СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 12.06.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Методическая разработка по теме 3.23 "Световой поток и освещенность. Звезды – основные источники света во Вселенной. Светимость звезд"

Категория: Физика

Нажмите, чтобы узнать подробности

Световой поток. Закон освещенности. Вселенная. Осуществление поиска и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития. Формирование собственной позиции по отношению к физической информации, получаемой из разных источников.

Просмотр содержимого документа
«Методическая разработка по теме 3.23 "Световой поток и освещенность. Звезды – основные источники света во Вселенной. Светимость звезд"»

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

НОВОСИБИРСКОЙ ОБЛАСТИ

«БАРАБИНСКИЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ»


Рассмотрена на заседании

ЦМК ОГСЭД

Протокол № ___________

от ____________ 2019 г.

Председатель ЦМК

Хританкова Н. Ю.

(Ф. И. О.)


______________________

(подпись)


МЕТОДИЧЕСКАЯ РАЗРАБОТКА

КОМБИНИРОВАННОГО ЗАНЯТИЯ ДЛЯ ПРЕПОДАВАТЕЛЯ


Специальность 34.02.01 Сестринское дело (с базовой подготовкой)


Дисциплина: «Физика»


Раздел 3 Электродинамика. Колебания и волны. Оптика


Тема 3.23 Световой поток и освещенность. Звезды – основные источники света во Вселенной. Светимость звезд.


Разработчик – преподаватель Вашурина Т. В.










2019


СОДЕРЖАНИЕ

Методический лист

3

Примерная хронокарта занятия

5

Исходный материал

9

Приложение №1 Контроль знаний по предыдущей теме

18

Приложение №2 Задания для закрепления и систематизации новых знаний

23

Приложение №3 Задания для предварительного контроля знаний

24

Приложение №4 Контролирующий материал

24

Задание для самостоятельной внеаудиторной работы студентов

25

Список использованных источников

26



Выписка из рабочей программы ОУД.08. ФИЗИКА

для специальности 34.02.01 Сестринское дело (с базовой подготовкой)


Наименование разделов и тем

Содержание учебного материала, лабораторные и практические работы, самостоятельная работа обучающихся, курсовая работ (проект) (если предусмотрены)

Объем часов

Тема 3.23 Световой поток и освещенность. Звезды – основные источники света во Вселенной. Светимость звезд.


Содержание учебного материала

2


Световой поток. Закон освещенности. Вселенная. Осуществление поиска и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития. Формирование собственной позиции по отношению к физической информации, получаемой из разных источников.

Лабораторная работа

-

Практическое занятие

-

Контрольная работа

-

Самостоятельная работа обучающихся:

- Работа с электронным приложением к учебнику «Физика 11»;

- работа с учебником [2, с. 340 -369];

- работа с конспектом лекции.

1



МЕТОДИЧЕСКИЙ ЛИСТ



Тип занятия: комбинированный урок.


Вид занятия: беседа, объяснение с демонстрацией наглядных пособий, решение задач.

Продолжительность: 90 минут.



ЦЕЛИ ЗАНЯТИЯ


Учебные цели: сформировать представления о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений через изучение понятий световой поток и освещенность, звезды, светимость звезд; способствовать формированию умения владеть основополагающими физическими понятиями, уверенно пользоваться физической терминологией и символикой. Способствовать формированию умения организовывать собственную деятельность, выбирать типовые методы и способы выполнения упражнений (ОК 2).

Развивающие цели: развивать интерес к будущей профессии, понимание сущности и социальной значимости (ОК 1), способствовать формированию умения решать физические задачи.

Воспитательные цели: способствовать развитию коммуникативных способностей; создавать условия для развития скорости восприятия и переработки информации, культуры речи; формировать умение работать в коллективе и команде (ОК 6).



Методы обучения: объяснительно-иллюстративный с использованием информационных технологий, репродуктивный.

Место проведения: аудитория колледжа.







МОТИВАЦИЯ

Тема 3.23 «Световой поток и освещенность. Звезды – основные источники света во Вселенной. Светимость звезд» входит в программу по учебной дисциплине «Физика» и имеет большое значение, т.к. знания, полученные при изучении данной темы необходимы для изучения многих тем как в рамках программы по физике, так и при изучении смежных дисциплин (химия, история, математика).

