СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до 19.04.2025

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Методика преподавания математики в в специальной (коррекционной) школе VIII вида

Нажмите, чтобы узнать подробности

Методика преподавания математики в в специальной (коррекционной) школе VIII вида

Просмотр содержимого документа
«Методика преподавания математики в в специальной (коррекционной) школе VIII вида»

Методика преподавания математики в специальной (коррекционной) школе VIII вида:

Методика преподавания математики в специальной (коррекционной) школе VIII вида:

Основные задачи специальной (коррекционной) школы VIII ви­да — максимальное преодоление недостатков познавательной дея­тельности и эмоционально-волевой сферы умственно отсталых школьников, подготовка их к участию в производительном труде, социальная адаптация в условиях современного общества.
  • Основные задачи специальной (коррекционной) школы VIII ви­да — максимальное преодоление недостатков познавательной дея­тельности и эмоционально-волевой сферы умственно отсталых школьников, подготовка их к участию в производительном труде, социальная адаптация в условиях современного общества.
Задачи обучения  За период обучения в школе VIII вида учащиеся должны полу­чить следующие математические знания и практические умения: а) представления о натуральном числе, нуле, натуральном ряде чисел, об обыкновенных и десятичных дробях; б)  представление об основных величинах (длине отрезка, стои­  мости, массе предметов, площади фигур, емкости и объеме тел,  времени), единицах измерения величин и их соотношениях; в)  знание метрической системы мер, мер времени и умение  практически пользоваться ими; г)  навыки простейших измерений, умение пользоваться инстру­ментами (линейкой, мерной кружкой, весами, часами и т.д.); д)  умение производить четыре основных арифметических дей­ствия с многозначными числами и дробями; е)  умение решать простые и составные (в 3—4 действия) ариф­метические задачи; ж)  представление о плоскостях и объемных геометрических  фигурах, знание их свойств, построение этих фигур с помощью  чертежных инструментов (линейки, циркуля, чертежного угольни­ка, транспортира):\

