1-mavzu. Matritsalar va ular ustida amallar
Reja
Matritsaga doir asosiy ta’rif va tushunchalar.
Matritsalar ustida amallar va ularning xossalari.
Tayanch soʻz va iboralar: matritsa, satr matritsa, ustun matritsa, satr-vektor, ustun-vektor, vektor komponenti, nol matritsa, teng matritsa, zanjirlangan matritsalar, kvadrat matritsaning bosh diagonali, diagonal matritsa, skalyar matritsa, birlik matritsa, transponirlangan matritsa, simmetrik matritsa, qiya simmetrik matritsa.
Matritsa tushunchasi va unga asoslangan matematikaning “Matritsalar algebrasi” boʻlimi amaliyotda, jumladan, komрyuter texnologiyalari va dasturlash sohasida muhim ahamiyatga ega.
Matritsa tushunchasi birinchi marta ingliz matematiklari U.Gamilton (1805-1865-y.y.) va A.Kel (1821-1895 y.y.) ishlarida uchraydi. Hozirgi kunda matritsa tushunchasi tabiiy va amaliy jarayonlarning matematik modellarini tuzishda muhim vosita sifatida qoʻllaniladi.
1-ta’rif. ta satr va ta ustundan iborat boʻlgan qavslar ichiga olingan toʻrtburchakli sonlar jadvaliga matritsa deyiladi. |
Matritsalar lotin alifbosining bosh harflari bilan belgilanadi. Masalan,
Matritsani tashkil qilgan sonlar uning elementlari deyiladi. Matritsa oʻlchami
kabi yoziladi. Matritsaning
satr,
ustun kesishmasidagi element
kabi belgilangan. Demak,
element 3 - satr va 4 - ustun kesishmasida joylashgan elementdir.
Ba’zida matritsalarni yozishda (...) qavslar oʻrniga [...] qavslar yoki ||...|| kabi belgilardan foydalaniladi.
Aytaylik quyidagi jadvalda iqtisodiyotning tarmoqlari boʻyicha resurslarning taqsimlanishi berilgan boʻlsin:
Resurslar | Iqtisodiyot tarmoqlari |
Sanoat | Qishloq xoʻjaligi |
Elektr energiyasi resurslari | 7,3 | 5,2 |
Mehnat resurslari | 4,6 | 3,1 |
Suv resurslari | 4,8 | 6,1 |
Bu resurslar taqsimotini matritsa koʻrinishida quyidagicha yozish mumkin:
Bu matritsaning oʻlchami
boʻlib, satrlari resurs turlariga ustunlari esa tarmoqlarga mos keladi.
(
) oʻlchamli matritsaga satr matritsa, (
) oʻlchamli matritsaga esa ustun matritsa deyiladi, ya’ni
,
Bundan tashqari ba’zida bu matritsalar mos ravishda satr-vektor va ustun-vektor deb ham ataladi. Matritsaning elementlari esa vektorlarning komponentlari, deyiladi.
Har bir elementi nolga teng boʻlgan, ixtiyoriy oʻlchamli matritsaga nol matritsa deyiladi va quyidagi koʻrinishda belgilanadi:
1-misol. Quyidagi matritsaviy tenglikdan
va
noma’lumlarning qiymatlarini toping:
Yechish. Matritsalarning mos elementlarini tenglab quyidagi tengliklarni hosil qilamiz:
.
Masalan,
va
matritsalar zanjirlangan matritsalar boʻladi. Chunki,
matritsaning oʻlchami
ga,
matritsaning oʻlchami
ga teng.
Shuni ta’kidlash lozimki
va
matritsalar zanjirlangan emas. Chunki,
matritsaning ustunlari soni 2 ga,
matritsaning satrlari soni 3 ga teng boʻlib, oʻzaro bir xil emas.
4-ta’rif. Satrlari va ustunlari soni oʻzaro teng boʻlgan matritsaga kvadrat matritsa deyiladi. |
Masalan,
matritsa 4-tartibli kvadrat matritsadir.
elementlarning tartiblangan tо‘plami kvadrat matritsaning asosiy diagonali deyiladi.
7-ta’rif. Agar diagonal matritsaning barcha diagonal elementlari oʻzaro teng boʻlsa, u holda bunday matritsaga skalyar matritsa deyiladi ya’ni |
8-ta’rif. Agar skalyar matritsada boʻlsa, u holda bunday matritsaga birlik matritsa deyiladi va odatda harfi bilan belgilanadi, ya’ni |
Oʻlchamlari aynan teng boʻlgan matritsalar ustidagina algebraik qoʻshish amali bajariladi.