Любой человек периодически приобретает какие-либо осветительные приборы. На всех светильниках имеются надписи, обозначающие технические характеристики изделия, в том числе и световой поток. Данная физическая величина используется в светотехнике для определения мощности, переносимой излучением в определенном направлении. С помощью светового потока рассчитывается освещенность помещений, установленная государственными стандартами. Выполнение этих расчетов направлено на сохранение зрения, предупреждение негативных последствий недостаточной освещенности. Конкретные показатели для того или иного объекта устанавливаются строительными правилами и санитарными нормами.

На данное занятие отводится 2 учебных часа. Во время комбинированного занятия проводится актуализация знаний в форме устного опроса, с целью проверки остаточных знаний, которые необходимых при изучении нового материала; непосредственное изучение нового материала; первичного закрепление нового материала с помощью решения задач по данной теме. Контроль уровня усвоения нового материала проводится в форме тестирования студентов. Каждому образованному человеку необходимо непрерывно пополнять свои знания в области физики, развивать интерес к будущей профессии, понимать сущность и социальную значимость (ОК 1), научиться организовывать свою деятельность, уметь выбирать методы и способы выполнения задач и в дальнейшем оценивать их качество (ОК2), а также необходимо для будущего медицинского работника научится работать в коллективе и команде (ОК6).

ПРИМЕРНАЯ ХРОНОКАРТА КОМБИНИРОВАННОГО ЗАНЯТИЯ


п/№

Наименование этапа

Время

Цель этапа

Деятельность

Оснащение

преподавателя

студентов

-1-

-2-

-3-

-4-

-5-

-6-

-7-

Организационный этап

2

Организация начала занятия, формирование способности организовывать собственную деятельность (ОК 2).

Приветствие. Проверка готовности аудитории. Отмечает отсутствующих студентов в журнале.

Староста называет отсутствующих студентов. Студенты приводят в соответствие внешний вид, готовят рабочие места.

Журнал, тетради для конспектов.


Контроль знаний по предыдущей теме

15

Оценка уровня сформированности знаний по предыдущей теме. Развитие грамотной речи обучающихся, самоконтроль своих знаний.


Инструктирует и проводит контроль знаний.


Повторяют домашнее задание, отвечают устно.

Вопросы для устного опроса. Приложение 1.


Мотивационный этап и целеполагание

2

Развитие интереса к будущей профессии, понимания сущности и социальной значимости (ОК 1), установка приоритетов при изучении темы.


Объясняет студентам важность изучения данной темы, озвучивает цели занятия.

Слушают, задают вопросы, записывают новую тему в тетради.

Методическая разработка комбинированного занятия, мультимедийная презентация.

Изложение исходной информации

30

Формирование знаний, понимания сущности и социальной значимости своей будущей профессии (ОК 1),

Формирование представления о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений через изучение понятий световой поток и освещенность, звезды, светимость звезд; способствовать формированию умения владеть основополагающими физическими понятиями, уверенно пользоваться физической терминологией и символикой.


Излагает новый материал, демонстрирует презентацию.

Слушают, читают материал на слайдах, записывают.

Методическая разработка (исходный материал), мультимедийное оборудование, мультимедийная презентация.

Выполнение заданий для закрепления знаний

17

Закрепление, систематизация, обобщение новых знаний. Отработать навык решения задач. Организация собственной деятельности, выбор типовых методов и способов решения задач, оценка их выполнения (ОК2).

Инструктирует и контролирует выполнение заданий, обсуждает правильность ответов, отвечает на вопросы студентов.

Выполняют задания, слушают правильные ответы после выполнения, вносят коррективы, задают вопросы.

Физика 11 Разноуровневые самостоятельные и контрольные работы А. Кирик стр. 81 начальный уровень №1-6, средний уровень №1-5.

Предварительный контроль новых знаний

10




Оценка эффективности занятия и выявление недостатков в новых знаниях.

Инструктирует и проводит контроль.

Устно отвечают на вопросы.

Вопросы для предварительного контроля знаний.

Приложение 3.

С. р.

Итоговый контроль. Взаимопроверка

10

Закрепление материала, формирование умения делать выводы, обобщать.



