СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 08.06.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Методическая разработка по теме 2. Звезды и созвездия. Небесные координаты и звездные карты. Видимое движение звезд на различных географических широтах.

Категория: Астрономия

Нажмите, чтобы узнать подробности

Изучение определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и  зимнее время);  объяснение  необходимости введения високосных лет и нового календарного стиля.

Просмотр содержимого документа
«Методическая разработка по теме 2. Звезды и созвездия. Небесные координаты и звездные карты. Видимое движение звезд на различных географических широтах.»

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

НОВОСИБИРСКОЙ ОБЛАСТИ

«БАРАБИНСКИЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»


Рассмотрена на заседании

ЦМК ОГСЭД

Протокол № ___________

от ____________ 2019 г.

Председатель ЦМК

Хританкова Н. Ю.

(Ф. И. О.)


______________________

(подпись)


МЕТОДИЧЕСКАЯ РАЗРАБОТКА

КОМБИНИРОВАННОГО ЗАНЯТИЯ ДЛЯ ПРЕПОДАВАТЕЛЯ


Специальность 34.02.01 Сестринское дело (с базовой подготовкой)


ОУД.07. АСТРОНОМИЯ


Раздел 2. Практические основы астрономии


Тема 2. Звезды и созвездия. Небесные координаты и звездные карты. Видимое движение звезд на различных географических широтах.



Разработчик – преподаватель Вашурина Т. В.







2019

СОДЕРЖАНИЕ

Методический лист

3

Примерная хронокарта занятия

5

Исходный материал

9

Приложение №1 Контроль знаний по предыдущей теме

20

Приложение №2 Задания для закрепления и систематизации новых знаний

29

Приложение №3 Задания для предварительного контроля знаний

29

Приложение №4 Контролирующий материал

30

Задание для самостоятельной внеаудиторной работы студентов

32

Список использованных источников

34


Выписка из рабочей программы ОУД.07. АСТРОНОМИЯ

для специальности 34.02.01 Сестринское дело (с базовой подготовкой)


Наименование разделов и тем

Содержание учебного материала, лабораторные и практические работы, самостоятельная работа обучающихся, курсовая работ (проект) (если предусмотрены)

Объем часов

Тема 2.

Звезды и созвездия. Небесные координаты и звездные карты. Видимое движение звезд на различных географических широтах.

Содержание учебного материала

2


Изучение определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и  зимнее время); объяснение необходимости введения високосных лет и нового календарного стиля.

Лабораторная работа

-

Практическое занятие

-

Контрольная работа

-

Самостоятельная работа обучающихся:

- Работа с учебником, выполнение упражнений [1, с.20-30];

-наблюдения невооруженным глазом за наиболее яркими звездами и созвездиями.

Темы докладов (на выбор):

«Об истории возникновения названий созвездий и звезд»; «История календаря»;

«Хранение и передача точного времени»;

- работа с конспектом лекции.

1



МЕТОДИЧЕСКИЙ ЛИСТ



Тип занятия: урок изучения нового материала, закрепления знаний.

Вид занятия: беседа, объяснение с демонстрацией наглядных пособий, решение тестовых задач.

Продолжительность: 90 минут.


ЦЕЛИ ЗАНЯТИЯ

Учебные цели: сформировать понимание сущности повседневно наблюдаемых и редких астрономических явлений, ознакомление с научными методами и историей изучения Вселенной, получение представления о действии во Вселенной физических законов, открытых в земных условиях, и единстве мегамира и микромира, осознание своего места в Солнечной системе и Галактике через изучение понятий: созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и  зимнее время; объяснение необходимости введения високосных лет и нового календарного стиля. Овладение умениями проводить наблюдения за наиболее яркими звездами и созвездиями. Способствовать формированию умения организовывать собственную деятельность, выбирать типовые методы и способы выполнения упражнений (ОК2).

Развивающие цели: развивать интерес к будущей профессии, понимание её сущности и социальной значимости (ОК1), развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по астрономии с использованием различных источников информации и современных информационных технологий.

Воспитательные цели: воспитание убежденности в возможности познания законов природы, использования достижений астрономии и физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач; способствовать развитию коммуникативных способностей; создавать условия для развития скорости восприятия и переработки информации, культуры речи; формировать умение работать в коллективе и команде (ОК6).



Методы обучения: объяснительно-иллюстративный с использованием информационных технологий, репродуктивный.

Место проведения: аудитория колледжа.



МОТИВАЦИЯ

Тема 2. «Звезды и созвездия. Небесные координаты и звездные карты. Видимое движение звезд на различных географических широтах» входит в программу по учебной дисциплине «Астрономия» и имеет большое значение, т.к. знания, полученные при изучении данной темы необходимы для изучения многих тем как в рамках программы по астрономии, так и при изучении смежных дисциплин (математики, химии, истории).

Невооруженным глазом видно на небе большое количество звезд. Их так много, что, кажется, не сосчитать, однако звезд, которые видны невооруженным глазом, около трех тысяч. В общем случае на небе можно насчитать до 2500-3000 звезд (в зависимости от вашего зрения) – а всего видимых звезд около 6000.

Вероятно, еще на заре цивилизации люди, стремясь как-то разобраться во множестве звезд и запомнить их расположение, мысленно объединяли их в определенные фигуры. Тысячи лет назад люди глядели на небо, считали звезды и мысленно соединяли их в разнообразные фигуры (созвездия), называя их именами персонажей древних мифов и легенд, животных и предметов.

На данное занятие отводится 2 учебных часа. Во время комбинированного занятия проводится актуализация знаний в форме устного опроса, с целью проверки остаточных знаний, которые необходимы при изучении нового материала; непосредственное изучение нового материала в виде беседы и объяснения с демонстрацией наглядных пособий; первичного закрепление нового материала с помощью решения задач и ответов на основные вопросы по данной теме. Контроль уровня усвоения нового материала проводится в форме тестирования студентов. Каждому образованному человеку необходимо непрерывно пополнять свои знания в области астрономии, развивать интерес к будущей профессии, понимать сущность и социальную значимость (ОК1), научиться организовывать свою деятельность, уметь выбирать методы и способы выполнения задач и в дальнейшем оценивать их качество (ОК2), а также необходимо для будущего медицинского работника научится работать в коллективе и команде (ОК6).

ПРИМЕРНАЯ ХРОНОКАРТА КОМБИНИРОВАННОГО ЗАНЯТИЯ


п/№

Наименование этапа

Время

Цель этапа

Деятельность

Оснащение

преподавателя

студентов

-1-

-2-

-3-

-4-

-5-

-6-

-7-

Организационный этап

2

Организация начала занятия, формирование способности организовывать собственную деятельность (ОК 2).

Приветствие. Проверка готовности аудитории. Отмечает отсутствующих студентов в журнале.

Староста называет отсутствующих студентов. Студенты приводят в соответствие внешний вид, готовят рабочие места.

Журнал, тетради для конспектов.


Контроль знаний по предыдущей теме

15

Оценка уровня сформированности знаний по предыдущей теме. Развитие грамотной речи обучающихся, самоконтроль своих знаний.


Инструктирует и проводит контроль знаний.


Повторяют домашнее задание, отвечают устно.

Вопросы для устного опроса. Приложение 1.


Мотивационный этап и целеполагание

3

Развитие интереса к будущей профессии, понимания сущности и социальной значимости (ОК 1), установка приоритетов при изучении темы.


