Методика преподавания математики в специальной (коррекционной) школе VIII вида:
- Основные задачи специальной (коррекционной) школы VIII вида — максимальное преодоление недостатков познавательной деятельности и эмоционально-волевой сферы умственно отсталых школьников, подготовка их к участию в производительном труде, социальная адаптация в условиях современного общества.
Задачи обучения
- За период обучения в школе VIII вида учащиеся должны получить следующие математические знания и практические умения:
- а) представления о натуральном числе, нуле, натуральном ряде чисел, об обыкновенных и десятичных дробях;
- б) представление об основных величинах (длине отрезка, стои мости, массе предметов, площади фигур, емкости и объеме тел, времени), единицах измерения величин и их соотношениях;
- в) знание метрической системы мер, мер времени и умение практически пользоваться ими;
- г) навыки простейших измерений, умение пользоваться инструментами (линейкой, мерной кружкой, весами, часами и т.д.);
- д) умение производить четыре основных арифметических действия с многозначными числами и дробями;
- е) умение решать простые и составные (в 3—4 действия) арифметические задачи;
- ж) представление о плоскостях и объемных геометрических фигурах, знание их свойств, построение этих фигур с помощью чертежных инструментов (линейки, циркуля, чертежного угольника, транспортира):\
- Обучая математике учащихся вспомогательных школ, надо учитывать, что усвоение необходимого материала не должно носить характера механического -заучивания и тренировок. Знания, получаемые учениками, должны быть осознанными. От предметной, наглядной основы следует переходить к формированию доступных математических понятий, вести учащихся к обобщениям и на их основе выполнять практические работы
- Практика работы школы VIII вида показывает, что учащиеся, хорошо успевающие по математике, как правило, лучше справляются с практическими заданиями по другим предметам. Умственно отсталые школьники не могут самостоятельно установить взаимосвязь между знаниями, полученными по различным учебным предметам
- Задача учителя любого учебного предмета, в том числе и математики, — показать, что знания, полученные по какому-либо предмету, обогащают, дополняют знания по другим учебным предметам, тогда учащиеся получат не разобщенные знания, а систему знаний, которая может быть широко использована
- Специальные исследования В. А. Крутецкого 1 показали, что для творческого овладения математикой как учебным предметом необходима способность к формализованному восприятию математического материала (схватыванию формальной структуры задачи), способность к быстрому и широкому обобщению математических объектов, отношений, действий, способность мыслить свернутыми структурами (свертывание процесса математического рассуждения), гибкость мыслительных процессов, способность к быстрой перестройке направленности мыслительного процесса, математическая память (обобщенная память на математические отношения, методы решения задач, принципы подхода к ним).
- Известно, что математика является одним из самых трудных предметов для этой категории учащихся. С одной стороны, это объясняется абстрактностью математических понятий, с другой стороны, особенностями усвоения математических знаний учащимися.
- Успех в обучении математике школьников с нарушением интеллекта во многом зависит, с одной стороны, от учета трудностей и особенностей овладения ими математическими знаниями, а с другой — от учета потенциальных возможностей учащихся. Состав учащихся школы VIII вида чрезвычайно разнороден, поэтому трудности и потенциальные возможности каждого ученика своеобразны.
- Наблюдения и специальные исследования показывают, что узость, нецеленаправленность и слабая активность восприятия создают определенные трудности в понимании задачи, математического задания. Учащиеся воспринимают задачу не полностью, а фрагментарно, т.е. по частям, а несовершенство анализа и синтеза не позволяет эти части связать в единое целое, установить между ними связи и зависимости и, исходя из этого, выбрать правильный путь решения.
- Трудности при обучении математике вызываются также несовершенством зрительных восприятий (зрительного анализа и синтеза) и моторики учащихся. Это проявляется в обучении письму вообще и цифр в частности^ У школьников с нарушением интеллекта младших классов нередко наблюдается зеркальное письмо цифр:
- Учащиеся нередко строят цифры, а не пишут: например, при написании цифры 1 сначала пишут вертикальную палочку, а потом к ней пристраивают крючочек справа, пишут цифру снизу вверх (не запоминают, с какого элемента надо начинать написание цифры).
- Затрудненность письма у некоторых учащихся усугубляется тремором (дрожанием) рук, параличами. Нарушение координации движений у отдельных учащихся нередко служит причиной очень сильного нажима при письме, который приводит к поломке карандаша и прорыву бумаги
- Несовершенство зрительных восприятий, трудности пространственной ориентировки приводят к тому, что учащиеся не видят строки и не понимают ее значения. Поэтому ученик может начать писать строчку цифр в левом верхнем углу тетради, а закончить ее в правом нижнем углу, т.е. располагает цифры по диагонали, также располагает и строчки примеров, не соблюдает высоту цифр, интервалов
- Известно, что у умственно отсталых школьников с большим трудом вырабатываются новые условные связи, особенно сложные, но, возникнув, они оказываются непрочными, хрупкими, а
- главное, недифференцированными. Слабость дифференциации нередко приводит к уподоблению знаний. Учащиеся быстро утрачивают те существенные признаки, которые отличают одну фигуру от другой, один вид задачи от другого, те признаки, которые позволяют различать числа, действия, правила и т. д.
- Другая причина слабой дифференцированности математических знаний кроется в отрыве математической терминологии от конкретных представлений, реальных образов, объектов, в непонимании конкретной ситуации задачи, математических зависимостей и отношений между данными, а также между данными и искомыми. Например, учащиеся не представляют себе реально таких единиц измерения, как километр и килограмм, а некоторое сходство в их звучании приводит к их уподоблению.
- Отмечается «застревание» на принятом способе решения примеров, задач, практических действий. С трудом происходит переключение с одной умственной операции на другую, качественно иную. Например, учащиеся, научившись складывать и вычитать приемом пересчитывания, с большим трудом овладевают приемами присчитывания и отсчитывания
- Низкий уровень мыслительной деятельности школьников с нарушением интеллекта затрудняет переход от практических действий к умственным. В отличие от нормально развивающихся детей и детей с задержкой психического развития, для формирования у умственно отсталых учащихся представлений о числе, счете, арифметических действиях и др. требуется развернутость всех этапов формирования умственных действий.
- Трудности в обучении математике учащихся школы VIII вида усугубляются слабостью регулирующей функции мышления этих детей. Очень ярко эта особенность учащихся проявляется при решении задач. Учащийся, не дочитав или не дослушав новую задачу до конца, но усмотрев в ней по каким-то внешним, часто несущественным признакам сходство с ранее решавшимися задачами, восклицает: «О, эту задачу я умею решать! Мы такие задачи решали!»
- Бездумным» подходом к выполнению любого задания объясняется и редкое использование рациональных приемов вычислений: округления, группировки. Например, находя значение числового выражения 230+57+13+126, ученики выполняют действия подряд, вместо того чтобы воспользоваться переместительным и сочетательным законами сложения и сгруппировать слагаемые, хотя они и знают эти законы.
- У умственно отсталых учащихся, проучившихся некоторое время в массовой школе, наблюдается нередко отрицательное отношение к учению вообще и к математике в частности, как наиболее трудному учебному предмету. Объясняется это тем, что темп работы, содержание учебного материала были непосильны учащимся, а методы и приемы работы учителя не учитывали особенностей дефектов этих детей.
- Объем, содержание и система изучения математического материала в коррекционной школе имеют значительное своеобразие. Это объясняется особенностями усвоения, сохранения и применения знаний учащимися коррекционной школы.
- 1. Умственно отсталые учащиеся усваивают новые знания медленно, с большим трудом, затрачивая при этом много усилий и времени, поэтому программный материал каждого класса дан в сравнительно небольшом объеме. Например, в 1-м классе учащиеся изучают лишь числа первого десятка и знакомятся со сложением и вычитанием в пределах 10; знакомство с мерами стоимости, длины начинается с 1-го, а заканчивается в 8—9-х классах, изучение долей и обыкновенных дробей начинается с 4-го, а заканчивается в 8—9-х классах и т. д.
- 2. Особенностью расположения материала в программе является «забегание» вперед, наличие подготовительных упражнений, которые исподволь подводят учащихся к формированию того или иного понятия.,Например, понятие о разностном сравнении учащиеся получают в 4-м классе, тогда как сравнение путем установления лишних единиц в большем числе и недостающих в меньшем сначала рядом стоящих чисел, а потом и любых двух чисел они производят уже в 1-м и во 2-м классах. 30
- Такой же подход прослеживается и при формировании понятий и геометрических фигурах и их свойствах, свойствах и законах арифметических действий и других понятий. Например, в 1-м классе учащиеся знакомятся с образом прямоугольника, во 2-м гинея чертить прямоугольник по данным точкам (вершинам), в I м классе учащиеся знакомятся с элементами этой геометрической фигуры, свойствами ее углов и сторон, в 4-м классе — с черчением прямоугольника (квадрата) с помощью линейки и чертежного треугольника по заданным длинам сторон, сравнивают прямоугольник и треугольник, выделяют основания и боковые стороны, в 5-м классе знакомятся со смежными сторонами и диагоналями прямоугольника, в 6-м классе прямоугольник рассматривается как частный случай параллелограмма, в 7—8-х классах дается понятие о площади прямоугольника.