Формирование умения работать в команде (ОК6). Контроль усвоения знаний и умений учащихся.

Контролирует ход работы.



Контролирует взаимопроверку, поясняет критерии оценки.

Работают в малых группах, решают задачи по образцу (письменно).


Предоставляют выполненное задание, сопоставляют ответы с эталонами, выставляют оценки.


Контролирующий материал.

Приложение 4.


Слайд презентации с эталонами ответов и критериями отметки.

Подведение итогов занятия

2

Развитие эмоциональной устойчивости, дисциплинированности, объективности оценки своих действий, умения работать в коллективе и команде (ОК6).

Оценивает работу группы в целом. Объявляет оценки, мотивирует студентов, выделяет наиболее подготовленных.


Слушают, участвуют в обсуждении, задают вопросы.

Журнал группы.



Задание для самостоятельной внеаудиторной работы студентов

2

Определить объем информации для самостоятельной работы студента, обратить внимание на значимые моменты.


Дает задание для самостоятельной внеаудиторной работы студентов, инструктирует о правильности выполнения, критериях оценивания.

Записывают задание.

Слайд презентации с домашним заданием.

ИСХОДНЫЙ МАТЕРИАЛ


План изложения учебного материала по теме

«Световой поток и освещенность. Звезды – основные источники света во Вселенной. Светимость звезд»

  1. Световой поток и освещенность

  2. Физические свойства светового потока

  3. Сила света – основной показатель

  4. Звезды – основные источники света во Вселенной

  5. Виды звезд

  6. Цикл жизни звезд

  7. Светимость звезд

1.Световой поток и освещенность.

Понятие светового потока в чистом виде соответствует полной мощности, излучаемой источником в оптическом диапазоне. Однако на практике распределение мощности по поверхностям помещения происходит неравномерно. В связи с этим было введено понятие освещенности, используемое различными стандартами, нормами и требованиями.



Для измерения данной величины используется люкс, представляющий собой отношение светового потока к площади, на которой он распределяется. Теоретическое толкование освещенности обычно не вызывает проблем, в отличие от использования этого понятия в практической деятельности. Основные сложности связаны с неудобством совместного использования при расчетах светового потока и угла рассеивания. Сами расчеты освещенности с целью получения максимально точных результатов, должны выполняться по определенным правилам. Например, освещенность помещений будет различной в определенное время дня. Поэтому световой поток и освещенность должны разбиваться на части в соответствии со своим временем. Кроме того, должна учитываться конструкция установленного прибора освещения. Например, матовый плафон способствует потере освещенности, а рефлектор карманного фонарика, наоборот, направляет усиленный поток света в нужную сторону. Поэтому величина светового потока во многом зависит от осветительных приборов, установленных в помещении.

2.Физические свойства светового потока. Физическая величина светового потока указывает на количество мощности, падающей на какую-либо поверхность, независимо от телесного угла. Именно световой поток имеется в виду, когда сравниваются свечения разных источников света при различном потреблении мощности. Например, светодиод, потребляющий 9 ватт, светит ярче, нежели обычная лампочка накаливания, мощностью 60 ватт.

Единицей измерения светового потока является люмен, равный мощности, испускаемой изотропным источником света, заключенной в границах телесного угла величиной в один стерадиан. При рассмотрении различных типов источников света, следует учесть, что светодиодную лампу нельзя рассматривать в качестве изотропного излучателя. На это факт косвенно указывает маркировка изделия, на которой величина угла рассеивания составляет 2400. Этот угол соответствует условному конусу, ограничивающему часть сферы. Световой поток может рассеиваться в зависимости от того, в какой плоскости расположен прибор. Определенное влияние оказывает люстра, направляя световой поток в неизменном виде в границах плафона. В других направлениях остаточная часть угла рассеивания излучается равномерно с учетом воздействия стекла. С помощью светового потока оцениваются отражающие свойства различных поверхностей. Например, его величина, при отражении от объектов, окрашенных в белый цвет, значительной выше, чем от поверхностей темного цвета.