Задачи обучения

  • За период обучения в школе VIII вида учащиеся должны полу­чить следующие математические знания и практические умения:
  • а) представления о натуральном числе, нуле, натуральном ряде чисел, об обыкновенных и десятичных дробях;
  • б) представление об основных величинах (длине отрезка, стои­ мости, массе предметов, площади фигур, емкости и объеме тел, времени), единицах измерения величин и их соотношениях;
  • в) знание метрической системы мер, мер времени и умение практически пользоваться ими;
  • г) навыки простейших измерений, умение пользоваться инстру­ментами (линейкой, мерной кружкой, весами, часами и т.д.);
  • д) умение производить четыре основных арифметических дей­ствия с многозначными числами и дробями;
  • е) умение решать простые и составные (в 3—4 действия) ариф­метические задачи;
  • ж) представление о плоскостях и объемных геометрических фигурах, знание их свойств, построение этих фигур с помощью чертежных инструментов (линейки, циркуля, чертежного угольни­ка, транспортира):\
Обучая математике учащихся вспомогательных школ, надо учи­тывать, что усвоение необходимого материала не должно носить характера механического -заучивания и тренировок. Знания, полу­чаемые учениками, должны быть осознанными. От предметной, наглядной основы следует переходить к формированию доступных математических понятий, вести учащихся к обобщениям и на их основе выполнять практические работы
  • Обучая математике учащихся вспомогательных школ, надо учи­тывать, что усвоение необходимого материала не должно носить характера механического -заучивания и тренировок. Знания, полу­чаемые учениками, должны быть осознанными. От предметной, наглядной основы следует переходить к формированию доступных математических понятий, вести учащихся к обобщениям и на их основе выполнять практические работы
Практика работы школы VIII вида показывает, что учащиеся, хорошо успевающие по математике, как правило, лучше справля­ются с практическими заданиями по другим предметам. Умствен­но отсталые школьники не могут самостоятельно установить взаи­мосвязь между знаниями, полученными по различным учебным предметам
  • Практика работы школы VIII вида показывает, что учащиеся, хорошо успевающие по математике, как правило, лучше справля­ются с практическими заданиями по другим предметам. Умствен­но отсталые школьники не могут самостоятельно установить взаи­мосвязь между знаниями, полученными по различным учебным предметам
Задача учителя любого учебного предмета, в том числе и математики, — показать, что знания, полученные по ка­кому-либо предмету, обогащают, дополняют знания по другим учебным предметам, тогда учащиеся получат не разобщенные зна­ния, а систему знаний, которая может быть широко использована
  • Задача учителя любого учебного предмета, в том числе и математики, — показать, что знания, полученные по ка­кому-либо предмету, обогащают, дополняют знания по другим учебным предметам, тогда учащиеся получат не разобщенные зна­ния, а систему знаний, которая может быть широко использована
Специальные исследования В. А. Крутецкого 1 показали, что для творческого овладения математикой как учебным предметом необходима способность к формализованному восприятию матема­тического материала (схватыванию формальной структуры зада­чи), способность к быстрому и широкому обобщению математи­ческих объектов, отношений, действий, способность мыслить свер­нутыми структурами (свертывание процесса математического рас­суждения), гибкость мыслительных процессов, способность к бы­строй перестройке направленности мыслительного процесса, мате­матическая память (обобщенная память на математические отно­шения, методы решения задач, принципы подхода к ним).
  • Специальные исследования В. А. Крутецкого 1 показали, что для творческого овладения математикой как учебным предметом необходима способность к формализованному восприятию матема­тического материала (схватыванию формальной структуры зада­чи), способность к быстрому и широкому обобщению математи­ческих объектов, отношений, действий, способность мыслить свер­нутыми структурами (свертывание процесса математического рас­суждения), гибкость мыслительных процессов, способность к бы­строй перестройке направленности мыслительного процесса, мате­матическая память (обобщенная память на математические отно­шения, методы решения задач, принципы подхода к ним).
Известно, что математика является одним из самых трудных предметов для этой категории учащихся. С одной стороны, это объясняется абстрактностью математичес­ких понятий, с другой стороны, особенностями усвоения матема­тических знаний учащимися.
  • Известно, что математика является одним из самых трудных предметов для этой категории учащихся. С одной стороны, это объясняется абстрактностью математичес­ких понятий, с другой стороны, особенностями усвоения матема­тических знаний учащимися.