3 Учитывая, что умственно отсталые учащиеся с трудом выделяют и тот в формируемых понятиях существенные признаки, отличающие эти понятия от других, сходных или противоположных, и склонны к уподоблению понятий, особенно если усматривают в них черты внешнего сходства, программа нацеливает учителя на го, чтобы в процессе обучения он опирался на приемы сравнения, сопоставления и противопоставления. Например, вычитание рас сматривается в сопоставлении со сложением (противоположные действия), сложение сравнивается с умножением (сходные дейст- ния), понятие об уменьшении числа на несколько единиц противо поставляется понятию об увеличении числа на несколько единиц и сопоставляется со сходным понятием об увеличении числа в несколько раз и т.д. Это позволяет выяснить сходство и различие н понятиях, действиях, задачах, вскрывая существенные и несу щественные признаки.
- 4. Учитывая, что учащиеся школы VIII вида склонны к медленному запоминанию и быстрому забыванию, *программа предусматривает наряду с изучением нового материала небольшими порциями постоянное закрепление и повторение изученного) Программа каждого класса начинается с повторения основного материала предыдущих лет обучения. Причем повторение предполагает по степенное расширение, а главное, углубление ранее изученных знаний. Например, в 4-м классе при повторении концентра «Первая сотня» учащиеся вспоминают о разрядных единицах (единиwах, десятках, сотнях) и одновременно получают представление о разряде, о наибольшем и наименьшем числе каждого разряда, в 5-м классе — об округлении чисел.
- При повторении табличного умножения и деления рассматриваются случаи умножения и деления единицы и нуля, а также умножение на единицу и нуль и деление на единицу, деление с остатком, углубляются знания учащихся о взаимообратности действий сложения и вычитания, умножения и деления, о зависимости между компонентами арифметических действий и т. д.
- 5. Учитывая, что отвлеченное, абстрактное мышление умственно отсталых школьников развито слабо, что подвести учащихся к определенным обобщениям, выводам, правилам, установлению закономерностей, сформировать то или иное понятие возможно только на основе неоднократных наблюдений реальных объектов, практических операций с конкретными предметами, программа нацеливает учителя на широкое использование наглядности, дидактического материала.
- Коррекционная школа ставит одной из основных задач под готовку учащихся к жизни, к овладению доступными им профес сиями, к посильному участию в труде. Поэтому в программе боль шое место отводится привитию учащимся практических умений и навыков.
- Наряду с формированием практических умений и навыков программа предусматривает знакомство учащихся с некоторыми теоретическими знаниями, которые они приобретают индуктивным путем, т.е. путем обобщения наблюдений над конкретными явле ниями действительности, практических операций с предметными совокупностями.
- Учитывая неоднородность состава учащихся школы VIII вида и разные возможности учащихся в усвоении математических зна ний, программа указывает на необходимость дифференциации учебных требований к разным категориям детей по их обучаемос ти математике.
- Программа в целом определяет оптимальный объем знаний, умений и навыков, который, как показывает многолетний опыт обучения, доступен большинству учащихся коррекционной школы. Однако практика и специальные исследования показывают, что почти в каждом классе имеются учащиеся, которые постоянно отстают от своих одноклассников в усвоении математических знаний. Оптимальный объем программных требований оказывается им недоступен, они не могут сразу, после первого объяснения
- Для учащихся с локальными поражениями коры головного мозга или с акалькулией, которые, успевая по всем учебным предметам, не в состоянии усвоить программу школы VIII вида по математике даже при наличии дополнительных индивидуальных занятий, программой предусматривается возможность их обучения по индивидуальным планам, составленным учителем и утвержденным администрацией школы. В этом случае индивидуальная программа составляется с учетом возможностей усвоения математических знаний конкретным ученикам.
- Программа нацеливает учителя на решение основной задачи преподавания математики в коррекционной школе — коррекционно-развивающей. В объяснительной записке программы по математике говорится о необходимости использовать процесс обучения математике в целях повышения уровня общего развития и коррекции недостатков познавательной деятельности учащихся коррекционной школы.
- Учитывая, что в 0—1-й классы школы VIII вида поступают дети с разным уровнем развития, различной готовностью к обучению и различной математической подготовкой (дети приходят из общеобразовательной начальной школы, проучившись там разные сроки, из детских садов, как массовых, так и специальных, из семьи, из стационарных лечебных учреждений), программа предусматривает значительный подготовительный (пропедевтический) период!
- В пропедевтический период уточняются и формируются у уча щихся понятия о размерах предметов (большой — маленький, равные, больше — меньше, длинный — короткий, длиннее — короче и т.д.), пространственные представления (далекий — близкий, вверху — внизу, слева — справа и т. д.), количественные представления (много — мало, поровну, столько же и др.), временные понятия и представления (сегодня, завтра, вчера, утро, день, вечер, ночь и др.). Продолжительность пропедевтического периода определяется составом учащихся, их подготовленностью к школьным занятиям, уровнем их математических представлений
- Он может продолжаться весь учебный год в нулевом классе или от двух недель до полутора месяцев в первом классе. После пропедевтического периода излагается содержание разделов математики. Этими разделами являются: а) нумерация; б) арифметические действия с целыми числами; в) величины, единицы измерения величин; г) дроби; д) элементы наглядной геометрии. Во всех классах предусмотрено обучение решению математических задач.
- В каждый из этих разделов включен материал, доступный пониманию умственно отсталых школьников на данном этапе их обучения, необходимый для овладения ими профессией, для подго-товки к жизни и социальной адаптации.
- С„При изучении нумерации учащиеся должны получить понятия натурального числа, нуля, натурального ряда чисел и его свойств, овладеть закономерностями десятичной системы счисления.
- Программа предусматривает обучение четырем арифметическим действиям в пределах одного миллиона, основным приемам устных и письменных вычислений, изучение названий компонентов и результатов арифметических действий, зависимости между компонентами, практическое знакомство с переместительным и сочетательным свойствами арифметических действий.
- В коррекционной школе учащиеся знакомятся с величинами (длиной, массой, стоимостью, временем, площадью, объемом), единицами измерения этих величин, их соотношением, числами, выражающими длину, стоимость, массу, время и т. д., и действиями с ними.
- Наряду с этим учащиеся должны изучить дроби, как обыкновенные, так и десятичные: получение дробей, основные свойства, преобразования, сравнение дробей, арифметические действия с дробями, проценты
- На всех годах обучения решаются как простые, так и составные арифметические задачи. Основную группу задач составляют, так называемые, собственно арифметические задачи) В программе представлены некоторые типовые задачи (на нахождение среднего арифметического, на части, на прямое и обратное приведение к единице, на пропорциональное деление, на движение), имеющие большое практическое значение.
- В программе по математике предусматривается концентрическое изучение нумерации и арифметических действий с целыми числами. Изучение арифметического материала внутри каждого концентра происходит достаточно полно и законченно, причем материал предыдущего концентра углубляется в последующих концентрах.
- При концентрическом расположении материала учащиеся постепенно знакомятся с числами, действиями и их свойствами, доступными на данном этапе их пониманию. На первых порах ость возможность использовать предметную основу, так как изучаются небольшие числа. Затем осуществляется постепенный переход к отвлеченным понятиям и оперирование с числами, которые трудно конкретизировать с помощью предметных совокупностей
- Приобретая новые знания в следующем концентре, учащиеся постоянно воспроизводят знания, полученные на более ранних сгапах обучения (в предыдущих концентрах), расширяют и углубляют их. Неоднократное возвращение к одному и тому же понятию, включение его в новые связи и отношения позволяют умст-иенно отсталому школьнику овладеть им сознательно и прочно.
- Задачей первого концентра является знакомство с числами первого десятка, цифрами для записи этих чисел, действиями сложения и вычитания; одновременно учащиеся знакомятся с единицами измерения стоимости — копейкой, рублем, монетами достоинством в 1, 5, 10 копеек, 1 р., 5 р., 10 р. Изучение этого материала происходит в 0—1-х классах.
- Задачей второго концентра является изучение нумерации и четырех арифметических действий в пределах 20'. Учащиеся знакомятся с названием чисел 11—20 (перед ними раскрывается позиционный принцип записи чисел второго десятка; единицы записываются в числе на первом месте справа, десятки — на втором), с новыми арифметическими действиями — умножением и делением. Учащиеся знакомятся с единицами измерения длины — сантиметром, дециметром, мерой емкости — литром, единицами измерения времени — неделей, сутками, часом, определением времени по часам, учатся измерять и чертить отрезки в сантиметрах и дециметрах, работать с монетами.
- В третьем концентре изучается нумерация в пределах 100, раскрывается понятие разряда, учащиеся знакомятся со сложением и вычитанием двузначных чисел, приемами устных и письменных вычислений.