3.Сила света – основной показатель. Любой человек периодически приобретает какие-либо осветительные приборы. На всех светильниках имеются надписи, обозначающие технические характеристики изделия, в том числе и световой поток. Данная физическая величина используется в светотехнике для определения мощности, переносимой излучением в определенном направлении. С помощью светового потока рассчитывается освещенность помещений, установленная государственными стандартами. Выполнение этих расчетов направлено на сохранение зрения, предупреждение негативных последствий недостаточной освещенности. Конкретные показатели для того или иного объекта устанавливаются строительными правилами и санитарными нормами. Сила света относится к одной из первичных характеристик любого излучателя в установленном оптическом диапазоне. Она точно определяет, какое количество мощности переносится в тех или иных направлениях, ограниченных условным телесным углом. Поэтому на графическом изображении конфигурация силы света не будет иметь вид прямой линии.

Вершина телесного угла располагается в центре сферы. Единицей измерения этого угла служит стерадиан. Для его вычисления необходимо площадь воображаемого шара соотнести с квадратом радиуса. Поэтому стерадиан является безразмерной величиной, как и сам телесный угол. Согласно определения, на площадь сферы помещается 12,56 стерадиана или 4 Пи. Телесный угол является объемным и выглядит в виде конуса, вершина которого расположена в центре воображаемого шара. Однако его основание нельзя считать плоскостью, поэтому сравнение телесного угла и конуса будет не совсем корректным. В качестве основания рассматривается та часть сферы, которая отсекается боковой поверхностью. Вместе с тем, следует отметить, что сила света для проведения практических расчетов используется крайне редко. Вместо него стали пользоваться таким интегральным параметром как световой поток, значение которого наносится на все этикетки приборов освещения.

4.Звезды – основные источники света во Вселенной.

На протяжении веков каждую ночь мы видим в небе загадочные огоньки – звезды нашей Вселенной. В древности люди видели фигуры животных в скоплениях звезд, и позже они начали называться созвездиями. На текущий момент ученые выделяют 88 созвездий, которые разделяют ночное небо на участки. Звезды – это источники энергии и света для Солнечной системы. Они способны создавать тяжелые элементы, которые необходимы для начала жизни. Таким образом, Солнце дарит свое тепло всему живому на планете. Степень яркости звезд определяется их размерами.

Звезда Canis Majoris из созвездия Большого Пса является самой крупной во Вселенной. Она находится в 5 тыс. световых лет от Солнечной системы. Ее диаметр – 2,9 миллиарда километров.




Конечно же, не все звезды в Космосе такие огромные. Есть и звезды-карлики. Величину звезд ученые оценивают по шкале – чем звезда ярче, тем ее номер меньше. Самая яркая звезда в ночном небе Сириус. По цветам звезды делятся на классы, которые указывают на их температуру. К классу О относятся самые горячие, они голубого цвета. Звезды красного цвета являются самыми холодными.

Следует заметить, что звезды не мерцают. Этот эффект похож на то, что мы наблюдаем в жаркие дни лета, посмотрев на раскаленный бетон или асфальт. Кажется, что мы смотрим через дрожащее стекло. Этот же процесс вызывает иллюзию мерцания звезды. Чем ближе она к нашей планете, тем больше она «мерцает».

5.Виды звезд.

Главная последовательность – время существования звезды, которое зависит от ее размера. Маленькие звезды сияют дольше, крупные, наоборот, меньше. Массивным звездам топлива хватит на пару сотен тысяч лет, а малые будут гореть на протяжении миллиардов лет.

Красный гигант – большая звезда оранжевого или красноватого оттенка. Звезды этого типа очень крупных размеров, которые превышают обычные в сотни раз. Самые массивные из них становятся сверхгигантами. Бетельгейзе, из созвездия Орион, является самой яркой среди красных супергигантов.

Белый карлик – это остатки обычной звезды, после красного гиганта. Эти звезды довольно плотные. Их размер не больше нашей планеты, но их массу можно сравнить с Солнцем. Температура белых карликов достигает 100 тыс. градусов и больше.

Коричневые карлики еще называют субзвездами. Это газовые массивные шары, которые больше Юпитера и меньше Солнца. Эти звезды не излучают тепла и света. Они являют собой темный сгусток материи.

Цефеида. Цикл ее пульсации колеблется между несколькими секундами и несколькими годами. Все зависит от разновидности переменной звезды. Цефеиды изменяют свою светимость в конце жизни и в начале. Они могут быть внешними и внутренними.