Успех в обучении математике школьников с нарушением ин­теллекта во многом зависит, с одной стороны, от учета трудностей и особенностей овладения ими математическими знаниями, а с другой — от учета потенциальных возможностей учащихся. Со­став учащихся школы VIII вида чрезвычайно разнороден, поэтому трудности и потенциальные возможности каждого ученика своеоб­разны.
  • Успех в обучении математике школьников с нарушением ин­теллекта во многом зависит, с одной стороны, от учета трудностей и особенностей овладения ими математическими знаниями, а с другой — от учета потенциальных возможностей учащихся. Со­став учащихся школы VIII вида чрезвычайно разнороден, поэтому трудности и потенциальные возможности каждого ученика своеоб­разны.
Наблюдения и специальные исследования показывают, что узость, нецеленаправленность и слабая активность восприятия со­здают определенные трудности в понимании задачи, математичес­кого задания. Учащиеся воспринимают задачу не полностью, а фрагментарно, т.е. по частям, а несовершенство анализа и синтеза не позволяет эти части связать в единое целое, установить между ними связи и зависимости и, исходя из этого, выбрать правиль­ный путь решения.
  • Наблюдения и специальные исследования показывают, что узость, нецеленаправленность и слабая активность восприятия со­здают определенные трудности в понимании задачи, математичес­кого задания. Учащиеся воспринимают задачу не полностью, а фрагментарно, т.е. по частям, а несовершенство анализа и синтеза не позволяет эти части связать в единое целое, установить между ними связи и зависимости и, исходя из этого, выбрать правиль­ный путь решения.
Трудности при обучении математике вызываются также несо­вершенством зрительных восприятий (зрительного анализа и син­теза) и моторики учащихся. Это проявляется в обучении письму вообще и цифр в частности^ У школьников с нарушением интеллекта младших классов нередко наблюдается зеркальное письмо цифр:
  • Трудности при обучении математике вызываются также несо­вершенством зрительных восприятий (зрительного анализа и син­теза) и моторики учащихся. Это проявляется в обучении письму вообще и цифр в частности^ У школьников с нарушением интеллекта младших классов нередко наблюдается зеркальное письмо цифр:
Учащиеся нередко строят цифры, а не пишут: например, при написании цифры 1 сначала пишут вертикальную палочку, а потом к ней пристраивают крючочек справа, пишут цифру снизу вверх (не запоминают, с какого элемента надо начинать написа­ние цифры).
  • Учащиеся нередко строят цифры, а не пишут: например, при написании цифры 1 сначала пишут вертикальную палочку, а потом к ней пристраивают крючочек справа, пишут цифру снизу вверх (не запоминают, с какого элемента надо начинать написа­ние цифры).
Затрудненность письма у некоторых учащихся усугубляется тремором (дрожанием) рук, параличами. Нарушение координации движений у отдельных учащихся нередко служит причиной очень сильного нажима при письме, который приводит к поломке каран­даша и прорыву бумаги
  • Затрудненность письма у некоторых учащихся усугубляется тремором (дрожанием) рук, параличами. Нарушение координации движений у отдельных учащихся нередко служит причиной очень сильного нажима при письме, который приводит к поломке каран­даша и прорыву бумаги
Несовершенство зрительных восприятий, трудности простран­ственной ориентировки приводят к тому, что учащиеся не видят строки и не понимают ее значения. Поэтому ученик может начать писать строчку цифр в левом верхнем углу тетради, а закончить ее в правом нижнем углу, т.е. располагает цифры по диагонали, также располагает и строчки примеров, не соблюдает высоту цифр, интервалов
  • Несовершенство зрительных восприятий, трудности простран­ственной ориентировки приводят к тому, что учащиеся не видят строки и не понимают ее значения. Поэтому ученик может начать писать строчку цифр в левом верхнем углу тетради, а закончить ее в правом нижнем углу, т.е. располагает цифры по диагонали, также располагает и строчки примеров, не соблюдает высоту цифр, интервалов
Известно, что у умственно отсталых школьников с большим трудом вырабатываются новые условные связи, особенно слож­ные, но, возникнув, они оказываются непрочными, хрупкими, а главное, недифференцированными. Слабость дифференциации не­редко приводит к уподоблению знаний. Учащиеся быстро утрачива­ют те существенные признаки, которые отличают одну фигуру от другой, один вид задачи от другого, те признаки, которые позволяют различать числа, действия, правила и т. д.
  • Известно, что у умственно отсталых школьников с большим трудом вырабатываются новые условные связи, особенно слож­ные, но, возникнув, они оказываются непрочными, хрупкими, а
  • главное, недифференцированными. Слабость дифференциации не­редко приводит к уподоблению знаний. Учащиеся быстро утрачива­ют те существенные признаки, которые отличают одну фигуру от другой, один вид задачи от другого, те признаки, которые позволяют различать числа, действия, правила и т. д.