Oʻlchamlari aynan teng boʻlgan
va
matritsalarni qoʻshish uchun, ularning mos elementlari qoʻshiladi, y’ani
Matritsani biror haqiqiy
songa koʻpaytirish uchun bu son matritsaning har bir elementiga koʻpaytiriladi, y’ani
Ikkita matritsa ayirmasi quyidagicha topiladi:
2-misol. Quyidagi matritsalarning yigʻindisi va ayirmasini toping:
Yechish.
va
matritsalarning oʻlchamlari
ga teng. Shu sababli bu matritsalarni qoʻshish va ayirish mumkin. Ta’rifga asosan
3-misol. Quyidagi
matritsani
soniga koʻpaytiring:
Yechish.
4-misol. Firma 5 turdagi mahsulotni ikkita korxonada ishlab chiqaradi. Firmaning ishlab chiqargan mahsulotlari taqsimoti quyidagi jadvalda berilgan:
Mahsulot turlari | 1 | 2 | 3 | 4 | 5 |
1-korxonada ishlab chiqarilgan mahsulotlar miqdori | 139 | 160 | 205 | 340 | 430 |
2-korxonada ishlab chiqarilgan mahsulotlar miqdori | 122 | 130 | 145 | 162 | 152 |
Firma ishlab chiqarish uskunalarini yangilash natijasida ishlab chiqarishni 17% ga oshirdi. Firma ishlab chiqarish uskunalarini yangilagandan keyin, firmaning bir oyda ishlab chiqargan mahsulotlari taqsimoti qanday boʻladi?
Yechish. Firmaning ishlab chiqarish uskunalarini yangilamasdan oldingi ishlab chiqargan mahsulotlari taqsimotini quyidagi matritsa koʻrinishda yozish mumkin:
Firma ishlab chiqarish uskunalarini yangilagandan keyin, firmaning bir oyda ishlab chiqargan mahsulotlari taqsimotini topish uchun, bu ishlab chiqarish matritsasini 1,17 ga koʻpaytirish zarur boʻladi:
Matritsalarni qoʻshish, ayirish va matritsani songa koʻpaytirish amallariga matritsalar ustida chiziqli amallar deyiladi.
Matritsalarni qoʻshish va songa koʻpaytirish amallari quyidagi xossalarga boʻysinadi:
Bu yеrda
bir xil o‘lchamli matritsalar,
matritsa esa
matritsalar bilan bir xil o‘lchamli nol matritsa,
ixtiyoriy haqiqiy sonlar.
Matritsalarni koʻpaytirish amali faqatgina zanjirlangan matritsalar ustida bajariladi.
Bu formuladan koʻrish mumkinki,
va
matritsalarning koʻpaytmasi
matritsadagi
element
matritsaning
satrida joylashgan har bir elementni
matritsaning
ustunida joylashgan mos oʻrindagi elementga koʻpaytirish va hosil boʻlgan koʻpaytmalarni qoʻshish natijasida aniqlanadi.
Masalan, bizga umumiy holda
va
koʻrinishdagi matritsalar berilgan boʻlsin. Bu matritsalarni koʻpaytirish quyidagicha amalga oshiriladi:
.
Endi buni aniq misollarda koʻrib chiqamiz.
5-misol. Quyidagi
matritsani
matritsaga koʻpaytiring:
Yechish. 1. Izlanayotgan
matritsaning
elementi
matritsaning birinchi satr elementlarini
matritsaning birinchi ustun mos elementlari bilan koʻpaytmalarining yigʻindisiga teng, ya’ni
.
2. Izlanayotgan
matritsaning birinchi satr va ikkinchi ustunining elementi
matritsaning birinchi satr elementlarini
matritsaning ikkinchi ustun elementlari bilan mos ravishda koʻpaytmalarining yigʻindisiga teng:
.
3. Birinchi satr va uchinchi ustun elementi
kabi aniqlanadi.
4. Izlanayotgan matritsaning ikkinchi satr elementlari
matritsaning ikkinchi satr elementlarining
matritsaning mos ravishda 1, 2, 3-ustun elementlari bilan koʻpaytmalarining yigʻindisi sifatida topiladi:
5.
matritsaning uchinchi satr elementlari ham shunga oʻxshash topiladi:
Shunday qilib,
.
6-misol. Quyidagi
va
matritsalar uchun
koʻpaytmalarni toping:
Yechish. Bu matritsalar zanjirlangan boʻlganligi sababli ular ustida koʻpaytirish amali bajariladi.