Объясняет студентам важность изучения данной темы, озвучивает цели занятия.

Слушают, задают вопросы, записывают новую тему в тетради.

Методическая разработка комбинированного занятия, мультимедийная презентация.

Изложение исходной информации

30

Сформировать понимание сущности повседневно наблюдаемых и редких астрономических явлений, ознакомление с научными методами и историей изучения Вселенной, получение представления о действии во Вселенной физических законов, открытых в земных условиях, и единстве мегамира и микромира, осознание своего места в Солнечной системе и Галактике через изучение понятий: созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и  зимнее время; объяснение необходимости введения високосных лет и нового календарного стиля. Овладение умениями проводить наблюдения за наиболее яркими звездами и созвездиями.

Излагает новый материал, демонстрирует презентацию.

Слушают, читают материал на слайдах, записывают конспект.

Методическая разработка (исходный материал), мультимедийное оборудование, мультимедийная презентация.

Выполнение заданий для закрепления знаний

15

Закрепление, систематизация, обобщение новых знаний. Отработать навык решения задач. Организация собственной деятельности, выбор типовых методов и способов решения задач, оценка их выполнения (ОК2).

Инструктирует и контролирует выполнение заданий, обсуждает правильность ответов, отвечает на вопросы студентов.

Выполняют задания, слушают правильные ответы после выполнения, вносят коррективы, задают вопросы.

Приложение 2. Астрономия Разноуровневые самостоятельные работы с примерами решения задач.

Л. А. Кирик стр. стр. 10, №1-6.

Предварительный контроль новых знаний

10




Оценка эффективности занятия и выявление недостатков в новых знаниях.

Инструктирует и проводит контроль.

Устно отвечают на вопросы.

Вопросы для предварительного контроля знаний.

Приложение 3.

С. р.

Итоговый контроль. Взаимопроверка

10

Закрепление материала, формирование умения делать выводы, обобщать.





Формирование умения работать в команде (ОК6). Контроль усвоения знаний и умений учащихся.

Контролирует ход работы.





Контролирует взаимопроверку, поясняет критерии оценки.

Работают в малых группах, выполняют задания на соответствие (письменно).


Предоставляют выполненное задание, сопоставляют ответы с эталонами, выставляют оценки.


Контролирующий материал.

Приложение 4.




Слайд презентации с эталонами ответов и критериями отметки.

Подведение итогов занятия

3

Развитие эмоциональной устойчивости, дисциплинированности, объективности оценки своих действий, умения работать в коллективе и команде (ОК6).

Оценивает работу группы в целом. Объявляет и выставляет в журнал оценки, мотивирует студентов, выделяет наиболее подготовленных.


Слушают, участвуют в обсуждении, задают вопросы.

Журнал группы.



Задание для самостоятельной внеаудиторной работы студентов

2

Определить объем информации для самостоятельной работы студента, обратить внимание на значимые моменты.


Дает задание для самостоятельной внеаудиторной работы студентов, инструктирует о правильности выполнения, критериях оценивания.

Записывают задание.

Слайд презентации с домашним заданием.

ИСХОДНЫЙ МАТЕРИАЛ



План изложения учебного материала по теме

«Звезды и созвездия. Небесные координаты и звездные карты. Видимое движение звезд на различных географических широтах»

  1. Звезды и созвездия. 

  2. Видимая звездная величина.

  3. Небесная сфера.

  4. Особые точки небесной сферы.

  5. Небесные координаты и звездные карты.



1.Звезды и созвездия. 

У разных народов имелись свои мифы и легенды о созвездиях, свои названия, разное их количество. Деления были чисто условны, рисунки созвездия редко соответствовали названной фигуре, однако это существенно облегчало ориентирование по небу. Даже босоногие мальчики в древней Халдее или Шумерах знали небо лучше любого из нас.

  Многие характерные «звездные фигуры» уже в глубокой древности получили имена героев греческих мифов и легенд, а также тех мифических существ, с которыми эти герои сражались. Так появились на небе Геркулес, Персей, Орион, Андромеда и т. д., а также Дракон, Телец, Кит и т. п. Некоторые из этих созвездий упоминаются в древнегреческих поэмах «Илиада» и «Одиссея». Их изображения можно видеть в старинных звездных атласах, на глобусах и картах звездного неба (рис. 2.1).

Созвездия - это определенные участки звездного неба, разделенные между собой строго установленными границамиСозвездия - область неба с характерной группой звезд и всеми звездами, находящимися внутри его границ. Соседство звезд, кажущиеся, в проекции на небесную сферу.

Старейшие по названиям считаются созвездия зодиакальные – пояс, вдоль которого происходит годичное движение Солнца, а также видимые пути Луны и планет. Так созвездия Телец – было известно 4000 лет назад, так как в это время в этом созвездии находилась точка весеннего равноденствия.

У разных народов и в разное время был разный принцип деления звезд.

  • 4 век до н.э. был список 809 звезд входящих в 122 созвездия.

  • 18 век – Монголия – было 237 созвездий.

  • 2 век – Птолемей (“Альмагеста”) – описано 48 созвездий.

  • 15-16 век – период великих морских путешествий – описано 48 созвездий южного неба.

  • В Русском звездном атласе Корнелия Рейссига, изданном в 1829г содержались 102 созвездия.

Были попытки переименовать установившиеся созвездия, но не одно название не прижилось у астрономов (так церковь в 1627г издала атлас созвездий «Христианское звездное небо», где им давались названия монархов – Георг, Карл, Людовик, Наполеон).

Многие звездные карты (атласы) 17-19 века содержали названия созвездий и рисунки фигур. Но прижился только один звездный атлас Яна Гевелия (1611-1687, Польша) изданный в 1690г и имеющий не только точное расположение звезд и впервые экваториальных координатах, но и прекрасные рисунки. (видеофильм «Звездный атлас Яна Гевелия»)


Созвездия Южного полушария автор Гевелий Ян, Уранография 1690 год


Атласы звёздного неба XVII века

Путаница с созвездиями прекращена в 1922г Международный астрономический союз разделил все небо на 88 созвездий, а границы окончательно установлены в 1928 году.

Среди всех 88 созвездий известное каждому Большая Медведица — одно из самых крупных.

2.Видимая звездная величина.

Смотря на небо, нетрудно заметить, что звезды различны по яркости, или, как говорят астрономы, по блеску.

Видимые на небе невооруженным глазом звезды астрономы еще до нашей эры разделили на шесть величин. В 125г до НЭ Гиппарх (180-125, Греция) вводит деление звезд на небе по видимой яркости на звездные величины, обозначив самые яркие - первой звездной величины (1m), а еле видимые – 6m (т. е. разность в 5 звездных величин).

Звездная величина - видимая яркость (блеск) звездыЗвездная величина характеризует не размеры, а только блеск звезд. Чем слабее звезда, тем больше число, обозначающее ее звездную величину.

Когда ученые стали располагать приборами для измерения величины потока света, приходящего от звезд, оказалось, что от звезды первой величины света приходит в 2,5 раза больше, чем от звезды второй величины, от звезды второй величины в 2,5 раза больше, чем от звезды третьей величины, и т. д. Несколько звезд были отнесены к звездам нулевой величины, потому что от них света приходит в 2,5 раза больше, чем от звезд первой величины. А самая яркая звезда всего неба — Сириус (α Большого Пса) получила даже отрицательную звездную величину -1,5.