Другая причина слабой дифференцированности математических знаний кроется в отрыве математической терминологии от конк­ретных представлений, реальных образов, объектов, в непонима­нии конкретной ситуации задачи, математических зависимостей и отношений между данными, а также между данными и искомыми. Например, учащиеся не представляют себе реально таких единиц измерения, как километр и килограмм, а некоторое сходство в их звучании приводит к их уподоблению.
  • Другая причина слабой дифференцированности математических знаний кроется в отрыве математической терминологии от конк­ретных представлений, реальных образов, объектов, в непонима­нии конкретной ситуации задачи, математических зависимостей и отношений между данными, а также между данными и искомыми. Например, учащиеся не представляют себе реально таких единиц измерения, как километр и килограмм, а некоторое сходство в их звучании приводит к их уподоблению.
Отмечается «застревание» на принятом способе решения при­меров, задач, практических действий. С трудом происходит пере­ключение с одной умственной операции на другую, качественно иную. Например, учащиеся, научившись складывать и вычитать приемом пересчитывания, с большим трудом овладевают приема­ми присчитывания и отсчитывания
  • Отмечается «застревание» на принятом способе решения при­меров, задач, практических действий. С трудом происходит пере­ключение с одной умственной операции на другую, качественно иную. Например, учащиеся, научившись складывать и вычитать приемом пересчитывания, с большим трудом овладевают приема­ми присчитывания и отсчитывания
Низкий уровень мыслительной деятельности школьников с на­рушением интеллекта затрудняет переход от практических дейст­вий к умственным. В отличие от нормально развивающихся детей и детей с задержкой психического развития, для формирования у умственно отсталых учащихся представлений о числе, счете, арифметических действиях и др. требуется развернутость всех этапов формирования умственных действий.
  • Низкий уровень мыслительной деятельности школьников с на­рушением интеллекта затрудняет переход от практических дейст­вий к умственным. В отличие от нормально развивающихся детей и детей с задержкой психического развития, для формирования у умственно отсталых учащихся представлений о числе, счете, арифметических действиях и др. требуется развернутость всех этапов формирования умственных действий.
Трудности в обучении математике учащихся школы VIII вида усугубляются слабостью регулирующей функции мышления этих детей. Очень ярко эта особенность учащихся проявляется при решении задач. Учащийся, не дочитав или не дослушав новую задачу до конца, но усмотрев в ней по каким-то внешним, часто несущественным признакам сходство с ранее решавшимися зада­чами, восклицает: «О, эту задачу я умею решать! Мы такие зада­чи решали!»
  • Трудности в обучении математике учащихся школы VIII вида усугубляются слабостью регулирующей функции мышления этих детей. Очень ярко эта особенность учащихся проявляется при решении задач. Учащийся, не дочитав или не дослушав новую задачу до конца, но усмотрев в ней по каким-то внешним, часто несущественным признакам сходство с ранее решавшимися зада­чами, восклицает: «О, эту задачу я умею решать! Мы такие зада­чи решали!»
Бездумным» подходом к выполнению любого задания объясня­ется и редкое использование рациональных приемов вычислений: округления, группировки. Например, находя значение числового выражения 230+57+13+126, ученики выполняют действия под­ряд, вместо того чтобы воспользоваться переместительным и соче­тательным законами сложения и сгруппировать слагаемые, хотя они и знают эти законы.
  • Бездумным» подходом к выполнению любого задания объясня­ется и редкое использование рациональных приемов вычислений: округления, группировки. Например, находя значение числового выражения 230+57+13+126, ученики выполняют действия под­ряд, вместо того чтобы воспользоваться переместительным и соче­тательным законами сложения и сгруппировать слагаемые, хотя они и знают эти законы.
У умственно отсталых учащихся, проучившихся некоторое время в массовой школе, наблюдается нередко отрицательное от­ношение к учению вообще и к математике в частности, как наи­более трудному учебному предмету. Объясняется это тем, что темп работы, содержание учебного материала были непосильны учащимся, а методы и приемы работы учителя не учитывали особенностей дефектов этих детей.
  • У умственно отсталых учащихся, проучившихся некоторое время в массовой школе, наблюдается нередко отрицательное от­ношение к учению вообще и к математике в частности, как наи­более трудному учебному предмету. Объясняется это тем, что темп работы, содержание учебного материала были непосильны учащимся, а методы и приемы работы учителя не учитывали особенностей дефектов этих детей.
