СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Математика. Признак сходимости Жан Лерона Даламбера.

Категория: Математика

Нажмите, чтобы узнать подробности

Признак сходимости Даламбера

Жан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились.

Перед тем как сформулировать сам признак, рассмотрим важный вопрос: Когда нужно применять признак сходимости Даламбера?

Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовой предельный признак сравнения. Предельный признак сравнения применяется тогда, когда в общем члене ряда: 1) В знаменателе находится многочлен. 2) Многочлены находятся и в числителе и в знаменателе. 3) Один или оба многочлена могут быть под корнем.

Основные же предпосылки для применения признака Даламбера следующие:

1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например,  и так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует.

2) В общий член ряда входит факториал. С факториалами мы скрестили шпаги ещё на уроке Числовая последовательность и её предел. Впрочем, не помешает снова раскинуть скатерть-самобранку:

! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби.

3) Если в общем члене ряда есть «цепочка множителей», например, . Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6.

Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера.

Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-тоиз рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера.

Признак Даламбера: Рассмотрим положительный числовой ряд . Если существует предел отношения последующего члена к предыдущему: , то: а) При  ряд сходится. В частности, ряд сходится при . б) При  ряд расходится. В частности, ряд расходится при . в) При  признак не дает ответа. Нужно использовать другой признак. Чаще всего единица получается в том случае, когда признак Даламбера пытаются применить там, где нужно использовать предельный признак сравнения.