Было установлено, что поток энергии от звезды первой величины в 100 раз больше, чем от звезды шестой величины. К настоящему времени звездные величины определены для многих сотен тысяч звезд.

Звезды 1-й звездной величины - 1m, наиболее яркие назвали.

Звезды 2-й звездной величины - 2m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 1-й величины

Звезды 3-й звездной величины - 3m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 2-й величины

Звезды 4-й звездной величины - 4m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 3-й величины

Звезды 5-й звездной величины - 5m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 4-й величины

Звезды 6-й звездной величины - 6m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 5-й величины. Самые слабые по блеску из доступных невооруженному глазу Они слабее звезд 1-й звездной величины в 100 раз.

Всего на небе 22 звезды 1-й звездной величины, но блеск их не одинаков: одни из них несколько ярче 1-й величины, другие слабее. Так же обстоит дело со звездами 2-й, 3-й и последующих величин, поэтому для точного определения блеска той или иной пришлось ввести дробные числа. Измерения светового потока от звезд позволяют теперь определить их звездные величины с точностью до десятых и сотых долей.

Самая яркая звезда северного полушария неба Вега имеет блеск 0,14 звездной величины, а самая яркая звезда всего неба Сириус - минус 1,58 звездной величины, Солнце - минус 26,8.

Самые яркие звезды или наиболее интересные объекты из числа более слабых звезд получили собственные имена арабского и греческого происхождения (более 300 звезд имеют имена).

В 1603г Иоганн Байер (1572-1625, Германия) публикует каталог всех видимых звезд и впервые вводит ихобозначение буквами греческого алфавита в порядке уменьшения блеска (наиболее яркие). Самые яркие – α, затем β, γ, δ, ε и т.д.

В каждом созвездии звезды обозначаются буквами греческого алфавита в порядке убывания их яркости. Наиболее яркая в этом созвездии звезда обозначается буквой α, вторая по яркости - β и т. д.

Поэтому звезды сейчас обозначаются: Вега (α Лиры), Сириус (α Большого Пса), Полярная (α М. Медведицы). Средняя звезда в ручке ковша Большой Медведицы называется Мицар, что по-арабски означает «конь». Эта звезда второй величины обозначается ζ Большой Медведицы. Рядом с Мицаром можно видеть более слабую звездочку четвертой величины, которую назвали Алькор - «всадник». По этой звезде проверяли качество зрения у арабских воинов несколько веков тому назад.

Звезды различаются не только по блеску, но и по цвету. Они могут быть белыми, желтыми, красными. Чем краснее звезда, тем она холоднее. Солнце относится к желтым звездам.

С изобретением телескопа ученые получили возможность увидеть более слабые звезды, от которых приходит света гораздо меньше, чем от звезд шестой величины. Шкала звездных величин все дальше и дальше уходит в сторону их возрастания по мере того, как увеличиваются возможности телескопов. Так, например, хаббловский космический телескоп позволил получить изображение предельно слабых объектов - до тридцатой звездной величины.

3.Небесная сфера.

Люди в древности считали, что все звезды располагаются на небесной сфере, которая как единое целое вращается вокруг Земли. Уже более 2.000 лет тому назад астрономы стали применять способы, которые позволяли указать расположение любого светила на небесной сфере по отношению к другим космическим объектам или наземным ориентирам. Представлением о небесной сфере удобно пользоваться и теперь, хотя мы знаем, что этой сферы реально не существует.

Небесная сфера -  воображаемая шаровая поверхность произвольного радиуса, в центре которой находится глаз наблюдателя, и на которую мы проецируем положение небесных светил.

Понятием небесной сферы пользуются для угловых измерений на небе, для удобства рассуждений о простейших видимых небесных явлениях, для различных расчетов, например вычисления времени восхода и захода светил.

Построим небесную сферу и проведем из ее центра луч по направлению к звезде А (рис.1.1 учебника). Там, где этот луч пересечет поверхность сферы, поместим точку А1 изображающую эту звезду. Звезда В будет изображаться точкой В1Повторив подобную операцию для всех наблюдаемых звезд, мы получим на поверхности сферы изображение звездного неба – звездный глобус. Ясно, что если наблюдатель находится в центре этой воображаемой сферы, то для него направление на сами звезды и на их изображения на сфере будут совпадать.

  • Что является центром небесной сферы? (Глаз наблюдателя)

  • Каков радиус небесной сферы? (Произвольный)

  • Чем отличаются небесные сферы двух соседей по парте? (Положением центра).

Для решения многих практических задач расстояния до небесных тел не играют роли, важно лишь их видимое расположение на небе. Угловые измерения не зависят от радиуса сферы. Поэтому, хотя в природе небесной сферы и не существует, но астрономы для изучения видимого расположение светил и явлений, которые можно наблюдать на небе в течении суток или многих месяцев, применяют понятие Небесная сфера. На такую сферу и проецируются звезды, Солнце, Луна, планеты и т.д, отвлекаясь от действительных расстояний до светил и рассматривая лишь угловые расстояние между ними. Расстояния между звездами на небесной сфере можно выражать только в угловой мере. Эти угловые расстояния измеряются величиной центрального угла между лучами, направленными на одну и другую звезду, или соответствующими им дугами на поверхности сферы.

Для приближенной оценки угловых расстояний на небе полезно запомнить такие данные: угловое расстояние между двумя крайними звездами ковша Большой Медведицы (α и β) составляет около 5° (рис. 1.2 учебника), а от α Большой Медведицы до α Малой Медведицы (Полярной звезды) – в 5 раз больше – примерно 25°.

Простейшие глазомерные оценки угловых расстояний можно провести также с помощью пальцев вытянутой руки.

Только два светила – Солнце и Луну – мы видим как диски. Угловые диаметры этих дисков почти одинаковы – около 30' или 0,5°. Угловые размеры планет и звезд значительно меньше, поэтому мы их видим просто как светящиеся точки. Для невооруженного глаза объект не выглядит точкой в том случае, если его угловые размеры превышают 2–3'. Это означает, в частности, что наш глаз различает каждую по отдельности светящуюся точку (звезду) в том случае, если угловое расстояние между ними больше этой величины. Иначе говоря, мы видим объект не точечным лишь в том случае, если расстояние до него превышает его размеры не более чем в 1700 раз.

Отвесная линия Z,Z’, проходящая через глаз наблюдателя (точка С), находящегося в центре небесной сферы, пересекает небесную сферу в точках Z — зенит, Z’ — надир.

4.Особые точки небесной сферы.

Зенит - эта наивысшая точка над головой наблюдателя.

Надир - противоположная зениту точка небесной сферы.

Плоскость, перпендикулярная отвесной линии, называется горизонтальной плоскостью (или плоскостью горизонта).

Математическим горизонтом называется линия пересечения небесной сферы с горизонтальной плоскостью, проходящей через центр небесной сферы.

Невооруженным глазом на всем небе можно видеть примерно 6000 звезд, но мы видим лишь половину из них, потому что другую половину звездного неба закрывает от нас Земля. Движутся ли звезды по небосводу? Оказывается, движутся все и притом одновременно. В этом легко убедиться, наблюдая звездное небо (ориентируясь по определенным предметам).