Объем, содержание и система изучения математического материала в кор­рекционной школе имеют значительное своеобразие. Это объясня­ется особенностями усвоения, сохранения и применения знаний учащимися коррекционной школы.
  • Объем, содержание и система изучения математического материала в кор­рекционной школе имеют значительное своеобразие. Это объясня­ется особенностями усвоения, сохранения и применения знаний учащимися коррекционной школы.
1. Умственно отсталые учащиеся усваивают новые знания мед­ленно, с большим трудом, затрачивая при этом много усилий и времени, поэтому программный материал каждого класса дан в сравнительно небольшом объеме. Например, в 1-м классе учащие­ся изучают лишь числа первого десятка и знакомятся со сложени­ем и вычитанием в пределах 10; знакомство с мерами стоимости, длины начинается с 1-го, а заканчивается в 8—9-х классах, изуче­ние долей и обыкновенных дробей начинается с 4-го, а заканчива­ется в 8—9-х классах и т. д.
  • 1. Умственно отсталые учащиеся усваивают новые знания мед­ленно, с большим трудом, затрачивая при этом много усилий и времени, поэтому программный материал каждого класса дан в сравнительно небольшом объеме. Например, в 1-м классе учащие­ся изучают лишь числа первого десятка и знакомятся со сложени­ем и вычитанием в пределах 10; знакомство с мерами стоимости, длины начинается с 1-го, а заканчивается в 8—9-х классах, изуче­ние долей и обыкновенных дробей начинается с 4-го, а заканчива­ется в 8—9-х классах и т. д.
2. Особенностью расположения материала в программе являет­ся «забегание» вперед, наличие подготовительных упражнений, которые исподволь подводят учащихся к формированию того или иного понятия.,Например, понятие о разностном сравнении уча­щиеся получают в 4-м классе, тогда как сравнение путем установ­ления лишних единиц в большем числе и недостающих в меньшем сначала рядом стоящих чисел, а потом и любых двух чисел они производят уже в 1-м и во 2-м классах. 30
  • 2. Особенностью расположения материала в программе являет­ся «забегание» вперед, наличие подготовительных упражнений, которые исподволь подводят учащихся к формированию того или иного понятия.,Например, понятие о разностном сравнении уча­щиеся получают в 4-м классе, тогда как сравнение путем установ­ления лишних единиц в большем числе и недостающих в меньшем сначала рядом стоящих чисел, а потом и любых двух чисел они производят уже в 1-м и во 2-м классах. 30
Такой же подход прослеживается и при формировании понятий и геометрических фигурах и их свойствах, свойствах и законах арифметических действий и других понятий. Например, в 1-м классе учащиеся знакомятся с образом прямоугольника, во 2-м гинея чертить прямоугольник по данным точкам (вершинам), в I м классе учащиеся знакомятся с элементами этой геометричес­кой фигуры, свойствами ее углов и сторон, в 4-м классе — с черчением прямоугольника (квадрата) с помощью линейки и чертежного треугольника по заданным длинам сторон, сравнивают прямоугольник и треугольник, выделяют основания и боковые сто­роны, в 5-м классе знакомятся со смежными сторонами и диагоналями прямоугольника, в 6-м классе прямоугольник рассматривает­ся как частный случай параллелограмма, в 7—8-х классах дается понятие о площади прямоугольника.
  • Такой же подход прослеживается и при формировании понятий и геометрических фигурах и их свойствах, свойствах и законах арифметических действий и других понятий. Например, в 1-м классе учащиеся знакомятся с образом прямоугольника, во 2-м гинея чертить прямоугольник по данным точкам (вершинам), в I м классе учащиеся знакомятся с элементами этой геометричес­кой фигуры, свойствами ее углов и сторон, в 4-м классе — с черчением прямоугольника (квадрата) с помощью линейки и чертежного треугольника по заданным длинам сторон, сравнивают прямоугольник и треугольник, выделяют основания и боковые сто­роны, в 5-м классе знакомятся со смежными сторонами и диагоналями прямоугольника, в 6-м классе прямоугольник рассматривает­ся как частный случай параллелограмма, в 7—8-х классах дается понятие о площади прямоугольника.
3  Учитывая, что умственно отсталые учащиеся с трудом выделяют  и тот в формируемых понятиях существенные признаки, отличающие эти понятия от других, сходных или противоположных, и  склонны к уподоблению понятий, особенно если усматривают в  них черты внешнего сходства, программа нацеливает учителя на  го, чтобы в процессе обучения он опирался на приемы сравнения,  сопоставления и противопоставления. Например, вычитание рас­  сматривается в сопоставлении со сложением (противоположные  действия), сложение сравнивается с умножением (сходные дейст-  ния), понятие об уменьшении числа на несколько единиц противо­  поставляется понятию об увеличении числа на несколько единиц  и сопоставляется со сходным понятием об увеличении числа в  несколько раз и т.д. Это позволяет выяснить сходство и различие  н понятиях, действиях, задачах, вскрывая существенные и несу­  щественные признаки.