- Завершается изучение табличного умножения и деления, ознакомление с внетабличным умножением и делением. Продолжается изучение величин и единиц их измерения.
- Материал третьего концентра изучается в 3—4-х классах. Учащиеся получают понятия о единицах измерения длины (метре), стоимости (копейке, рубле), массы (килограмме), времени (годе, месяце), знакомятся с соотношением единиц измерения.
- Задачей четвертого концентра является изучение нумерации в пределах тысячи, вычленение трех разрядных единиц (единиц, десятков, сотен), составляющих основу нумерации многозначных чисел.
- Продолжается изучение величин и единиц измерения длины (километр, миллиметр), массы (грамм, центнер, тонна), времени (секунда, год, месяц, сутки), соотношения единиц измерения, выработка практических умений, измерения величин. Изучение материала четвертого концентра происходит в 5-м классе
- За период обучения математике в школе VIII вида должны овладеть следующим:
- а) нумерацией чисел, счетом простыми и разрядными
- ми, равными числовыми группами в пределах 1 000 000, умением читать и записывать эти числа, знать их десятичный состав, разряды и классы;
- б) умением получить дробь, читать и записывать ее, знать виды дробей, преобразовывать дроби;
- в) арифметическими действиями, умением складывать и вычитать устно в пределах 100, знать таблицу умножения и деления,
- приемами письменных вычислений, выполнять четыре арифметических действия в пределах 1 000 000 (умножать и делить на однозначное число), производить эти же действия с дробными числами (кроме умножения и деления дроби на дробь), найти дробь и несколько процентов от числа;
- г) умением решать простые и составные задачи в три действия, указанных в программе видов;
- иметь конкретные представления о единицах измерения стоимости, длины, емкости, массы, времени, площади и объема, знать таблицу соотношения этих единиц, уметь пользоваться измерительными инструментами и измерять длину масштабной линейкой, , циркулем и рулеткой, взвешивать на чашечных и циферблатных весах, определять емкость сосудов мерной кружкой, литровыми или пол-литровыми емкостями (банками, бутылками), определять время по часам, уметь заменять число, выраженное в мерах длины, массы, времени и т.д., десятичной дробью и выполнять с ними четыре арифметических действия;
- е) геометрическим материалом — уметь различать основные геометрические фигуры (точка; линии — прямые, кривые, ломаные; отрезок; луч; угол; многоугольник — треугольник, четырехугольник; круг; окружность; шар; конус; параллелепипед; куб), знать их названия, элементы, уметь чертить их с помощью линейки, чертежного треугольника, транспортира, циркуля, измерять и вычислять пл.ощади геометрических фигур и объемы параллелепипеда и куба. "\
ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ МЕТОДОВ ОБУЧЕНИЯ НА УРОКАХ МАТЕМАТИКИ
- В условиях школы VIII вида, учитывая дефекты познавательной деятельности учащихся, их эмоционально-волевой сферы, необхо-димо прежде всего развивать исполнительскую, воспроизводящую деятельность детеи^о только развитием этих видов деятельности учащихся нельзя ограничиваться, так как не будут в должной мере решаться задачи коррекции, подготовки к овладению профессией, социальной реабилитации и адаптации.
- Развивая воспроизводящую деятельность учащихся, учитель ставит и решает более сложную задачу — развивает их инициативу, творческую деятельность, учит использовать полученные знания сначала в аналогичных, а затем в новых условиях, для решения новых задач. Это возможно лишь при учете не только особенностей их познавательной деятельности, но и личностных качеств, их отношения к процессу познания, учению.
- Прежде чем сообщить учащимся те или иные знания, необхо-димо создать у них определенную положительную установку на щи приятие и осмысление этих знаний. Это достигается созданием , тропой или жизненно-практической ситуации, в которой ученики прочувствовали бы недостаток знаний для решения определенной жизненной или учебной задачи, их заинтересовавшей. У учащихся присуждается чувство ожидания нового, неизвестного.
- При объяснении учитель связывает новый материал с пройденным, включая его в систему знаний, устанавливая связи и взаимозависимость между уже имеющимися у учащихся знаниями и приобретаемыми вновь. В установление этих взаимосвязей учитель вовлекает учащихся, воспроизводя имеющиеся знания, опираясь на их прошлый опыт. При этом он широко использует наглядность: предметные пособия, иллюстративные таблицы, дидактический раздаточный материал, схемы, чертежи, графики, арифметические записи чисел, действий, решений задач.
- Изложение знаний, т. е. слово учителя, сочетается с наблюдениями учащихся. В процессе изложения знаний учитель выделяет существенные признаки, варьируя несущественные, ведет учащихся, опираясь на чувственную основу, к выводам, правилам, обобщениям.
следует разбить на небольшие, логически завершенные «порции». На одном уроке излагается небольшой по объему материал. Изложение учитель может иногда прерывать вопросом, обращенным к учащимся: «Как вы думаете, что нужно делать дальше?» или «Где нужно подписать десятки при сложении в столбик?» Вопросы ставятся для того, чтобы выяснить, понимают ли учащиеся излагаемый материал, успевают ли следить за изложением или внимание их отвлечено. Они активизируют и познавательную деятельность учащихся, позволяют направлять их внимание.
- Нередко объяснение учителя сопровождается демонстрацией наглядных пособий, практической работой учащихся с дидактическим материалом. Практическая работа с предметами, направляемая объяснением учителя, может служить базой для обобщений. Например, учитель знакомит учащихся с названием и количеством элементов треугольника. Каждый ученик получает треугольник. У всех учащихся они разного вида, размера, цвета. Модель треугольника демонстрируется и перед классом. Учитель объясняет, что треугольник имеет углы, показывает их. Учащимся предлагается практическая работа — отыскать углы на моделях своих
- определенный запас представлений для формирования на их основе новых знаний, понятий. Он готовит систему вопросов, с помощью которых не только воспроизводится усвоенный ранее учащимися материал, но организуются наблюдения учащихся. Учитель управляет восприятием, помогает выделить главное, установить взаимоотношения между изучаемыми фактами, свойствами объектов, явлений их обусловленностью и ведет учащихся к обобщениям, и, выбору действий при решении задач. Беседа активизирует учащихся будит мысль.
- После беседы учитель должен дать учащимся образец ответа в связного рассказа. Например, после беседы и выводов о свойстве элементов в прямоугольнике и свойствах его углов и учитель дает образец ответа детям: «Прямоугольник имеет I угла, 4 вершины, 4 стороны. Все углы у прямоугольника прямые 1 . Противоположные стороны равны».
- Беседа как метод обучения широко используется при решении ч.
- Однако постепенно учитель должен вести учащихся от системы вопросов в 1-м варианте к системе вопросов в 3-м, развивая самостоятельность и активность учащихся.
- Метод наблюдения в сочетании с предметно-практической деятельностью самих учащихся широко используется и при геометрического материала. Например, при знакомстве со свойствами углов и сторон прямоугольника (3-й класс) учитель использует такой способ: раздает каждому ученику по 2—3 модели этой фигуры разных размеров, просит измерить углы и стороны и записать результаты измерений. Когда практическая работа закончена, он спрашивает, что ученики могут сказать об углах своих прямоугольников. Ученики подмечают, что во всех прямоугольниках все углы прямые. Самостоятельно формулируют правило: «У прямоугольника все углы прямые». Аналогично учащиеся подводятся к самостоятельному выводу о свойствах сторон прямоугольника.
- Предъявлять учащимся учебник целесообразнее всего при ознакомлении с новым случаем выполнения арифметического действия, который является более сложным по сравнению с ранее изученным. Например, после изучения сложения многозначных чисел с переходом через разряд в одном разряде учащимся можно предоставить возможность разобраться по учебнику в рассмотрении случаев сложения с переходом через разряд в двух (или даже трех) разрядах. Учащиеся должны показать, какой существенный признак отличает эти вычисления от рассматривавшихся ранее.
- Естественно, что этот метод можно применять лишь тогда, когда в учебнике материал изложен достаточно подробно, с правильно подобранными примерами-образцами.
- На уроках математики в школе VIII вида дидактические игры находят широкое применение при закреплении любой темы. Создано большое количество игр, развивающих количественные, пространственные, временные представления и представления о размерах предметов. Хорошо известны игры «Веселый счет», «Живые цифры», «Арифметическое лото» (домино), «Круговые примеры», «Лесенка», «Молчанка», «Магазин» и др. 1 .
- Поиски путей повышения эффективности учебного процесса привели к использованию элементов программированного обучения.
- Опыт использования элементов программированного обучения в процессе преподавания математики показал, что целесообразнее использовать его при закреплении знаний и особенно при выработке вычислительных навыков, решении задач и т. д.