Большинство звезд – это часть звездных систем. Двойные звезды – две гравитационно связанные звезды. Ученые доказали, что у половины звезд галактики есть пара. Они могут затмевать друг друга, потому что их орбиты находятся под малым углом к лучу зрения.

Новые звезды. Это тип катаклизмических переменных звезд. Их блеск меняется не так резко, по сравнению со сверхновыми. В нашей галактике выделяют две группы новых звезд: новые балджа (медленные и слабее) и новые диска (быстрее и ярче).

Сверхновые. Звезды, которые заканчивают эволюцию во взрывном процессе. Этим термином были названы звезды, которые вспыхнули сильнее новых. Но ни одни, ни другие не являются новыми. Всегда вспыхивают звезды, которые уже существуют.

Гиперновые. Это очень крупная сверхновая звезда. Теоретически они могли бы создать Земле серьезную угрозу сильной вспышкой, но на данный момент подобных звезд поблизости нашей планеты нет.

6.Цикл жизни звезд.

Звезда берет свое начало в виде облака газа и пыли, которое называют туманностью. Взрывная волна сверхновой или гравитация соседней звезды способна заставить ее сжиматься. Элементы облака собираются в плотную область, которая называется протозвездой. При следующем сжатии она нагревается и достигает критической массы. После происходит ядерный процесс, и звезда проходит все фазы существования. Первый является самым стабильным и долгим. Но со временем топливо заканчивается, и мелкая звезда становится красным гигантом, а большая – красным супергигантом. Эта фаза будет длиться, пока топливо полностью не закончится. Туманность, которая останется после звезды, может расширяться на протяжении миллионов лет. После чего на нее подействует взрывная волна или гравитация, и все повторится сначала.

7.Светимость звезд.



Основные процессы и характеристики

Звезда имеет два параметра, которые определяют все внутренние процессы, – химический состав и масса. Задав их одиночной звезде, можно предсказать спектр, блеск и внутреннюю структуру звезды.




Химический состав

Химический состав зависит от вида звезды и ее массы. Крупные звезды не обладают элементами тяжелее гелия, а красные и желтые карлики относительно на них богаты. Это помогает звезде зажечься.

Структура:

Выделяют три внутренние зоны: конвективную, ядро и зону лучистого переноса.

Конвективная зона. Здесь за счет конвенции происходит перенос энергии.

Ядро – центральная часть звезды, где проходят ядерные реакции.

Лучистая зона. Здесь перенос энергии происходит благодаря излучению фотонов. У малых звезд эта зона отсутствует, у крупных находится между конвективной зоной и ядром.

Атмосфера находится над поверхностью звезды. Она состоит из трех частей – хромосферы, фотосферы и короны. Фотосфера является самой глубокой ее частью, в которой формируется подавляющая часть излучения, приходящего к наблюдателю.





ПРИЛОЖЕНИЕ №1

КОНТРОЛЬ ЗНАНИЙ ПО ПРЕДЫДУЩЕЙ ТЕМЕ (устно)

«Линза. Построение изображений в линзе»


Студенту предлагается дать развернутый ответ на каждый из следующих пунктов:

  1. Понятие линзы. Виды линз.

  2. Фокус, фокусное расстояние.

  3. Построение изображений в линзах.

  4. Формула тонкой линзы.

  5. Линейное увеличение.

  6. Применение линз.

Эталоны ответов

1.Понятие линзы. Виды линз.

Явление преломления света лежит в основе действия линз и мно­гих оптических приборов, служащих для управления световыми пучками и получения оптических изображений.

Линза - это оптическое прозрачное тело, ограниченное сфериче­скими поверхностями. Существует два вида линз:

а) выпуклые;

б) вогнутые.

Выпуклые линзы бывают: двояковыпуклыми, плосковыпуклыми, вогнуто выпуклыми.

Выгнутые линзы могут быть: двояковогнутыми, плосковогнуты­ми, выпукло вогнутыми.

Линзы, у которых середины толще, чем края, называют собираю­щими, а у которых толще края - рассеивающими.

2.Фокус, фокусное расстояние.

Пучок света направляют на двояковыпуклую линзу. Наблюдаем собирающее действие такой линзы: каждый луч, падающий на линзу, после преломления ею отклоняется от своего первоначального на­правления, приближаясь к главной оптической оси.