Вследствие ее вращения вид звездного неба меняется. Одни звезды только еще появляются из-за горизонта (восходят) в восточной его части, другие в это время находятся высоко над головой, а третьи уже скрываются за горизонтом в западной стороне (заходят). При этом нам кажется, что звездное небо вращается как единое целое. Теперь каждому хорошо известно, что вращение небосвода — явление кажущееся, вызванное вращением Земли.

Картину того, что в результате суточного вращения Земли происходит со звездным небом, позволяет запечатлеть фотоаппарат.

На полученном снимке каждая звезда оставила свой след в виде дуги окружности (рис. 2.3 учебника). Но есть и такая звезда, передвижение которой в течение всей ночи почти незаметно. Эту звезду назвали Полярной. Она в течение суток описывает окружность малого радиуса и всегда видна почти на одной и той же высоте над горизонтом в северной стороне неба. Общий центр всех концентрических следов звезд находится на небе неподалеку от Полярной звезды. Эта точка, в которую направлена ось вращения Земли, получила название северный полюс мира. Дуга, которую описала Полярная звезда, имеет наименьший радиус. Но и эта дуга, и все остальные — независимо от их радиуса и кривизны — составляют одну и ту же часть окружности. Если бы удалось сфотографировать пути звезд на небе за целые сутки, то на фотографии получились бы полные окружности - 360°. Ведь сутки - это период полного оборота Земли вокруг своей оси. За час Земля повернется на 1/24 часть окружности, т. е. на 15°. Следовательно, длина дуги, которую звезда опишет за это время, составит 15°, а за полчаса - 7,5°.

Звезды в течение суток описывают тем большие окружности, чем дальше от Полярной звезды они находятся. 

Ось суточного вращения небесной сферы называют осью мира (РР').

Точки пересечения небесной сферы с осью мира называют полюсами мира (точка Р — северный полюс мира, точка Р' — южный полюс мира).

Полярная звезда расположена вблизи северного полюса мира. Когда мы смотрим на Полярную звезду, точнее, на неподвижную точку рядом с ней — северный полюс мира, направление нашего взгляда совпадает с осью мира. Южный полюс мира находится в южном полушарии небесной сферы.



Плоскость ЕАWQперпендикулярная оси мира РР' и проходящая через центр небесной сферы, называется плоскостью небесного экватора, а линия пересечения ее с небесной сферой — небесным экватором.

Небесный экватор – линия окружности, полученная от пересечения небесной сферы с плоскостью проходящая через центр небесной сферы перпендикулярно к оси мира.

Небесный экватор делит небесную сферу на два полушария: северное и южное.

Ось мира, полюса мира и небесный экватор аналогичны оси, полюсам и экватору Земли, так как перечисленные названия связаны с видимым вращением небесной сферы, а оно является следствием действительного вращения земного шара.

 

Плоскость, проходящая через точку зенита Z, центр С небесной сферы и полюс Р мира, называют плоскостью небесного меридиана, а линия пересечения ее с небесной сферой образует линию небесного меридиана.

Небесный меридиан – большой круг небесной сферы, проходящий через зенит Z, полюс мира Р, южный полюс мира Р', надир Z'

В любом месте Земли плоскость небесного меридиана совпадает с плоскостью географического меридиана этого места.

Полуденная линия NS — это линия пересечения плоскостей меридиана и горизонта. N – точка севера, S – точка юга

Она названа так потому, что в полдень тени от вертикальных предметов падают по этому направлению.

  • Каков период вращения небесной сферы? (Равен периоду вращения Земли – 1 сутки).

  • В каком направлении происходит видимое (кажущееся) вращение небесной сферы? (Противоположно направлению вращения Земли).

  • Что можно сказать о взаимном расположении оси вращения небесной сферы и земной оси? (Ось небесной сферы и земная ось будут совпадать).

  • Все ли точки небесной сферы участвуют в видимом вращении небесной сферы? (Точки, лежащие на оси, покоятся).

Земля движется по орбите вокруг Солнца. Ось вращения Земли наклонена к плоскости орбиты на угол 66,5°. Вследствие действия сил тяготения со стороны Луны и Солнца ось вращения Земли смещается, в то время как наклон оси к плоскости земной орбиты остается постоянным. Ось Земли как бы скользит по поверхности конуса. (то же происходит с осью у обыкновенного волчка в конце вращения).

Это явление было открыто еще в 125 г. до н. э. греческим астрономом Гиппархом и названо прецессией.

Один оборот земная ось совершает за 25 776 лет – этот период называется платоническим годом. Сейчас вблизи Р – северного полюса мира находится Полярная звезда – α Малой Медведицы. Полярной называется та звезда, которая на сегодняшний день находится вблизи Северного полюса мира. В наше время, примерно с 1100 года, такой звездой является альфа Малой Медведицы – Киносура. Раньше титул Полярной поочередно присваивался π, η и τ Геркулеса, звездам Тубан и Кохаб. Римляне вовсе не имели Полярной звезды, а Кохаб и Киносуру (α Малой Медведицы) называли Стражами.

На начало нашего летоисчисление – полюс мира был вблизи α Дракона – 2000 лет назад. В 2100 г полюс мира будет всего в 28' от Полярной звезды – сейчас в 44'. В 3200г полярным станет созвездие Цефей. В 14000 г – полярной будет Вега (α Лиры).

Как найти в небе Полярную звезду? Чтобы найти Полярную звезду, нужно через звезды Большой Медведицы (первые 2 звезды "ковша") мысленно провести прямую линию и отсчитать по ней 5 расстояний между этими звездами. В этом месте рядом с прямой мы увидим звезду, почти одинаковую по яркости со звездами "ковша" – это и есть Полярная звезда.

В созвездии, которое нередко называют Малый Ковш, Полярная звезда является самой яркой. Но так же, как и большинство звезд ковша Большой Медведицы, Полярная — звезда второй величины.



5.Небесные координаты и звездные карты

Чтобы отыскать на небе светило, надо указать, в какой стороне горизонта и как высоко над ним оно находится. С этой целью используется система горизонтальных координат – азимут и высота. Для наблюдателя, находящегося в любой точке Земли, нетрудно определить вертикальное и горизонтальное направления.

Первое из них определяется с помощью отвеса и изображается на чертеже (рис. 1.3) отвесной линией ZZ', проходящей через центр сферы (точку О).

Точка Z, расположенная прямо над головой наблюдателя, называется зенитом.

Плоскость, которая проходит через центр сферы перпендикулярно отвесной линии, образует при пересечении со сферой окружность – истинный, или математический, горизонт.

Высота светила отсчитывается по окружности, проходящей через зенит и светилои выражается длиной дуги этой окружности от горизонта до светила. Эту дугу и соответствующий ей угол принято обозначать буквой h.

Высота светила, которое находится в зените, равна 90°, на горизонте – 0°.

Положение светила относительно сторон горизонта указывает его вторая координата – азимут, обозначаемый буквой А. Азимут отсчитывается от точки юга в направлении движения часовой стрелки, так что азимут точки юга равен 0°, точки запада – 90° и т. д.

Горизонтальные координаты светил непрерывно меняются с течением времени и зависят от положения наблюдателя на Земле, потому что по отношению к мировому пространству плоскость горизонта в данном пункте Земли вращается вместе с ней.

Горизонтальные координаты светил измеряют для определения времени или географических координат различных пунктов на Земле. На практике, например в геодезии, высоту и азимут измеряют специальными угломерными оптическими приборами – теодолитами.