- Программированные задания, которые уже нашли место на уроках математики, составляются таким образом, чтобы ученик, выполняя задание самостоятельно, находил ответ, сравнивал его либо с группой данных ему ответов, среди которых есть и ответ к данному заданию, либо с показаниями приборов. Если задание выполнено неверно, т.е. если ответ задания не совпадает с одним из данных ответов или не подкрепляется положительным сигналом, то ученик снова предпринимает попытку его решить и делает это до тех пор, пока не получит правильного ответа. Учитель выявляет причину ошибочного ответа и оказывает помощь ученику.
- При использовании сравнения имеется возможность выделить существенные признаки одного понятия и сравнить их с существенными признаками другого, подчеркивая черты сходства и различия. Например, необходимо сравнить две задачи на увеличение числа на несколько единиц и на увеличение числа в несколько раз. Чтобы учащиеся смогли уяснить существенные признаки каждой из этих задач, учитель подбирает задачи с одинаковой фабулой, одинаковыми числовыми данными.
СИСТЕМА УРОКОВ МАТЕМАТИКИ
- Усвоение знаний учащимися на уроке происходит на разных уровнях. Одним учащимся доступно лишь восприятие, осмысление нового материала. Другие уже могут использовать эти знания в сходной ситуации. Потребуется неодинаковое количество уроков
- Для того чтобы учитывать и различный уровень усвоения знаний учащимися, и постепенность изучения материала, необходимо четко планировать материал, ясно представлять себе всю систему уроков по теме, познавательные возможности учащихся, а также уровень их знаний.
- Урок математики следует рассматривать как логически завершенную часть всего учебного процесса в системе уроков матема- тики.
- Система уроков дает возможность логически обоснованно работать над определенным понятием, целенаправленно формировать у учащихся определенные умения и навыки. При планировании системы уроков надо учитывать, что учащихся необходимо заблаговременно подвести к восприятию нового материала. Этому надо отвести специальное время.
- Затем планируется знакомство учащихся с новым материалом, т.е. восприятие, осмысление, первичное закрепление знаний. Последующие уроки должны быть посвящены коррекции и закреплению знаний, выработке умений и навыков.
- Следующим этапом усвоения знаний является повторение, обобщение, систематизация знаний, использование их в новых ситуациях
- Характерным для уроков математики в школе VIII вида является непрерывная повторяемость уже полученных знаний, возвращение к ним на последующих уроках, использование этих знаний в иных связях и отношениях, включение в них новых знаний, а следовательно, их углубление и совершенствование, создание таких жизненных ситуаций, в которых бы учащиеся могли использовать ранее приобретенные знания. Именно непрерывность повторения даст возможность сократить время, специально отведенное на повторение в конце четверти и учебного года.
ВИДЫ УРОКОВ МАТЕМАТИКИ
- Всегда можно выделить основную цель. В зависимости от нее и от \ логики процесса обучения в математике различают несколько видов уроков:
- Уроки усвоения новых знаний, на которых учащиеся знакомятся с новым математическим материалом: нумерацией, вычислительными приемами, решением нового вида задач, новыми свойствами фигур, величинами и мерами их измерения.
- Уроки коррекции и закрепления нового материала (применение знаний в сходных ситуациях).
- Уроки выработки практических умений (применение знаний в новых ситуациях).
- Уроки повторения, обобщения и систематизации знаний (усвоение способов действий в комплексе).
- Уроки проверки, оценки, коррекции знаний.
- Комбинированные уроки.
ЧАСТНЫЕ ВОПРОСЫ МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ В КОРРЕКЦОННОЙ ШКОЛЕ VIII ВИДА
- Обучение математике в школе VIII вида начинается с подгото-нительных занятий. Необходимость их диктуется чрезвычайной неоднородностью состава учащихся 1-го класса как по своим психофизическим данным, так и по подготовленности к обучению. В 1-й класс поступают дети, которые уже какое-то время учились в массовой школе, причем сроки их пребывания в массовой школе колеблются от нескольких дней до одного-двух лет. Наряду с этим и 1-й класс приходят дети из массового и специального детского сада, из лечебных учреждений, из семьи.
- Обучение математике в школе VIII вида начинается с подгото-нительных занятий. Необходимость их диктуется чрезвычайной неоднородностью состава учащихся 1-го класса как по своим психофизическим данным, так и по подготовленности к обучению. В 1-й класс поступают дети, которые уже какое-то время учились в массовой школе, причем сроки их пребывания в массовой школе колеблются от нескольких дней до одного-двух лет. Наряду с этим и 1-й класс приходят дети из массового и специального детского сада, из лечебных учреждений, из семьи.
- В пропедевтический период выявляется имеющийся у учащ ся 0—1-х классов запас дочисловых и числовых представлен количественных, пространственных, временных, представление форме предметов, величине и размерах, а также умение счит; (счет вербальный и конкретный), знание чисел и цифр, умен производить действия сложения и вычитания, решать прост задачи на нахождение суммы и разности (остатка).
- Наряду с установлением актуальных знаний выявляются потенциальные возможности школьников, а затем учащиеся гот вятся к изучению математических знани^. Для изучения состс ния знаний по математике используются дидактический материа первые страницы учебника, предметы окружающей действительности, игрушки, картинки и т. д. Выявляются пространственные представления учащихся путем предъявления заданий практического характера («Возьми карандаш в правую руку», «Придерживай тетрадь левой рукой», «Покажи верх (низ) доски», «Кто сидит ближе ко мне, дальше от меня?», «Сядь рядом с Сашей», «Встань между Надей и Витей»).
- Наряду с пространственными представлениями необходимо выявить понимание признаков предметов, характеризующих их размер: большой — маленький, больше — меньше, равные по величине, длинный — короткий, длиннее — короче, равные по длине, высокий — \ низкий, выше — ниже, равные по высоте, широкий — узкий, шире — \ уже, равные по ширине и т. д. Выявление представлений учащихся о размерах предметов, понимание ими существенных признаков предметов вначале следует провести без использования дидактического материала, .применяя знакомые для учащихся предметы
- Проверяется, знают ли ученики цифры, могут ли назвать предъявляемые цифры по порядку и вразброс, могут ли соотнести цифру и число, а также цифру и то количество предметов, которое она обозначает, например: «Покажи цифру пять», «Сосчитай, сколько здесь матрешек, и положи нужную цифру», «Отсчитай столько карандашей, сколько показывает эта цифра».
- Необходимо проверить знание геометрических фигур: умение отыскивать геометрическую фигуру по образцу (круг, квадрат, треугольник, прямоугольник), умение назвать фигуру, показать названную учителем фигуру, начертить фигуру, не имея ее образца.
- Учитель проверяет, в какой степени учащиеся справляются с решением примеров на сложение и вычитание в пределах 10. Вначале ученику предлагается прочитать готовый пример и определить, правильно ли он решен (учитель выявляет понимание учеником значения знаков арифметических действий +, —, =, степень использования им дидактического материала). Затем предлагаются для решения примеры на сложение и вычитание в одно действие (3+2=..., 5—2=...).
ФОРМИРОВАНИЕ ПРЕДСТАВЛЕНИЙ И ПОНЯТИЙ О ПРИЗНАКАХ ВЕЛИЧИНЫ ПРЕДМЕТОВ
- Формирование представлений о размерах требует тщательного • гбора наглядных пособий, дидактического материала, а также предметов окружающей ребенка обстановки, с которыми он повсе-пневно сталкивается.
- Для первых уроков по формированию того или иного понятия нужно подобрать дидактический материал, предметы, которые бы отличались друг от друга только одним признаком. Причем этот признак должен выступать контрастно. Например, при формировании признака длины предметов следует подбирать ленты, полоски оумаги, тесьму и т. д., которые отличались бы только по длине, а псе другие признаки (ширина, материал, цвет) были одинаковы. Такой подбор наглядного материала предупреждает смешение существенных и несущественных признаков.
- Для последующих уроков подбираются предметы, отличающиеся друг от друга двумя, а потом и тремя признаками) Например, одна лента длинная и узкая, другая лента короткая и широкая. Один дом высокий, длинный, узкий, а рядом другой дом низкий, длинный, широкий.
- Такой подбор предметов ставит перед учащимися более трудную задачу — из ряда признаков выделить тот, который требует учитель. Характеризуя предмет несколькими уже известными учащимся признаками, можно добиться от учеников дифференциации этих признаков.
- Уточнение или формирование признака должно проходить на) раздаточном материале, натуральных предметах, причем таких, у] которых этот признак рельефно выступает и по которому эти; предметы отличаются друг от друга (все остальные признаки одинаковы). Например, большой и маленький мяч, толстый и тонкий карандаш (длина, цвет одинаковы), длинная и короткая бечевка, высокая и низкая ваза, широкая и узкая линейка (длина, толщина одинаковы). На этом же уроке учащиеся используют карточки с рисунками. Учитель, например, просит показать большое яблоко и маленькое яблоко, большую куклу и маленькую куклу, большой шар и маленький шар, большой дом и маленький дом и т. д. Учащиеся находят среди игрушек, дидактического материала однородные предметы: большие и маленькие
- Далее учащиеся должны в своей практической деятельности (лепка, обводка, рисование, раскрашивание и др.) воссоздать предметы с определенным признаком. Например, учитель дает задание: вылепить из пластилина большой и маленький шарик, раскрасить большой лист желтым карандашом, а маленький — зеленым, нарисовать высокую и низкую елочку, вылепить толстую и тонкую палочку, вырезать широкую и узкую полоску из бумаги и т. д.