Keltirilgan misoldan koʻrinib turibdiki,
va
matritsalarning koʻpaytmasi kommutativlik (oʻrin almashtirish) xossasiga ega emas, ya’ni
. Agar
va
bir xil tartibli kvadrat matritsalar boʻlsa,
va
koʻpaytmalarini topish mumkin. Agar
va
matritsalar uchun
munosabat o‘rinli bo‘lsa, u holda
va
matritsalar kommutativ (antikommutativ) matritsalar deyiladi. Masalan,
birlik matritsa ixtiyoriy
kvadrat matritsa bilan kommutativdir. Haqiqatan ham
.
Matritsalarni koʻpaytirish amali quyidagi xossalarga ega:
Keltirilgan xossalardan toʻrtinchisini quyidagi misol yordamida tekshiramiz.
7-misol.
,
va
matritsalar berilgan boʻlsin:
Koʻrinib turibdiki, ikki xil hisoblash usulida ham natija bir xil.
Transponirlangan matritsalar quyidagi xossalarga ega:
Masalan,
boʻlsa,
boʻladi.
12-ta’rif. Agar kvadrat matritsa uchun munosabat oʻrinli boʻlsa, u holda bu matritsaga simmetrik matritsa deyiladi. |
Masalan,
simmetrik matritsaning elementlari bosh diagonalga nisbatan simmetrik joylashgan.
tartibli simmetrik matritsaning turli elementlari soni koʻpi bilan
ga teng, bunda
natural son.
13-ta’rif. Agar kvadrat matritsada munosabat oʻrinli boʻlsa, bunday matritsaga qiya simmetrik matritsa deb ataladi. |
Masalan,
tartibli qiya simmetrik matritsaning turli elementlari soni koʻpi bilan
formula yordamida topiladi, bunda
natural son.
14-ta’rif. Nolmas satrlarga ega
matritsada har qanday
nolmas satrning birinchi noldan farqli elementi
nolmas satrning birinchi noldan farqli elementidan oʻngda tursa, u holda
pog‘onasimon matritsa deyiladi.
Masalan,
matritsa pog‘onasimon matritsadir.
7-misol. Korxona ikki turdagi transformatorlar ishlab chiqaradi. 1-turdagi transformator ishlab chiqarish uchun 5 kg temir va 3 kg sim, 2-turdagi transformator ishlab chiqarish uchun 3 kg temir va 2 kg sim sarflanadi. Bir birlik transformatorlarni sotishdan mos ravishda 6 va 5 sh.p.b. miqdorida daromad olinadi. Korxonaning omborida 4,5 tonna temir va 3 tonna sim mavjud. Texnologik matritsa, narxlar vektori va resurs zahirasini ifodalovchi vektorni tuzing.
rejalar joiz reja boʻla oladimi?
Yechish. Korxona ikki turdagi resursdan foydalanib 2 turdagi mahsulot ishlab chiqaradi. Narxlar vektori
. Resurs zahiralari vektori
. Texnologik (resurs sarfi normasi) matritsa
.
rejani qaraymiz. Bu rejani bajarishdagi resurs sarfi
ga teng. Bu sarf zahiradan oshib ketmasligi kerak, ya’ni
yoki
Joiz reja yuqoridagi tengsizliklarni qanoatlantirishi zarur.
1)
rejani qaraymiz. U holda
,
ya’ni bu reja joiz reja. Bu reja asosida olinadigan daromad miqdori
sh.p.b. ga teng.
2)
rejani qaraymiz. U holda
.
Bundan koʻrish mimkinki, 1-turdagi resurs sarfi 4800 ga teng boʻlib, resurs zahirasi 4500 dan katta. Shu sababli, qaralayotgan reja joiz reja emas.
8-misol. Korxona
turdagi resurslarni qo‘llab,
turdagi mahsulot ishlab chiqaradi.
turdagi mahsulot birligini ishlab chiqarishga ketgan
xom ashyo resurslari harajatlarining normalari
matritsa bilan berilgan. Vaqtning ma’lum oralig‘ida korxona har bir turdagi mahsulotdan
miqdorini ishlab chiqargan bo‘lsin. Uni
matritsa bilan ifodalaymiz.
Vaqtning berilgan davrida barcha mahsulotning har bir turini ishlab chiqarishga ketgan resurslarning to‘la harajatlar matritsasi
ni aniqlang. Berilgan
Yechish. Resurslarning to‘la harajatlar matritsasi
va
matritsalarning kо‘paytmasi sifatida aniqlanadi, ya’ni
Berilgan masalaning sharti bо‘yicha
Berilgan vaqt orlig‘ida
birlik I turdagi resurs,
birlik II turdagi resurs,
birlik III turdagi resurs,
birlik IV turdagi resurs sarf qilingan.