Описанный опыт естественным образом подводит учащихся к понятиям главного фокуса и фокусного расстояния линзы.

Расстояние от оптического центра линзы до ее главного фокуса называют фокусным расстоянием линзы. Обозначают ее буквой F, как и сам фокус.

Далее выясняется ход световых лучей через рассеивающую лин­зу. Аналогичным образом рассматривается вопрос о действии и па­раметрах рассеивающей линзы. Основываясь на экспериментальных данных, можно сделать вывод: фокус рассеивающей линзы мнимый.


3.Построение изображений в линзах.

Построение линзой изображения предметов, имеющих определённую форму и размеры, получается следующим образом: допустим, линия AB представляет собой объект, находящийся на некотором расстоянии от линзы, значительно превышающем её фокусное расстояние.

От каждой точки предмета через линзу пройдёт бесчисленное количество лучей, из которых, для наглядности, на рисунке схематически изображен ход только трёх лучей.



Если предмет находится на бесконечно далёком от линзы расстоянии, то его изображение получается в заднем фокусе линзы F’ действительным, перевёрнутым и уменьшенным до подобия точки.

Если предмет помещён между передним фокусом и двойным фокусным расстоянием, то изображение будет получено за двойным фокусным расстоянием и будет действительным, перевёрнутым и увеличенным.



Если предмет помещён на двойном фокусном расстоянии от линзы, то полученное изображение находится по другую сторону линзы на двойном фокусном расстоянии от неё. Изображение получается действительным, перевёрнутым и равным по величине предмету.


Если предмет приближён к линзе и находится на расстоянии, превышающем двойное фокусное расстояние линзы, то изображение его будет действительным, перевёрнутым и уменьшенным и расположится за главным фокусом на отрезке между ним и двойным фокусным расстоянием.



Если предмет находится в плоскости переднего главного фокуса линзы, то лучи, пройдя через линзу, пойдут параллельно, и изображение может получиться лишь в бесконечности.


Если предмет поместить на расстоянии, меньшем главного фокусного расстояния, то лучи выйдут из линзы расходящимся пучком, нигде не пересекаясь. Изображение при этом получается мнимое, прямое и увеличенное, т. е. в данном случае линза работает как лупа.

4.Формула тонкой линзы.


Из подобия заштрихованных треугольников (рис. 70) следует:



где d - расстояние предмета от линзы; f расстояние от линзы до изображения; F - фокусное расстояние. Оптическая сила линзы равна:



При расчетах числовые значения действительных величин всегда подставляются со знаком «плюс», а мнимых - со знаком «минус» (слайд 18).

5.Линейное увеличение.

Из подобия заштрихованных треугольников (рис. 71) следует:



6.Применение линз.

  • Традиционное применение линз - бинокли, телескопы, оптические прицелы, микроскопы, фото и видеотехника. Одиночные собирающие линзы используются как увеличительные стёкла.

  • Другая важная сфера применения линз - офтальмология, где без них невозможно исправление недостатков зрения — близорукости, дальнозоркости, неправильной аккомодации, астигматизма и других заболеваний. Линзы используют в таких приспособлениях, как очки и контактные линзы.

  • В радиоастрономии и радарах часто используются диэлектрические линзы, собирающие поток радиоволн в приёмную антенну, либо фокусирующие на цели.

  • В конструкции плутониевых ядерных бомб для преобразования сферической расходящейся ударной волны от точечного источника (детонатора) в сферическую сходящуюся применялись линзовые системы, изготовленные из взрывчатки с разной скоростью детонации (то есть с разным коэффициентом преломления).

Критерии оценки:

Оценка «5» - на поставленный вопрос студент дал полный развернутый ответ и ответил на дополнительный вопрос;

Оценка «4» - на поставленный вопрос студент дал полный развернутый ответ, но не ответил на дополнительный вопрос;

Оценка «3» - на поставленный вопрос студент дал неполный ответ и не смог ответить на дополнительный вопрос;

Оценка «2» - не ответил на поставленный вопрос.