- Выполняя практическую работу, ученик должен придать предмету заданные качества. Это требует от него достаточно ясного представления о том или ином признаке предмета. /""Наконец, необходимо закрепить знания о признаках величины в естественных условиях (на прогулке, экскурсии, на улице, в парке, лесу и т. д.),, в которых многие признаки предметов выступают в комплексе с другими качествами предмета (цвет, материал, форма, конструкция и т. д.). Вычленение признака усложняет-ся
- В практике работы школы VIII вида получила распространение 'дующая система изучения действий умножения и деления она требует глубокого научного обоснования и дополнитель-|Ых экспериментальных исследований
МЕТОДИКА ИЗУЧЕНИЯ ТАБЛИЧНОГО УМНОЖЕНИЯ И ДЕЛЕНИЯ
- При обучении умножению и делению перед учителем стоит
- сложная задача — раскрыть смысл каждого арифметического действия на конкретном материале. Необходимо добиваться, чтобы на основе действий с конкретными предметами учащиеся смогли сделать доступные им выводы, обобщения, отдифференцировать действие умножения от сложения и в то же время установить связь, существующую между этими действиями, чтобы они осознали, что умножение — это сложение одинаковых слагаемых.
ти, природный материал, игрушки, изображения предметов в вю" width="640"
- Впервые в 3-м классе учащиеся школы VIII вида знакомятся 2, .1, 4, 5 с ответами, не превышающими число 20. Лучшему осознании' смысла действия умножения способствует подготовительная р та: счет равными группами предметов, а также счет по 2, 3, до 20, С этой целью учитель готовит наглядные пособия, разда ный Материал. Такими пособиями служат учебные принадлежи ти, природный материал, игрушки, изображения предметов в вю
- Понятие об умножении как сложении равных слагаемых учащиеся получают на первом уроке. Необходимо показать целесообразность замены сложения умножением, познакомить со знаком умножения (х) и с записью действия в строчку. В качестве наглядных пособий используются предметные множества и картинки с изображением предметов, объединенных в равные группы
- Например: «Пересчитайте варежки, связанные парами». Дети считают по 2: 2, 4, б, 8, 10 (рис. 13). Учитель спрашивает, сколько варежек связано вместе. Запишем так, как считали: 2+2+2+2+2 = 10. Сколько пар варежек? (Пять.) Сколько всего варежек? (Десять.) В этом примере сложение можно заменить другим действием — умножением и записать пример короче.
- Как подвести учащихся к этой мысли, разберем на примере с использованием дидактического материала. Можно взять и веточки, на каждой из которых по 2 листочка. «По скольку листочков на ветке? Сколько раз по 2 листочка? Какие числа складывали? Сколько раз складывали? Сколько получилось? Если по 2 (листочка) взять 4 раза, получится 8 (листочков). Это можно записать так: 2x4=8. Вместо слова «взять» записываем знак х (умножить)».
ОБУЧЕНИЕ ТАБЛИЧНОМУ ДЕЛЕНИЮ В ПРЕДЕЛАХ 20
- В школе VIII вида действие деления рассматривается независимо от действия умножения. Только тогда, когда дети хорошо усвоят сущность деления, деление сопоставляется с умножением, устанавливается взаимосвязь между этими двумя действиями. Опыт показывает, что вывод деления из умножения без объяснения сущности самого процесса деления оказывается непонятным умственно отсталым учащимся.
- Известно, что существует два вида деления: деление на равные части и деление по содержанию. Встает вопрос, с каким видом деления раньше знакомить учащихся школы VIII вида
- Действия умножение и деление изучаются параллельно, т после изучения умножения числа 2 изучается деление на 2 ные части, эти два действия сопоставляются, устанавливав связь между ними. Далее изучается умножение числа 3 в пр лах 20 и соответствующие ему случаи деления на 3 равные ча и т. д. Случаи деления на 5, б, 7, 8, 9 даются на основе уста? ления взаимосвязи деления с умножением. (Это операция нах дения одного из множителей по известному произведению и др\ тому множителю.)
ВНЕТАБЛИЧНОЕ УМНОЖЕНИЕ И ДЕЛЕНИЕ
- После изучения табличного умножения и деления учащиеся знакомятся с умножением круглых десятков и двузначных чисел на однозначное число, а также с умножением однозначных чисел на круглые десятки и двузначные числа, когда произведение не превышает 100 (20x3, 15-3, 4x20, 5-13), и соответствующими им случаями деления (60:3, 39:3, 80:20, 65:13). Все эти случаи умножения и деления относятся к внетабличному умножению и делению. Различные случаи внетабличного умножения и деления неодинаковы по сложности и поэтому изучаются в 5—6-х классах
- [ I школы VIII вида. Так, умножение и деление круглых десятков на однозначное число (30x2, 60:2) и двузначного числа на однозначное без перехода через разряд (12x3, 36:3) изучаются в 4-м классе. Случаи умножения и деления двузначного числа на одно значное с переходом через разряд (15 «2, 30:2, 18x3, 54:3) и деления на круглые десятки (40:20) изучаются в 6-м классе. Случаи умножения и деления на двузначное число (3-25, 75:25) изучаются в 7-м классе:
- Выполнение действий сложения и вычитания с двумя компонентами сопровождается проверкой обратными действиями, кроме этого, сложение проверяется перестановкой слагаемых, а вычитание — не только сложением, но и вычитанием. Проверка действий выполняется и на счетах.
- Решаются также примеры с тремя и четырьмя компонентами вида 54 800+147 385+4768; 100 070+148 280-7525; 378 040-—275 896+178 608. В первых двух примерах учащиеся выполняют одно действие, а в третьем последовательно два действия. Необходимо указать на различие в записи и решении этих примеров.
- Практическое использование сочетательного закона сложения обычно сопровождается заданием: решить наиболее удобным способом (37 864+15 000+7000+4836). В этом случае учащиеся должны устно сложить 15 тыс. и 7 тыс., а затем провести письменно сложение трех слагаемых: 37 864+22 000+4836.
- Разнообразить упражнения на сложение и вычитание можно, предлагая задания на сравнение результатов действий, на провер ку правильности расстановки знаков равенств и неравенств. На пример, решить столбик примеров и расположить числа, получен ные в ответах, от большего к меньшему; выписать из ответов четные или нечетные, простые или составные числа; проверить, правильно ли поставлены знаки
Умножение и деление многозначных чисел
- Умножение и деление многозначных чисел представляют гораз до больше трудностей, чем сложение и вычитание. Это связано с тем, что ученики нетвердо знают таблицу умножения. Даже т
- Трудности возникают и тогда, когда надо единицы низшего разряда перевести в высший, удержать их в памяти (умножение с переходом через разряд). Неумение долгое время сосредоточить внимание на выполнении действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки. Неустойчивость внимания, стереотипность мышления являются нередко и причиной таких ошибок: умножая первый множитель на двузначный второй множитель, умственно отсталый школьник производит умножение только на единицы, т. е. находит первое неполное произведение, а на десятки умножение не производит, при этом считает, что действие им выполнено полностью.
- Трудности возникают и тогда, когда надо единицы низшего разряда перевести в высший, удержать их в памяти (умножение с переходом через разряд). Неумение долгое время сосредоточить внимание на выполнении действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки. Неустойчивость внимания, стереотипность мышления являются нередко и причиной таких ошибок: умножая первый множитель на двузначный второй множитель, умственно отсталый школьник производит умножение только на единицы, т. е. находит первое неполное произведение, а на десятки умножение не производит, при этом считает, что действие им выполнено полностью.
- Умения и навыки в делении многозначных чисел, особенно на двузначное и трехзначное числа, вырабатываются с еще большим трудом. Умственно отсталым школьникам трудно, а некоторым даже непосильно самостоятельно применить алгоритм деления. Требуется помощь учителя, его наводящие вопросы, чтобы ученик все операции при делении применил последовательно и правильно. Особенно трудно подобрать цифру частного и устно проверить, подходит ли она. Например, характерная ошибка, которая встречается при делении, — неправильный выбор цифры частного, получение остатка больше делителя.
- Умственно отсталые школьники, даже старших классов, отно-1тся к полученным ответам некритично. Они редко себя контро-_Фуют, не замечают абсурда (частное может получиться больше Делимого), полученного в ответе, и это их не смущает, не наталкивает на мысль о неправильности выполнения деления.
- Наибольшего внимания и большего количества упражнений требуют примеры, в которых в частном получаются нули, как в середине, так и на конце.