9-misol. Korxona mahsulotning
turini ishlab chiqaradi, ishlab chiqariladigan mahsulot hajmlari
matritsa bilan berilgan.
mintaqada mahsulotning
turi birligining sotilish narxi
matritsa bilan berilgan, bu yerda
mahsulot sotilayotgan mintaqalar soni.
Mintaqalar bo‘yicha daromad matritsasi
ni toping.
bo‘lsin.
Yechish. Daromad
matritsa bilan aniqlanadi,
bu
mintaqada korxonaning daromadi quyidagicha:
O‘z-o‘zini tekshirish uchun savollar
Matritsa deb nimaga aytiladi?
Satr matritsa, ustun matritsa deb qanday matritsaga aytiladi?
Nol matritsa deb qanday matritsaga aytiladi?
Matritsalarni qo’shish va matritsani songa ko’paytirish amallari bo’ysunadigan xossalarni sanab o’ting?
Matritsa satrlarini mos ustunlari bilan almashtirish amali qanday nomlanadi?
O’zaro zanjirlangan matritsalar qanday ko’paytiriladi?
Matritsalarni ko’paytirish amali qanday xossalarga bo’ysunadi?
Matritsalarni ko’paytirish amali o’rin almashtirish qonuniga bo’ysunadimi?
n-tartibli kvadratik matritsa deb qanday matritsaga aytiladi?
Kvadrat matritsaning qanday xususiy ko’rinishlarini bilasiz?
Asosiy adabiyotlar:
Gilbert Strang “Introduction to Linear Algebra”, USA, Cambridge press,
Edition, 2016.
Grewal B.S. “Higher Engineering Mathematics”, Delhi, Khanna publishers,
Edition, 2012.
Raxmatov R.R., Adizov A.A., Tadjibayeva Sh.E., Shoimardonov S.K. Chiziqli algebra va analitik geometriya. O‘quv qollanma. Toshkent 2020.
Rаxмаtоv R.R., Adizov A.A. “Chiziqli fazo va chiziqli operatorlar” O‘quv uslubiy qollanma. TATU, Toshkent 2019.
Соатов Ё.У. “Олий математика”, Т., Ўқитувчи нашриёти, 1- 5 қисмлар, 1995.
Рябушко А.П. и др. “Сборник индивидуальных заданий по высшей математике”, Минск, Высшая школа, 1-3 частях, 1991.
Asosiy adabiyotlar:
Мирзиёев Ш. Буюк келажагимизни мард ва олижаноб халқимиз билан бирга қурамиз. –Т.: Ўзбекистон, 2017. - 488 бет.
Мирзиёев Ш.М. Қонун устуворлиги ва инсон манфаатларини таъминлаш-юрт тараққиёти ва халқ фаровонлигининг гарови. –Т.: Ўзбекистон, 2017.
Мирзиёев Ш.М. Эркин ва фаровон, демократик Ўзбекистон давлатини биргаликда барпо этамиз. Т.: Ўзбекистон, 2017.
Adizov A.A., Xudoyberganov M.O‘. Amaliy matematika. O‘quv uslubiy qo‘llanma. Toshkent. 2014.
Шодиев Т.Ш. Аналитик геометрия ва чизиқли алгебра. Тошкент “Ўқитувчи” 1984.
Ильин В. А., Позняк Э. Г. Линейная алгебра. — 6-е изд., стер. — М.: ФИЗМАТЛИТ, 2004.
Задорожный В. Н. и др. Высшая математика для технических
университетов. Часть I. Линейная алгебра. - Томск: Изд-во ТПУ, 2009.
Данко П.С., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Седьмое издание. -М.: Высшая; школа, 2015.
Семёнова Т.В. Высшая математика: учебное пособие для студентов технических вузов. Часть 1. - Пенза: Пензенский гос. ун-т, 2008.
Макаров Е. В., Лунгу К. Н. Высшая математика: руководство к решению задач: учебное пособие, Часть 1, Физматлит. 2013.
Минорский В.И. Сборник задач по высшей математике. М: Наука, 1987.
Беклемешев Д.В., Петрович А.Ю., Чуберов И.А. Сборник задач по аналитической геометрии и линейной алгебре. -М.: Наука, 1987.
Бугров Я.С., Николский С.М. Сборник задач по высшей математике, - М.: Наука. 1997.