ПРИЛОЖЕНИЕ №2

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ И СИСТЕМАТИЗАЦИИ НОВЫХ ЗНАНИЙ (письменно, не оценивается)

Физика 11 Разноуровневые самостоятельные и контрольные работы А. Кирик стр. 81 начальный уровень №1-6, средний уровень №1-5.


Эталоны ответов к заданиям для закрепления и систематизации


Уровень /№

1

2

3

4

5

Средний уровень

6,8 дптр

0,15 м

320 м

640

69,5 м


ПРИЛОЖЕНИЕ № 3

ЗАДАНИЯ ДЛЯ ПРЕДВАРИТЕЛЬНОГО КОНТРОЛЯ ЗНАНИЙ

(Устно, не оценивается. Эталоны ответов к вопросам для предварительного контроля знаний содержатся в исходном материале)

  1. В чем заключается понятие светового потока?

  2. Что называют освещенностью? В чем она измеряется?

  3. Что принимают за единицу светимости?

  4. Сила света относится к одной из первичных характеристик чего?

  5. Какие виды звезд вам известны?

  6. В чем заключается цикл жизни звезды?

  7. Какие параметры помогают определить светимость звезды?

  8. Каков химический состав звезд?

  9. Какие три внутренние зоны составляют структуру звезды?



ПРИЛОЖЕНИЕ №4

КОНТРОЛИРУЮЩИЙ МАТЕРИАЛ (письменно)

Тест

1.Самая яркая звезда это…
a.Сириус
b.Мимоза
c.Денеб

2. Чем обусловлен цвет звезды?
a.температурой
b.влажностью
c.расположением

3.Как называется ближайшая к Земле звезда, которая является самым ярким объектом на небе?
a.Эниф
b.Персей
c.Солнце

4. Полная энергия, которую излучает звезда в единицу времени это —
a. яркость
b.свет
c. светимость

5.Как называется слой, в котором формируется подавляющая часть излучения, приходящего к наблюдателю?
a. верхний слой

b. фотосфера звезды
c.внутренний слой звезды



Эталоны ответов к заданиям контролирующего материала:

Номер задания

1

2

3

4

5

ответы

а

а

с

с

b


Критерии оценки:

за 3 правильных ответа – «3» балла;

за 4 правильных ответа – «4» балла;

за 5 правильных ответов – «5» баллов.





ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ ВНЕАУДИТОРНОЙ РАБОТЫ СТУДЕНТОВ

Цель: Определить объем информации для самостоятельной работы студента, обратить внимание на значимые моменты.


Время для выполнения задания: 45 минут.

Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Соцкий, Физика. 11 класс. Учебник для общеобразовательных учреждений (с приложением на электронном носителе). Базовый и профильный уровни - М.: Просвещение, 2011 г., с. 340 -369, параграфы 116-126 прочитать, конспект выучить.


Критерии оценки:

  • студент выучил конспект – «3» балла;

  • студент прочитал параграфы и выучил конспект, не ответил на дополнительный вопрос по теме – «4» балла;

  • студент выучил конспект, владеет информацией из учебника, ответил на дополнительный вопрос по теме – «5» баллов.





СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ



  1. Законы отражения и преломления света. Полное внутреннее отражение [Электронный ресурс]/ Studfiles // Режим доступа https://studfiles.net/preview/1787988/page:12/

  2. Построение изображений в линзе [Электронный ресурс]/ Nsportal // Режим доступа https://nsportal.ru/shkola/fizika/library/2015/01/13/linzy-postroenie-izobrazheniya-v-linze

  3. Предмет и задачи оптики [Электронный ресурс]/ Spravochnick // Режим доступа https://spravochnick.ru/fizika/optika/predmet_i_zadachi_optiki/

  4. Световой поток и освещенность. Звезды [Электронный ресурс]/ Kvant.space // Режим доступа http://kvant.space/zvyozdy

  5. Тест по теме «Звезды» [Электронный ресурс]/ Liketest // Режим доступа http://liketest.ru/astronomiya/test-s-otvetami-po-teme-mir-zvezd.html

  6. Физика. 11 класс: Учебник для общеобразоват. учреждений с приложением на электронном носителе: базовый и профильный уровни: [Текст]/ Г. Я. Мякишев, Б. Б. Буховцев, Н.Н. Соцкий.-20-е изд.-М.:Просвещение, 2011.–399 с.





Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!