- После первоначального знакомства с алгоритмом умножени» деления необходимо дать достаточное количество вариативных |_ ражнений, для того чтобы учащиеся научились применять его к различным числам. Затем учащиеся учатся закреплять алгоритм и разных ситуациях, сначала под руководством учителя, а потом и самостоятельно
- Умножение и деление многозначных чисел на однозначное число без раздробления и превращения не представляют собой ничего нового по сравнению с выполнением этих действий в пределах 1000. Поэтому эти действия также следует рассматривать как подготовительные к следующему, более трудному этапу. Нужно повторить, как подписываются числа при записи примеров в столбик, требовать подробных объяснений, затем объяснения свертываются (разрядные единицы не называются)
- Далее учащиеся решают примеры на умножение, а затем и на деление с раздроблением и превращением разрядных единиц.
Умножение многозначного числа на однозначное
- Подбираются для решения случаи с постепенным нарастание трудности: сначала с переходом через разряд в одном, в двух, затем и в нескольких разрядах.
- Наконец, решаются примеры на умножение, в которых первым множитель имеет нули в середине или на конце (особые случаи)
- Опыт и специальные исследования показывают, что в условиях вспомогательной школы целесообразно бывает сохранить единую, привычную для учащихся форму записи умножения в столбик даже в том случае, когда первый множитель оканчивается нулями
- При записи примеров с первым множителем, оканчивающимся! нулями, второй множитель можно подписывать под первой значащей цифрой справа:
- При делении необходимо примеры подбирать так, чтобы высший разряд делимого делился на делитель (был больше его). На таких примерах удобнее всего закрепить предварительную прикидку числа цифр в частном, о которой учащиеся уже получили представление при делении чисел в пределах 1000
- Умножение и деление на разрядные числа (десятки, сотни, тысячи)
- Умножение на разрядные числа. Подготовительным упражнением к умножению на разрядные числа является повторение табличного умножения, умножения на однозначное число, а также на 10, 100, 1000. Следует вспомнить, как круглое число представить в виде произведения двух чисел (например, 20=2-10, 500=5-100, 6000=6-1000), повторить уже известные учащимся случаи умножения на круглые числа (например, 24 12-20= 12-(2-10)=(12-2)-10=24-10=240), вспомнить 30 правило: чтобы умножить число на круглые десятки, 720 нужно умножить это число на число десятков и к полученному произведению приписать нуль, т. е. умножить его на 10.
- Это правило учащиеся применяют и при умножении больших чисел в пределах 10 000, 100 000 и 1 000 000. Аналогично учащиеся знакомятся с умножением двузначных, трех- и четырехзначных чисел на круглые сотни: 25 - 300=25 - 3 • 100=75 • 100=7500.
- На умножение на круглые тысячи распространяется уже известное учащимся правило умножения числа на круглые десятки и сотни.
- Сначала рассматривается устно решение примеров вида: 7x5000. Можно 5000 записать как произведение 5-1000. 7 - (5 - 1000Ы7 • 5) -1000=35 -1000=35 000.
- Деление на разрядные числа. Учащиеся уже знакомы с делением на круглые десятки и сотни. При изучении действий в пределах 1000 они опираются на этот знакомый материал. Поэтому необходимо повторить табличное деление, деление на 10, 100, 1000 и, так же как в умножении, вспомнить, как представить круглые числа в виде произведения двух чисел (30=3-10, 100=3-100, 3000=3-1000), повторить устные и письменные случаи деления.
МЕТОДИКА ИЗУЧЕНИЯ МЕТРИЧЕСКОЙ СИСТЕМЫ МЕР ОБУЧЕНИЕ ИЗМЕРЕНИЯМ
- Занятия по данной теме способствуют формированию обобщений, совершенствованию целенаправленности и точности выполнения действий, воспитанию умения планировать деятельность, доводить любую работу до конца, формированию навыков самоконтроля.
- В ходе формирования практических умений и навыков развиваются внимание, память, наблюдательность, совершенствуются моторика, тактильные и зрительные ощущения. Все это служит решению задач коррекции как познавательной деятельности, так и личностных качеств школьников с нарушением интеллекта.
- В процессе знакомства с единицами измерения величин у учащихся расширяются представления о числе. Они убеждаются, что числа получаются не только от пересчета предметных совокупностей, но и в результате измерения величин.
- Изучение данной темы позволяет тесно связать преподавание математики с жизнью: учащиеся получают практические умения и навыки измерения, необходимые как в повседневной жизни, так и при овладении будущими профессиями, учатся правильно пользоваться измерительными инструментами — линейкой и рулеткой (устанавливать линейку, вести отсчет единиц измерения от нулевого деления линейки, а также от любого другого деления), веса ми (уравновешивать весы, производить взвешивание на чашечных весах, циферблатных весах со стрелкой), часами (определят! время по часам с точностью до минуты) и т. д.
- Данная тема, несмотря на большую по сравнению с другими разделами математики конкретность, трудна для учащихся вспомогательной школы. У учащихся как младших, так и старших классов нет реальных представлений о единицах измерения величины, наблюдается смешение единиц измерения одной и той же величины (сантиметра с дециметром и метром) и разных систем мер (метра с квадратным метром, а иногда и с килограммом). Учащиеся путают единицы измерения и измерительные инструменты.
- Для школьников с нарушением интеллекта также характерна неточность измерений. Это вызвано непониманием значения точности измерения в практике, неумением правильно установить инструмент, выбрать соответствующую единицу измерения, произвести отсчет по шкале измерительного инструмента (линейки, весов, циферблатов часов), правильно записать результат измерения.
- . Нужно стремиться (учитывая слабость воображения, малый практический опыт, конкретность мышления умственно отсталых), чтобы учащиеся ощутили, четко представили каждую единицу измерения, используя все органы чувств. Надо шире использовать Наблюдения, опыт, знание уж известных единиц измерения.
- 4. Изучение мер должно сопровождаться активной практической деятельностью самих учащихся: а) по изготовлению единиц измерения (метра, дециметра, сантиметра, миллиметра, квадратных и кубических мер); б) по измерению величин с помощью инструментов; в) по выяснению соотношения мер (в дециметре укладывать сантиметры, метр делить на дециметры и сантиметры, приходя к выводу: 1 дм = 10 см, 1 м=10 дм=100 см).
- При изучении данной темы учащиеся должны получить представление о размерах некоторых наиболее часто встречающихся в их опыте и опыте других людей предметов, знание которых поможет им лучше ориентироваться в окружающей жизни, подготовит к участию в доступной им трудовой деятельности. Например, учащиеся должны знать средний рост ребенка их возраста, средний рост взрослого человека, длину и ширину тетради, классной доски, высоту, длину и ширину класса, длину карандаша, среднюю длину шага, высоту стола, стула, массу одного яблока, картофелины, буханки хлеба, батона, мешка картофеля (зерна, муки), среднюю массу человека, грузоподъемность машины, вместимость ведра, молочных бидонов, среднюю скорость пешехода, лошади, автомашины, поезда, самолета, уметь показать примерные размеры 1 см и 1 м.
- 6. Закрепление знаний мер и умения измерять проводится только на уроках математики, но и на других учебных предмета! особенно на уроках ручного и профессионального труда, физкул| туры, черчения, при работе на пришкольном участке, на произвс ственной практике, а также во внеклассное время. Успех зависит от целенаправленной работы всех учителей и воспитач лей, работающих с одним коллективом учащихся.
- Измерению с помощью инструментов для определения точн| го значения размеров предметов должно предшествовать опред^ ление этих размеров на глаз. Это разовьет глазомер, закреп» представление о единицах измерения, укрепит знание назван! единиц измерения величин, предупредит их уподобление.
- Формирование навыков у детей с нарушением интеллект происходит очень медленно, и требуется большое количество у]| ражнений на протяжении долгого времени, чтобы сформировал тот или иной навык. Поэтому упражнения в измерении необход мо проводить систематически. Они должны быть неотъемлемо!, частью большинства уроков математики. Не реже трех-четырех раз в неделю следует предлагать учащимся упражнения по измерению или вычерчиванию отрезков, геометрических фигур, определению на глаз длины, ширины, высоты предметов, емкости сосудов, определе нию массы груза, времени по часам, а также времени, затраченного на ту или иную работу. Задания могут быть как индивидуальными («Определите массу яблока, пакета с крупой»), так и фронтальными («Нужно решить столбик примеров. Запишите время начала работы по часам. Решите примеры. Запишите время окончания работы. Определите, сколько времени затратил каждый»).
- Весьма полезной для закрепления знаний о единицах измерения, для выработки практических навыков по измерению и использованию измерительных инструментов, для установления связи знаний с жизнью является дидактическая игра «Магазин». Эту игру нужно проводить систематически с 1-го по 4-й класс. Наряду с игрой «Магазин» необходимо организовывать игры «Почта», «Поездка на транспорте» и др.
УМНОЖЕНИЕ И ДЕЛЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ
- В школе VIII вида рассматривается только умножение и деление дробей и смешанных чисел на целое число. Изучение этих действий, так же как и изучение сложения и вычитания, дает параллельно.