Чтобы создать звездную карту, изображающую созвездия на плоскости, надо знать координаты звезд. Для этого нужно выбрать такую систему координат, которая вращалась бы вместе со звездным небом. Для указания положения светил на небе используют систему координат, аналогичную той, которая используется в географии, систему экваториальных координат.

Система экваториальных координат сходна с системой географических координат на земном шаре. Как известно, положение любого пункта на земном шаре можно указать с помощью географических координат - широты и долготы.

Географическая широта — это угловое расстояние пункта от земного экватора. Географическая широта (φ) отсчитывается по меридианам от экватора к полюсам Земли.

Долгота — угол между плоскостью меридиана данного пункта и плоскостью начального меридиана. Географическая долгота (λ) отсчитывается вдоль экватора от начального (Гринвичского) меридиана.

Так, например, Москва имеет следующие координаты: 37°30' восточной долготы и 55°45' северной широты.

Введем систему экваториальных координат, которая указывает положение светил на небесной сфере относительно друг друга.

Проведем через центр небесной сферы (рис. 2.4) линию, параллельную оси вращения Земли, - ось мира. Она пересечет небесную сферу в двух диаметрально противоположных точках, которые называются полюсами мира Р и Р΄. Северным полюсом мира называют тот, вблизи которого находится Полярная звезда. Плоскость, проходящая через центр сферы параллельно плоскости экватора Земли, в сечении со сферой образует окружность, называемую небесным экватором. Небесный экватор (подобно земному) делит небесную сферу на два полушария: Северное и Южное. Угловое расстояние светила от небесного экватора называется склонением. Склонение отсчитывается по кругу, проведенному через светило и полюса мира, оно аналогично географической широте.

Склонение  - угловое расстояние светил от небесного экватора. Склонение обозначают буквой δ. В северном полушарии склонения считают положительными, в южном — отрицательными.

Вторая координата, которая указывает положение светила на небе, аналогична географической долготе. Эта координата называется прямым восхождением. Прямое восхождение отсчитывается по небесному экватору от точки весеннего равноденствия γ, в которой Солнце ежегодно бывает 21 марта (в день весеннего равноденствия). Оно отсчитывается от точки весеннего равноденствия γ против часовой стрелки, т. е. навстречу суточному вращению неба. Поэтому светила восходят (и заходят) в порядке возрастания их прямого восхождения.

Прямое восхождение — угол между плоскостью полукруга, проведенного из полюса мира через светило (круга склонения), и плоскостью полукруга, проведенного из полюса мира через лежащую на экваторе точку весеннего равноденствия (начального круга склонений). Прямое восхождение обозначается буквой α

Склонение и прямое восхождение (δ, α) называют экваториальными координатами.

Склонение и прямое восхождение удобно выражать не в градусах, а в единицах времени. Учитывая, что Земля делает один оборот за 24 ч, получаем:

360° — 24 ч,  1 ° — 4 мин;    

15° — 1 ч,  15' —1 мин,  15" — 1 с.

Следовательно, прямое восхождение, равное, например, 12 ч, составляет 180°, а 7 ч 40 мин соответствует 115°.

Если не нужна особая точность, то небесные координаты для звезд можно считать неизменными. При суточном вращении звездного неба вращается и точка весеннего равноденствия. Поэтому положения звезд относительно экватора и точки весеннего равноденствия не зависят ни от времени суток, ни от положения наблюдателя на Земле.

Экваториальная система координат изображена на подвижной карте звездного неба.

Принцип создания карты звездного неба весьма прост. Спроектируем сначала все звезды на глобус: там, где луч, направленный на звезду, пересечет поверхность глобуса, будет находиться изображение этой звезды. Обычно на звездном глобусе изображаются не только звезды, но и сетка экваториальных координат. По сути дела, звездным глобусом является модель небесной сферы, которая используется на уроках астрономии в школе. На этой модели нет изображений звезд, но зато представлены ось мира, небесный экватор и другие круги небесной сферы.

Пользоваться звездным глобусом не всегда удобно, поэтому в астрономии (как и в географии) широкое распространение получили карты и атласы.



ПРИЛОЖЕНИЕ №1

КОНТРОЛЬ ЗНАНИЙ ПО ПРЕДЫДУЩЕЙ ТЕМЕ (устно)


Студенту предлагается дать развернутый ответ на каждый из следующих пунктов:

  1. Что изучает астрономия.

  2. Значение астрономии.

  3. Этапы развития астрономии.

  4. Связь астрономии c другими науками.

  5. Структура и масштабы Вселенной.

  6. Особенности астрономии и ее методов.

  7. Телескопы.

  8. Основные характеристики телескопов.

  9. Значение науки в народном хозяйстве.


Эталоны ответов.

  1. Что изучает астрономия.

Астрономия является одной из древнейших наук, истоки которой относятся к каменному веку (VI-III тысячелетия до н. э.).

Астрономия это наука, изучающая движение, строение, происхождение и развитие небесных тел и их систем.

Астрономия [греч. Астрон (astron) - звезда, номос (nomos) -закон] – наука, которая изучает движение небесных тел (раздел “небесная механика”), их природу (раздел “астрофизика”), происхождение и развитие (раздел “космогония”)

Астрономия – одна из самых увлекательных и древнейших наук о природе – исследует не только настоящее, но и далекое прошлое окружающего нас макромира, а также позволяет нарисовать научную картину будущего Вселенной. Человека всегда интересовал вопрос о том, как устроен окружающий мир и какое место он в нем занимает. У большинства народов еще на заре цивилизации были сложены особые - космологические мифы, повествующие о том, как из первоначального хаоса постепенно возникает космос (порядок), появляется все, что окружает человека: небо и земля, горы, моря и реки, растения и животные, а также сам человек. На протяжении тысячелетий шло постепенное накопление сведений о явлениях, которые происходили на небе.

Простое созерцание происходящих явлений и их наивное толкование постепенно сменялись попытками научного объяснения причин наблюдаемых явлений. Когда в Древней Греции (VI в. до н. э.) началось бурное развитие философии как науки о природе, астрономические знания стали неотъемлемой частью человеческой культуры. Астрономия - единственная наука, которая получила свою музу-покровительницу - Уранию.

  1. Значение астрономии.

О первоначальной значимости развития астрономических знаний можно судить в связи с практическими потребностями людей. Их можно разделить на несколько групп:

  • cельскохозяйственные потребности (потребность в отсчете времени - сутки, месяцы, годы. Например, в Древнем Египте определяли время посева и уборки урожая по появлению перед восходом солнца из-за края горизонта яркой звезды Сотис - предвестника разлива Нила);

  • потребности в расширении торговли, в том числе морской (мореплавание, поиск торговых путей, навигация. Так, финикийские мореплаватели ориентировались по Полярной звезде, которую греки так и называли - Финикийская звезда);

  • эстетические и познавательные потребности, потребности в целостном мировоззрении (человек стремился объяснить периодичность природных явлений и процессов, возникновение окружающего мира).

  1. Этапы развития астрономии.

I-й Античный мир (до н. э). Философия →астрономия → элементы математики (геометрия). Древний Египет, Древняя Ассирия, Древние Майя, Древний Китай, Шумеры, Вавилония, Древняя Греция.

II-ой Дотелескопический период. (наша эра до 1610г). Упадок науки и астрономии. Развал Римской империи, набеги варваров, зарождение христианства. Бурное развитие арабской науки. Возрождение науки в Европе. Современная гелиоцентрическая система строения мира.

