. Все изопроцессы можно изобразить графически. На рисунке 11 представлены в различных координатах графики процессов: изотермического (изотерма АВ), изобарного (изобара АС) и изохорного (изохора ВС).

Реальные газы удовлетворяют уравнению состояния идеального газа при не слишком высоких давлениях (пока собственный объем молекул пренебрежимо мал по сравнению с объемом сосуда, в котором находится газ) и при не слишком низких температуpax (пока потенциальной энергией межмолекулярного взаимодействия можно пренебречь по сравнению с кинетической энергией теплового движения молекул), т. е. для реального газа это уравнение и его следствия являются хорошим приближением.

Уравнение состояния идеального газа

(уравнение Менделеева – Клапейрона).

Уравнением состояния называется уравнение, связывающее параметры физической системы и однозначно определяющее ее состояние.

В 1834 г. французский физик Б.  Клапейрон, работавший дли тельное время в Петербурге, вывел уравнение состояния идеаль­ного газа для постоянной массы газа. В 1874 г. Д. И. Менделеев вывел уравнение для произвольного числа молекул.

 

В МКТ и термодинамике идеального газа макроскопическими параметрами являются: p, V, T, m.

Мы знаем, что  . Следовательно,  . Учитывая, что  , получим:  .

 

Произведение постоянных величин есть величина постоянная, следовательно:   - универсальная газовая постоянная (универсальная, т.к. для всех газов одинаковая).

Таким образом, имеем:

 - уравнение состояния (уравнение Менделеева – Клапейрона).

Другие формы записи уравнения состояния идеального газа.

1.Уравнение для 1 моля вещества.

Если n=1 моль, то, обозначив объем одного моля Vм, получим:  .

Для нормальных условий получим: 

2. Запись уравнения через плотность:  - плотность зависит от температуры и давления!

3.  Уравнение Клапейрона.

Часто необходимо исследовать ситуацию, когда меняется состояние газа при его неизменном количестве (m=const) и в отсутствие химических реакций (M=const). Это означает, что количество вещества n=const. Тогда:                    

 

Эта запись означает, что  для данной массы данного газа справедливо равенство: 

 

Для постоянной массы идеального газа отношение произве­дения давления на объем к абсолютной  температуре в данном состоянии есть величина постоянная:  .

Газовые законы.

1.      Закон Авогадро.

В равных объемах различных газов при одинаковых внешних условиях находится одинаковое число молекул (атомов).

Условие: V1=V2=…=Vn;  p1=p2=…=pn; T1=T2=…=Tn

 

 Доказательство:

 

Следовательно, при одинаковых условиях (давление, объем, температура) число молекул не зависит от природы газа и одинаково.                

 

2.      Закон Дальтона.

Давление смеси газов равно сумме парциальных (частных) давлений каждого газа.

Доказать: p=p1+p2+…+pn

Доказательство: 

 

3.      Закон Паскаля.

Давление, производимое на жидкость или газ, передается во все стороны без изменения.





Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!