- Для удобства изложения мы сначала рассмотрим методику знакомства с умножением дроби на целое число, а затем с деление дроби на целое число.
- Прежде чем знакомить учащихся с умножением дроби на цел^ число, необходимо повторить умножение целых чисел.
- При рассмотрении умножения дроби на целое число необхоД| мо соблюдать определенную последовательность разных случае] которая определяется степенью их трудности.
- Умножение дроби на целое число.
- Умножение смешанного числа на целое. Подготовительными заданиями к объяснению умножения дрой
- на целое число являются задания на умножение целых чисел | последующей заменой действия умножения действием сложений например: заменить умножение 7-3=21 сложением 7+7+7=21| заменить действие умножения (первый множитель — дробь второй множитель — целое число) действием сложения
- При этом обращается внимание на числитель знаменатель произведения и первого множителя. С помощью во просов: «Изменился ли знаменатель дроби при умножении? Чт| произошло с числителем дроби?» — учащиеся приходят к выводу^ что числитель увеличился в 3 раза, а знаменатель не изменился.. Для вывода правила умножения дроби на целое число недостаточно ограничиться рассмотрением только одного примера, нужно, рассмотреть еще несколько примеров
- Правильность ответов в этих примерах необходимо подтвердить демонстрацией рисунков.
- В рассмотренных примерах внимание учащихся надо обратить на то, что в числителе сумму одинаковых слагаемых (трех двоек) можно заменить произведением (2 • 3).
- Число надо сопоставить эти числа со знаменателем и, если у них есть общий делитель, разделить на него и только потом произвести-умножение. Такой прием предварительного сокращения чисел, записанных в числителе и знаменателе, облегчает вычисления
- Деление дроби на целое число дается в следующей последовательности:
- Деление дроби на целое число без предварительного сокращения.
- Деление смешанного числа на целое число без предварительного сокращения.
- Деление с предварительным сокращением.
- Учащимся необходимо показать и такие случаи деления дроби или смешанного числа на целое, когда предварительное сокращение облегчает процесс выполнения действия
ПОЛУЧЕНИЕ ДЕСЯТИЧНЫХ ДРОБЕЙ
- Успех усвоения десятичных дробей во многом зависит от знания учащимися нумерации целых чисел, свойств десятичной системы счисления и десятичного соотношения мер метрической системы (длины, стоимости, массы). Все эти знания необходимо воспроизвести в памяти учащихся перед тем, как переходить к изучению десятичных дробей.
- Учитывая конкретность мышления умственно отсталых учащихся, понятие о десятичной дроби целесообразнее всего сформировать, используя знания учащихся о соотношениях метрической системы единиц измерения длины. В качестве наглядного пособия используется метр, разделенный на дециметры, сантиметры и миллиметры. Учащиеся вспоминают, что в 1 м содержится 10 дм, 100 см и 1000 мм. Теперь можно установить, какую часть метра составляет 1 дм, 1 см, 1 мм,
- Учитель просит учащихся записать подряд без наименования все дроби, которые получили, с тем чтобы обратить внимание на знаменатели этих дробей. Учащиеся на основе наблюдений устанавливают, что у всех дробей знаменатели 10, 100, 1000, т. е. единица с одним или несколькими нулями. Учитель формулирует вывод: дробь, у которой знаменатель — единица с одним или несколькими нулями, называется десятичной дробью.
- Наибольшую трудность для учащихся представляет запись де сятичных дробей (так же как и целых чисел) с отсутствующими разрядными долями, например: 19,07; 25,905; 27,009. Поэтому эти дроби даются для записи только тогда, когда учащиеся хорошо усвоят запись дробей с наличием всех разрядных долей, могут объяснить, как называется каждая разрядная доля, на каком месте справа от запятой она стоит, поймут, что каждая последующая доля в 10 раз меньше предыдущей (если имеет одно и то же число долей). Например, 5 сотых в 10 раз меньше, чем 5 десятых, а 5 тысячных в 10 раз меньше, чем 5 сотых.
- При знакомстве с письменной нумерацией десятичных дробей необходимо обратить внимание учащихся на то, что после запятой в десятичной дроби должно стоять столько знаков, сколько нулей в знаменателе дроби. Например, надо записать дробь семь целых восемь сотых. Знаменатель дроби 100, т. е. имеет два нуля. Следовательно, после запятой должно быть два знака, произносится же только один знак (число 8), значит, сразу после запятой надо написать нуль: 7,08. На особенность, которую мы используем при записи десятичных дробей, следует обратить внимание учащихся и при их чтении.
МЕТОДИКА ИЗУЧЕНИЯ ПРОЦЕНТОВ
- Десятичные дроби со знаменателем 100 наиболее удобны для вычислений, так как во многих мерах метрической системы встречается единичное отношение 100 (1 м=100 см, 1 р. = 100 к., 1 га=100а, 1 ц=100кг; следовательно, 1 см=0,01 м, 1 к.=0,01 р., 1 а=0,01 га, 1 кг=0,01 ц), таг часть числа обозначается так: 1%. Можно записать, что 1 см=0,01 м=1% метра, 1 к.=0,01 р. = 1% рубля, 1а=0,01 га = 1% гектара, 1 кг=1% центнера. В данном случае мы выразили полученные числа в процентах. Отвлеченные от числа также можно выразить в процентах.
- На основе понятия о проценте и умений выразить (записат числа в процентах необходимо объяснить значение часто встр чающихся на производстве и в быту выражений, например: «РаС чий выполнил норму по обработке деталей на 100%». Это озна«, ет, что рабочий обработал за смену то количество деталей, кот. рое было запланировано, например 150 деталей. Если рабоч! сделал меньше 150 деталей, то он не выполнил норму, т. е. в| полнил ее меньше чем на 100%. Если рабочий сделал болы 150 деталей, то он перевыполнил норму, т. е. выполнил ее болы чем на 100%.
- Учащиеся знакомятся не только с выражением целого чис; но и десятичных дробей процентами.
- В этом случае учитель при объяснении также исходит из определения процента: 0,01 = 1%, следовательно, 0,02=2%; 0,05=5%; 0,25=25%; 0,5=50%, так как 0,5=0,50=50%; 1,7=170%. На основании подобных рассуждений, наблюдений и сравнения деся-1 тичной дроби и числа, выражающего эту дробь в процентах, некоторые учащиеся могут сделать вывод: чтобы десятичную^ дробь заменить процентами, надо перенести за-! пятую вправо на два знака и поставить знак %. Вместо недостающих знаков ставятся нули. Обыкновенную дробь также можно выразить (заменить) процентами. Ее нужно для этого обратить в десятичную дробь и применить правило замены
- Рассуждения ведутся также исходя из понятия о проценте: 1%=0,01; 2%=0,02%; 40%=0,40=0,4; 100% = 1; 200%=2;
- 150% = 1,5; 0,5=50%; 0,25=25%; 0,1 = 10%.
МЕТОДИКА РЕШЕНИЯ АРИФМЕТИЧЕСКИХ ЗАДАЧ
- Решение арифметических задач помогает раскрыть основно смысл арифметических действий, конкретизировать их, связать определенной жизненной ситуацией. Задачи способствуют усвс нию математических понятий, отношений, закономерностей, этом случае они, как правило, служат конкретизации этих понятий и отношений, так как каждая сюжетная задача отражав] определенную жизненную ситуацию
- При решении задач у умственно отсталых школьников развив! ется произвольное внимание, наблюдательность, логическое мыт ление, речь, сообразительность. Решение задач способствует раа витию таких процессов познавательной деятельности, как анализ синтез, сравнение, обобщение.
- В процессе решения арифметических задач учащиеся учато планировать и контролировать свою деятельность, овладеваю 1 приемами самоконтроля (проверка задачи, прикидка ответа, реше ние задачи разными способами и т. д.), у них воспитывается на стойчивость, воля, развивается интерес к поиску решения задачи
- Решение арифметических задач на уроках математики позволит реализовать задачу подготовки учащихся к более успешному овладению профессиональным трудом, сблизить обучение с жизнью.
- Умением решать арифметические задачи учащиеся овладевают с большим трудом.
- Анализ контрольных работ учащихся, наблюдения и специальные исследования показывают, что ошибки, которые учащиеся допускают при решении задач, можно классифицировать так:
- Привнесение лишнего вопроса и действия.
- Исключение нужного вопроса и действия.
- Несоответствие вопросов действиям: правильно поставленные вопросы и неправильный выбор действий или, наоборот, правильный выбор действий и неверная формулировка вопросов.
- Случайный подбор чисел и действий.
- Ошибки в наименовании величин при выполнении действий: а) наименования не пишутся; б) наименования пишутся ошибочно, вне предметного понимания содержания задачи; в) наименования пишутся лишь при отдельных компонентах.
- Ошибки в вычислениях.
- Неверная формулировка ответа задачи (сформулированный ответ не соответствует вопросу задачи, стилистически построено верно, не соответствует ответу последнего действия и т. Д-^__
- Причины ошибочных решений задач умственно отсталыми школьниками кроются в первую очередь в особенностях мышления этих детей.