III-ий Телескопический до появления спектроскопии (1610-1814гг). Изобретение телескопа и наблюдения с его помощью. Законы движения планет. Открытие планеты Уран. Первые теории образования Солнечной системы.

IV-ый Спектроскопия и фотография. (1814-1900гг). Спектроскопические наблюдения. Первые определения расстояния до звезд. Открытие планеты Нептун.

V-ый Современный период (1900-наст.время). Развитие применения в астрономии фотографии и спектроскопических наблюдений. Решение вопроса об источнике энергии звезд. Открытие галактик. Появление и развитие радиоастрономии. Космические исследования.



4. Связь астрономии c другими науками.

Связь астрономии с другими науками - взаимопроникновение и взаимовлияние научных областей:

Математика

Необычное, но ставшее привычным деление окружности на 360° имеет астрономическое происхождение: оно возникло тогда, когда считалось, что продолжительность года равна 360 суткам, а Солнце в своем движении вокруг Земли каждые сутки делает один шаг - градус. Использование приемов приближенных вычислений, замена тригонометрических функций малых углов значениями самих углов, выраженными в радианной мере, логарифмирование и еще много примеров взаимосвязи можно привести.

Физика

Астрономические наблюдения за движением небесных тел и необходимость заранее вычислять их расположение сыграли важную роль в развитии не только математики, но и очень важного для практической деятельности человека раздела физики - механики. Выросшие из единой когда-то науки о природе - философии - астрономия, математика и физика никогда не теряли тесной связи между собой. Взаимосвязь этих наук нашла непосредственное отражение в деятельности многих ученых. Далеко не случайно, например, что Галилео Галилей и Исаак Ньютон известны своими работами и по физике, и по астрономии. К тому же Ньютон является одним из создателей дифференциального и интегрального исчислений. Сформулированный им же в конце XVII в. закон всемирного тяготения открыл возможность применения этих математических методов для изучения движения планет и других тел Солнечной системы. Постоянное совершенствование способов расчета на протяжении XVIII в. вывело эту часть астрономии - небесную механику - на первый план среди других наук той эпохи.

Вопрос о положении Земли во Вселенной, о том, неподвижна она или движется вокруг Солнца, в XVI-XVII вв. приобрел важное значение как для астрономии, так и для миропонимания. Гелиоцентрическое учение Николая Коперника явилось не только важным шагом в решении этой научной проблемы, но и способствовало изменению стиля научного мышления, открыв новый путь к пониманию происходящих явлений.

География

Астрономию, географию и геофизику связывает изучение Земли как одной из планет Солнечной системы, ее основных физических характеристик (фигуры, вращения, размеров, массы и т. д.) и влияния космических факторов на географию Земли: строение и состав земных недр и поверхности, рельеф и климат, периодические, сезонные и долговременные, местные и глобальные изменения в атмосфере, гидросфере и литосфере Земли - магнитные бури, приливы, смена времен года, дрейф магнитных полей, потепления и ледниковые периоды и т. д., возникающие в результате воздействия космических явлений и процессов (солнечной активности, вращения Луны вокруг Земли, вращения Земли вокруг Солнца и др.); а также не потерявшие своего значения астрономические методы ориентации в пространстве и определения координат местности. Одной из новых наук стало космическое землеведение - совокупность инструментальных исследований Земли из космоса в целях научной и практической деятельности.

Химия

Астрономию и химию связывают вопросы исследования происхождения и распространенности химических элементов и их изотопов в космосе, химическая эволюция Вселенной. Возникшая на стыке астрономии, физики и химии наука космохимия тесно связана с астрофизикой, космогонией и космологией, изучает химический состав и дифференцированное внутреннее строение космических тел, влияние космических явлений и процессов на протекание химических реакций, законы распространенности и распределения химических элементов во Вселенной, сочетание и миграцию атомов при образовании вещества в космосе, эволюцию изотопного состава элементов. Большой интерес для химиков представляют исследования химических процессов, которые из-за их масштабов или сложности трудно или совсем невоспроизводимых в земных лабораториях (вещество в недрах планет, синтез сложных химических соединений в темных туманностях и т. д.).

Биология

Астрономию и биологию связывают проблемы возникновения и существования жизни и разума на Земле и во Вселенной; гипотезы происхождения жизни, приспособляемость и эволюция живых организмов; проблемы земной и космической экологии и воздействия космических процессов и явлений на биосферу Земли; загрязнение окружающего космического пространства веществом и излучением.

История

Связь астрономии с историей и обществоведением, изучающим развитие материального мира на качественно более высоким уровне организации материи, обусловлена влиянием астрономических знаний на мировоззрение людей и развитие науки, техники, сельского хозяйства, экономики и культуры; вопрос о влиянии космических процессов на социальное развитие человечества остается открытым.

Литература

Красота звездного неба будила мысли о величии мироздания и вдохновляла писателей и поэтов. Астрономические наблюдения несут в себе мощный эмоциональный заряд, демонстрируют могущество человеческого разума и его способности познавать мир, воспитывают чувство прекрасного, способствуют развитию научного мышления. Так появились древние мифы и легенды как литературные произведения; научно-фантастическая литература.

Философия

Связь астрономии с "наукой наук" - философией - определяется тем, что астрономия как наука имеет не только специальный, но и общечеловеческий, гуманитарный аспект, вносит наибольший вклад в выяснение места человека и человечества во Вселенной, в изучение отношения "человек - Вселенная". В каждом космическом явлении и процессе видны проявления основных, фундаментальных законов природы.


5. Структура и масштабы Вселенной.

Во Вселенной существует множество других галактик, подобных нашей. Именно расположение и движение галактик определяет строение и структуру Вселенной в целом. Галактики так далеки друг от друга, что невооруженным глазом можно видеть лишь три ближайшие: две - в Южном полушарии, а с территории России всего одну - туманность Андромеды. От наиболее удаленных галактик свет доходит до Земли за 10 млрд лет. Значительная часть вещества звезд и галактик находится в таких условиях, создать которые в земных лабораториях невозможно. Все космическое пространство заполнено электромагнитным излучением, гравитационными и магнитными полями, между звездами в галактиках и между галактиками находится очень разреженное вещество в виде газа, пыли, отдельных молекул, атомов и ионов, атомных ядер и элементарных частиц.

Все тела во Вселенной образуют системы различной сложности:

  1. Солнечная система - Солнце и движущиеся вокруг него небесные тела (планеты, кометы, спутники планет, астероиды), Солнце – самосветящееся тело, остальные тела, как и Земля светят отраженным светом. Возраст СС ~ 5 млрд. лет. Таких звездных систем с планетами и другими телами во Вселенной огромное количество.

  2. Видимые на небе звезды, в том числе Млечный путь – это ничтожная доля звезд, входящих в состав Галактики (или называют нашу галактику Млечный Путь)– системы звезд, их скоплений и межзвездной среды. Таких галактик множество, свет от ближайших идет к нам миллионы лет. Возраст Галактик 10-15 млрд. лет.

  3. Галактики объединяются в своего рода скопления (системы).



6. Особенности астрономии и ее методов.

Основным способом исследования небесных объектов и явлений служат астрономические наблюдения.

Астрономические наблюдения — это целенаправленная и активная регистрация информации о процессах и явлениях, происходящих во Вселенной.

Астрономия изучает строение Вселенной, движение, физическую природу, происхождение и эволюцию небесных тел и образованных ими систем. Астрономия исследует также фундаментальные свойства окружающей нас Вселенной. Огромные пространственно-временные масштабы изучаемых объектов и явлений определяют отличительные особенности астрономии.

Сведения о том, что происходит за пределами Земли в космическом пространстве, ученые получают главным образом на основе приходящего от этих объектов света и других видов излучения. Наблюдения – основной источник информации в астрономии. Эта первая особенность астрономии отличает ее от других естественных наук (например, физики или химии), где значительную роль играют опыты, эксперименты. Возможности проведения экспериментов за пределами Земли появились лишь благодаря космонавтике. Но и в этих случаях речь идет о проведении экспериментальных исследований небольшого масштаба, таких, например, как изучение химического состава лунных или марсианских пород. Трудно представить себе эксперименты над планетой в целом, звездой или галактикой.

Вторая особенность объясняется значительной продолжительностью целого ряда изучаемых в астрономии явлений (от сотен до миллионов и миллиардов лет). Поэтому непосредственно наблюдать происходящие изменения невозможно. Даже изменения, происходящие на Солнце, на Земле регистрируются лишь через 8 минут и 19 секунд (именно столько времени требуется свету, чтобы преодолеть расстояние от Солнца до Земли). Что же касается далёких галактик, то здесь речь уже идёт о миллиардах лет. То есть, изучая далёкие звёздные системы — мы изучаем их прошлое. Когда изменения происходят особенно медленно, приходится проводить наблюдения многих родственных между собой объектов, например звезд. Основные сведения об эволюции звезд получены именно таким способом.

Третья особенность астрономии обусловлена необходимостью указать положение небесных тел в пространстве (их координаты) и невозможностью различить, какое из них находится ближе, а какое дальше от нас. На первый взгляд все наблюдаемые светила кажутся нам одинаково далекими. Нам, как и людям в древности, кажется, что все звёзды одинаково удалены от нас и располагаются на некой сферической поверхности неба — небесной сфере, — которая как единое целое вращается вокруг Земли.

    1. Телескопы.

Чтобы исследования были точными, необходимы специальные инструменты, приборы.

Телескоп стал основным прибором, который используется в астрономии для наблюдения небесных тел, приема и анализа приходящего от них излученияСлово это происходит от двух греческих слов: tele – далеко и skopeo – смотрю.

Телескоп - оптический прибор, увеличивает угол зрения, под которым видны небесные тела (разрешающая способность), и собирает во много раз больше света, чем глаз наблюдателя (проникающая сила).

Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооруженному глазу. Чем более слабые объекты дает возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.

Количество света, собираемого объективом, возрастает пропорционально его площади (квадрату диаметра). Диаметр зрачка человеческого глаза даже в полной темноте не превышает 8 мм. Объектив телескопа может превышать по диаметру зрачок глаза в десятки и сотни раз. Это позволяет с помощью телескопа обнаружить звезды и другие объекты, которые в 100 млн. раз слабее объектов, видимых невооруженным глазом.




8. Основные характеристики телескопов.

1) Апертура телескопа (D) - это диаметр главного зеркала телескопа или его собирающей линзы.

Чем больше апертура, тем больше света соберёт объектив и тем более слабые объекты вы увидите.

2) Фокусное расстояние телескопа - это расстояние, на котором зеркало или линза объектива строит изображение бесконечно удаленного объект.

Обычно имеется ввиду фокусное расстояние объектива (F), поскольку окуляры сменные, и у каждого из них фокусное расстояние своё.

От фокусного расстояния зависит не только увеличение, но и качество изображения. Чем больше фокусное расстояние, тем качественнее изображение. От фокусного расстояния телескопа зависит и его длина, особенно рефлекторов Ньютона и рефракторов.

3) Увеличение (или кратность) телескопа (W) показывает, во сколько раз телескоп может увеличить объект или угол, под которым наблюдатель видит объект. Оно равно отношению фокусных расстояний объектива F и окуляра f.

 W=F/f

Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, но звезды из-за их колоссальной удаленности все равно видны в телескоп, как светящиеся точки.

4) Разрешающая способность – минимальный угол между двумя звездами, видимыми раздельно. Проще говоря, под разрешающей способностью можно понимать "чёткость" изображения.

5) Проницающая сила телескопа характеризуется предельной звездной величиной m самой слабой звезды, которую можно увидеть в данный инструмент при наилучших условиях наблюдений. Для таких условий проницающую силу можно определить по формуле:

m = 2,1 + 5 lg D

где D – диаметр объектива в миллиметрах, m - предельная звездная величина.


6) Относительное отверстие – отношение диаметра D к фокусному расстоянию F:

A=D/F

7) Часто вместо относительного отверстия используется понятие светосилы, равной (D/F)2Светосилахарактеризует освещенность, создаваемую объективом в фокальной плоскости.

8) Относительным фокусным расстоянием телескопа (обозначается перевернутой буквой А) называется величина, обратная относительному отверстию:

Виды телескопов:

  1. Оптические телескопы

    1. Рефрактор.

    2. Рефлектор.

    3. Зеркально – линзовый.

  2. Радиотелескопы



9.Значение науки в народном хозяйстве:

  • - Ориентирование по звездам для определения сторон горизонта

  • - Навигация (мореходство, авиация, космонавтика) - искусство прокладывать путь по звездам

  • - Исследование Вселенной с целью понять прошлое и спрогнозировать будущее

  • - Космонавтика:

  • - Исследование Земли с целью сохранения ее уникальной природы

  • - Получение материалов, которые невозможно получение в земных условиях

  • - Прогноз погоды и предсказание стихийных бедствий

  • - Спасение терпящих бедствие судов

  • - Исследования других планет для прогнозирования развития Земли



Критерии оценки:

Оценка «5» - на поставленный вопрос студент дал полный развернутый ответ и ответил на дополнительный вопрос;

Оценка «4» - на поставленный вопрос студент дал полный развернутый ответ, но не ответил на дополнительный вопрос;

Оценка «3» - на поставленный вопрос студент дал неполный ответ и не смог ответить на дополнительный вопрос;

Оценка «2» - не ответил на поставленный вопрос.












ПРИЛОЖЕНИЕ №2

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ И СИСТЕМАТИЗАЦИИ НОВЫХ ЗНАНИЙ (письменно, не оценивается)


Астрономия. Разноуровневые самостоятельные работы с примерами решения задач Л. А. Кирик стр. 10, №1-6.


Эталоны ответов к заданиям для закрепления и систематизации


1

2

3

4

5

Ответ

В

Б

А

В

Б





ПРИЛОЖЕНИЕ № 3

ЗАДАНИЯ ДЛЯ ПРЕДВАРИТЕЛЬНОГО КОНТРОЛЯ ЗНАНИЙ

(Устно, не оценивается. Эталоны ответов к вопросам для предварительного контроля знаний содержатся в исходном материале)

  1. Что называется созвездием?

  2. Перечислите известные вам созвездия.

  3. Как обозначаются звезды в созвездиях?

  4. Какие координаты светила называются экваториальными?

  5. Меняются ли экваториальные координаты звезды в течение суток?

  6. Какие особенности суточного движения светил позволяют использовать экваториальную систему координат?

  7. Почему на звездной карте не показано положение Земли?