- Трудности в решении задач у умственно отсталых учащихся связаны с недостаточным пониманием предметно-действенной ситуации, отраженной в задаче, и математических связей и отношений между числовыми данными, а также между данными и искомыми.
- Опыт показывает, что школьники с нарушением интеллекта справляются с решением задач, если они составлены на основе действий с реальными предметами. Основные трудности возникают тогда, когда необходимо наглядно представить словесно сформированные задачи. Б их сознании не всегда возникает отражение действительного содержания ситуации и заключенных в ней предметных отношений. Понимание условия задачи нередко не отвечает ее предметному содержанию.
- Поверхностный анализ содержания задачи приводит к отклонению от конечной цели. Школьники с нарушением интеллектаI осознают условия задачи, изменяют и упрощают его. Нередко н| воспроизведении текста задачи они привносят в условие штампы руководствуются ими при решении, а действительные связи и отношения не учитывают, опираются на фрагменты или несущественны' элементы задачи, при выборе действий руководствуются словами всего, меньше, больше, осталось. В силу стереотипности действии характерной для умственно отсталых учащихся, они решают задачи шаблонными способами, руководствуясь случайными ассоциациями вызванными созвучием слов и выражений. Уподобление одних зад;1ч другим — наиболее часто встречающийся вид ошибок, так как оси знание сходства и различия арифметических задач представляет для учащихся с нарушением интеллекта наибольшую трудность.
- Большое внимание следует уделять работе над содержанием задачи, т. е. над осмыслением ситуации, изложенной в задаче, установлением зависимости между данными, а также между данными и искомым. Последовательность работы над усвоением содержания задачи:
а) разбор непонятных слов или выражений, которые встретятся в тексте задачи;
б) чтение текста задачи учителем и учащимися;
в) запись условия задачи;
г) повторение задачи по вопросам;
д) воспроизведение одним из учащихся полного текста задачи.
- Работа над отдельными словами и выражениями должна вестись не тогда, когда учитель знакомит учащихся с содержанием задачи, а раньше, до предъявления задачи, иначе словарная работа разрушает структуру задачи, уводит учащихся от понимания арифметического содержания задачи, зависимости между данными
- Текст задачи первоначально рассказывает или читает учитель, 1 а начиная со 2-го класса его могут читать и ученики по учебнику или по записи на доске. Читать задачу нужно выразительно, выделяя голосом математические выражения, главный вопрос задачи, делая логические ударения на тех предложениях или сочетаниях слов, которые прямо указывают на определенное действие (например, разложили поровну в две вазы, купили 3 тетради по 12 р. за каждую). Между условием задачи и вопросом следует сделать паузу, если вопрос стоит в конце задачи.
- Восприятие текста задачи только на слух на первых порах невозможно для школьников с нарушением интеллекта, они воспринимают нередко только фрагменты задачи, с трудом вычленяют числовые данные. При первом чтении они в основном запоминают лишь повествовательную часть задачи. Все это свидетельствует о необходимости при восприятии текста задачи использовать не только слуховые, но и зрительные, а если возможно, то и кинестезические анализаторы.
- Наряду с конкретизацией содержания задачи с помощью предметов, трафаретов и рисунков в практике работы учителей школы VIII вида широкое распространение получили следующие формы записи содержания задачи:
- Сокращенная форма записи, при которой из текста задачи выписывают числовые данные и только те слова и выражения, которые необходимы для понимания логического смысла задачи. Вопрос задачи записывается полностью. Например: «В вазе стоял букет цветов из ромашек и васильков. В букете было 7 ромашек, а васильков на 5 штук больше. Сколько всего цветов в букете?» Сокращенная запись: «Ромашек 7 штук, васильков на 5 штук больше. Сколько всего цветов?»
- Сокращенно-структурная форма записи, при которой каждая логическая часть задачи записывается с новой строки. Вопрос задачи записывается или внизу, или сбоку. Текст задачи принимает наглядно-воспринимаемую форму
- Схематическая форма записи. Это запись содержания задачи в виде схемы В схеме желательно сохранить пропорции, соответствующие числовым данным. «В одном ящике 17 кг помидоров, а в другом на 5 кг больше. Сколько килограммов помидоров в двух ящиках?»
- Графическая форма записи. Это запись содержания задачи в виде чертежа, диаграммы. Удобнее всего в графической форме записывать задачи на движение
- Опыт показывает, что пониманию зависимости между числовыми данными, а также между данными и искомыми в некоторых задачах способствует не конкретизация условия, а наоборот
- В тексте многих задач имеются слова: всего, осталось, боль-, ше, меньше, которые указывают на выбор арифметического деист-!, вия, но опираться только на них при выборе действия нельзя, так как в отрыве от контекста они могут натолкнуть ученика на ошибочный выбор действия. Исключать эти опорные слова из задач не следует, так как они отражают определенную жизненную ситуацию, но нельзя акцентировать на них внимание учащихся вне контекста задачи. Например, нельзя говорить ученику, что «если в задаче есть слова всего, стало, то надо складывать; если есть в задаче слово осталось, то надо вычитать».
- Выбор действия при решении задачи определяется той зависимостью, которая имеется между данными и искомыми в задаче. Зависимость эта правильно может быть понята в том случае, если ученики поняли жизненно-практическую ситуацию задачи и могут перевести зависимость между предметами и величинами на «язык математики», т. е. правильно выразить ее через действия над числами. С этой целью учитель проводит беседу с учащимися, которая называется разбором задачи. В беседе устанавливается зависимость между данными и искомым. При разборе содержания задачи нового вида учитель ставит вопросы так, чтобы подвести учащихся к правильному и осознанному выбору действия.
- В младших классах школы VIII вида при разборе задачи рассуждения чаще всего проводятся от числовых данных к вопросу задачи, так как учащимся легче к выделенным числовым данным поставить вопрос, чем подобрать два числа (из них могут быть оба числа или одно неизвестны) к вопросу задачи. Однако, начиная с 3-го класса, следует проводить рассуждения от главного вопроса задачи, так как такой ход рассуждений более целенаправлен на составление плана решения в целом (а не на выделение одного действия, как это происходит при первом способе разбора — от данных к вопросу задачи).
чему? Во сколько действий эта задача? Какое первое действие? 11 чему вычитание? Какое второе действие? Почему сложение? Сколь ко слагаемых во втором действии? Почему складываем 3 числа? Назвать эти слагаемые. Какое из них неизвестно?» " width="640"
- Учитель может поставить только узловые вопросы перед сост лением плана решения и определением последовательности вий. Например: «Что нужно узнать в задаче? Все ли данные у ш есть, чтобы узнать, сколько килограммов яблок собрали ученики м три дня? Какого данного не хватает? Можно ли из условия задачи определить, сколько килограммов яблок собрали во второй день? 1 1 чему? Во сколько действий эта задача? Какое первое действие? 11 чему вычитание? Какое второе действие? Почему сложение? Сколь ко слагаемых во втором действии? Почему складываем 3 числа? Назвать эти слагаемые. Какое из них неизвестно?»
- Работа по закреплению решения задачи (см. с. 354) может быть проведена различными приемами.
- 1. Ставятся узловые вопросы по содержанию задачи. Например:
- Сколько дней дети собирали яблоки с пришкольного участка?
- Известно ли, сколько яблок дети собрали в первый день (во второй день, в третий день)?
- Что неизвестно в задаче?
- Что нужно узнать в задаче?
- Можно ли сразу ответить на главный вопрос задачи?
- Какого данного для этого не хватает?
- Как решали задачу?
- 2. Предлагается рассказать весь ход решения задачи с обоснованием выбора действий.
- 3. Ставятся вопросы к отдельным действиям или вопросам.
- Например:
- Почему в первом действии выполнили вычитание?
- Для чего нужно было узнавать, сколько собрали яблок во второй день?
- Почему во втором действии три слагаемых? И т. д.
- С закреплением решения задач тесно связана последующая работа над решенной задачей, которая способствует осознанному выбору действий и подходу к решению задачи.
- Рассмотрим несколько вариантов последующей работы над решенной задачей на примере задачи, разобранной выше:
- Изменение отношений между данными условия задач выяснение, как это изменение отразится на решении задачи, пример: «Если бы в задаче было сказано, что во второй собрано на 35 кг больше, чем в первый день, как тогда решалась задача?»
- Изменение вопроса задачи. Например: «Если в главном вопросе спрашивается, на сколько килограммов яблок собрано меньше во второй день, чем в третий, как тогда бы решалась задач
- Изменение условия задачи, привнесение в него дополнительного данного или изъятие какого-либо данного. Например: «Iв условии задачи сказано, что в третий день собрано сто; яблок, сколько в первый и второй день вместе, тогда как решаться задача? Во сколько действий будет эта задача?» И т.*
- Изменение числовых данных, сюжета задачи, решение задачи, аналогичной данной.