  8. Почему на звездной карте изображены только звезды, но нет ни Солнца, ни Луны, ни планет?

  9. Какое склонение – положительное или отрицательное – имеют звезды, находящиеся к центру карты ближе, чем небесный экватор?

  10. В каких точках небесный экватор пересекается с линией горизонта?

  11. Как располагается ось мира относительно оси вращения Земли? Относительно плоскости небесного меридиана?

  12. Как располагаются суточные пути звезд относительно небесного экватора?





ПРИЛОЖЕНИЕ №4

КОНТРОЛИРУЮЩИЙ МАТЕРИАЛ (письменно)

Тест

Вариант 1

1. Расстояние, с которого средний радиус земной орбиты виден под углом 1 секунда называется …

1. Астрономическая единица

2. Парсек

3. Световой год

4. Звездная величина

2. Нижняя точка пересечения отвесной линии с небесной сферой называется …

1. точках юга

2. точках севере

3. зенит

4. надир

3. Большой круг, плоскость которого перпендикулярная оси мира называется …

1. небесный экватор

2. небесный меридиан

3. круг склонений

4. настоящий горизонт

4. Первая экваториальная система небесных координат

определяется …

 1.Годинний угол и склонение

 2. Прямое восхождение и склонение

 3. Азимут и склонение

 4. Азимут и высота

5. Большой круг, по которому цент диска Солнца совершает свой видимый летний движение на небесной сфере, называется …

1. небесный экватор

2. небесный меридиан

3. круг склонений

4. эклиптика

6. Линия, вокруг которой вращается небесная сфера, называется…

1.ось мира

2. вертикаль

3. полуденная линия

4. настоящий горизонт





Вариант 2

1. Верхняя точка пересечения отвесной линии с небесной сферой называется …

1. надир

2. точках севере

3. точках юга

4.зенит

2. Большой круг, проходящий через полюса мира и зенит называется …

1. небесный экватор

2. небесный меридиан

3. круг склонений

4.настоящий горизонт

3. Промежуток времени между двумя последовательными верхними кульминациями точки весеннего равноденствия называется …

 

  1. Солнечные сутки

 2. Звездные сутки

   3. Звездный час

   4. Солнечное время

4. Количество энергии, которую излучает звезда со всей своей поверхности в единицу времени по всем направлениям называется …

1. звездная величина

2. яркость

3. парсек

4.светимость

5. Вторая экваториальная система небесных координат определяется …

   1.Годинний угол и склонение

   2. Прямое восхождение и склонение

   3. Азимут и склонение

   4. Азимут и высота

6. В каком созвездии находится звезда, имеет координаты α = 20h 20m, δ = + 350

1. Козерог 2. Дельфин 3. Стрела 4. Лебедь



Эталоны ответов к заданиям контролирующего материала:

Номер задания

1

2

3

4

5

6

1 вар.

2

4

1

1

4

1

2 вар.

4

4

2

4

1

4

Критерии оценки:

за 4 правильных ответа – «3» балла;

за 5 правильных ответов – «4» балла;

за 6 правильных ответов – «5» баллов.

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ ВНЕАУДИТОРНОЙ РАБОТЫ СТУДЕНТОВ

Цель: Определить объем информации для самостоятельной работы студента, обратить внимание на значимые моменты.


Время для выполнения задания: 45 минут.

Воронцов – Вельяминов Б.А., Астрономия. Базовый уровень. 11 класс: учебник / Б.А. Воронцов – Вельяминов, Е.К. Страут. 5-е изд., пересмотр. М.: Дрофа, 2018. – 238 с.: ил,, 8л.цв. вкл.- (Российский учебник) с. 20-30 читать, конспект выучить. Провести наблюдения невооруженным глазом за наиболее яркими звездами и созвездиями.

Темы докладов (на выбор по желанию студента):

«Об истории возникновения названий созвездий и звезд»;

«История календаря»;

«Хранение и передача точного времени».



ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ СООБЩЕНИЯ


1. Сообщение оформляется на компьютере, сдается преподавателю в мультифоре.

2. Шрифт Times New Roman, 14 пт, межстрочный интервал – одинарный, поля по 1,5 см справа и слева, текст выравниваются по ширине, заголовок – посредине. Ф.И. автора – по правому краю.

3. Объем сообщения – 2-3 страницы формата А4; время выступления – не более 5 минут.

4. В сообщении не выделяются главы; недопустимы орфографические ошибки, опечатки, записи и исправления ручкой или карандашом.

5. В конце сообщения указывается список информационных источников.

6. Сообщение может сопровождаться мультимедийной презентацией (по желанию автора).








Например,

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ


Иванов Максим, студент 219 группы

отделения Сестринское дело


Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой. Тепловой двигатель – устройство, превращающее внутреннюю энергию топлива в механическую энергию….


Информационные источники:

  1. Применение двигателей внутреннего сгорания [Электронный ресурс]/ nsportal// Режим доступа: http://nsportal.ru/shkola/mezhdistsiplinarnoe-obobshchenie/library/2011/12/07/ultrazvuk-i-ego-primenenie-v-meditsine

  2. Устройство двигателя внутреннего сгорания [Электронный ресурс]/ rasteniya-lecarstvennie// Режим доступа: http://www.rasteniya-lecarstvennie.ru/20218-primenenie-ultrazvuka-v-medicine-i-tehnike-kratko.html

  3. Физика вокруг нас – неизвестное об известном [Электронный ресурс]/ physicsaroundus.weebly// Режим доступа: http://physicsaroundus.weebly.com/1059108311001090108810721079107410911082.html

!!! Определите самостоятельно, соответствует ли Ваше сообщение требованиям к оформлению. Для этого внимательно прочтите их и подчеркните каждое выполненное требование. Проведите коррекцию работы по тем требованиям, которые не выполнены.



Критерии оценки:

  • студент выучил конспект – «3» балла;

  • студент прочитал параграфы и выучил конспект, не ответил на дополнительный вопрос по теме – «4» балла;

  • студент выучил конспект, владеет информацией из учебника, ответил на дополнительный вопрос по теме – «5» баллов.

  • Студент подготовил доклад, соответствующий требованиям, ответил на дополнительный вопрос - «5» баллов.






СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ



  1. Астрономия Разноуровневые самостоятельные работы с примерами решения задач Л. А. Кирик [Электронный ресурс]/ Medic-03 // Режим доступаfile:///D:/фильмы%20по%20физике/мед%20колледж/Разработки%20мероприятий/АСТРОНОМИЯ/Астрономия/Кирик%20Самостоятельные%20и%20контрольные%20работы%20по%20Астрономии.pdf

  2. Воронцов – Вельяминов Б.А., Астрономия. Базовый уровень. 11 класс: учебник / Б.А. Воронцов – Вельяминов, Е.К. Страут. 5-е изд., пересмотр. М.: Дрофа, 2018. – 238 с.: ил,, 8л.цв. вкл.- (Российский учебник)

Лекции по астрономии Урок 2. [Электронный ресурс]/ Infofiz // Режим доступа http://infofiz.ru/index.php/mirastr/astronomlk/501-lk2astr

  1. Тест по теме «Звезды и созвездия. Небесные координаты и звездные карты» Электронный ресурс]/ Knowledge.allbest // Режим доступа https://knowledge.allbest.ru/physics/2c0b65635a3ac68b4d53a89421316d27_0.html






Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!