3 Учитывая, что умственно отсталые учащиеся с трудом выделяют и тот в формируемых понятиях существенные признаки, отличающие эти понятия от других, сходных или противоположных, и склонны к уподоблению понятий, особенно если усматривают в них черты внешнего сходства, программа нацеливает учителя на го, чтобы в процессе обучения он опирался на приемы сравнения, сопоставления и противопоставления. Например, вычитание рас­ сматривается в сопоставлении со сложением (противоположные действия), сложение сравнивается с умножением (сходные дейст- ния), понятие об уменьшении числа на несколько единиц противо­ поставляется понятию об увеличении числа на несколько единиц и сопоставляется со сходным понятием об увеличении числа в несколько раз и т.д. Это позволяет выяснить сходство и различие н понятиях, действиях, задачах, вскрывая существенные и несу­ щественные признаки.

4.  Учитывая, что учащиеся школы VIII вида склонны к медлен­ному запоминанию и быстрому забыванию, *программа предусмат­ривает наряду с изучением нового материала небольшими порция­ми постоянное закрепление и повторение изученного) Программа  каждого класса начинается с повторения основного материала предыдущих лет обучения. Причем повторение предполагает по­ степенное расширение, а главное, углубление ранее изученных знаний. Например, в 4-м классе при повторении концентра «Первая сотня» учащиеся вспоминают о разрядных единицах (единиwах, десятках, сотнях) и одновременно получают представление о разряде, о наибольшем и наименьшем числе каждого разряда, в 5-м классе — об округлении чисел. При повторении табличного умножения и деления рассматриваются случаи умножения и деле­ния единицы и нуля, а также умножение на единицу и нуль и деление на единицу, деление с остатком, углубляются знания учащихся о взаимообратности действий сложения и вычитания, умножения и деления, о зависимости между компонентами ариф­метических действий и т. д.
  • 4. Учитывая, что учащиеся школы VIII вида склонны к медлен­ному запоминанию и быстрому забыванию, *программа предусмат­ривает наряду с изучением нового материала небольшими порция­ми постоянное закрепление и повторение изученного) Программа каждого класса начинается с повторения основного материала предыдущих лет обучения. Причем повторение предполагает по­ степенное расширение, а главное, углубление ранее изученных знаний. Например, в 4-м классе при повторении концентра «Первая сотня» учащиеся вспоминают о разрядных единицах (единиwах, десятках, сотнях) и одновременно получают представление о разряде, о наибольшем и наименьшем числе каждого разряда, в 5-м классе — об округлении чисел.
  • При повторении табличного умножения и деления рассматриваются случаи умножения и деле­ния единицы и нуля, а также умножение на единицу и нуль и деление на единицу, деление с остатком, углубляются знания учащихся о взаимообратности действий сложения и вычитания, умножения и деления, о зависимости между компонентами ариф­метических действий и т. д.
5. Учитывая, что отвлеченное, абстрактное мышление умствен­но отсталых школьников развито слабо, что подвести учащихся к определенным обобщениям, выводам, правилам, установлению за­кономерностей, сформировать то или иное понятие возможно только на основе неоднократных наблюдений реальных объектов, практических операций с конкретными предметами, программа на­целивает учителя на широкое использование наглядности, дидак­тического материала.
  • 5. Учитывая, что отвлеченное, абстрактное мышление умствен­но отсталых школьников развито слабо, что подвести учащихся к определенным обобщениям, выводам, правилам, установлению за­кономерностей, сформировать то или иное понятие возможно только на основе неоднократных наблюдений реальных объектов, практических операций с конкретными предметами, программа на­целивает учителя на широкое использование наглядности, дидак­тического материала.
Коррекционная школа ставит одной из основных задач под­  готовку учащихся к жизни, к овладению доступными им профес­  сиями, к посильному участию в труде. Поэтому в программе боль­  шое место отводится привитию учащимся практических умений и  навыков. Наряду с формированием практических умений и навыков  программа предусматривает знакомство учащихся с некоторыми  теоретическими знаниями, которые они приобретают индуктивным  путем, т.е. путем обобщения наблюдений над конкретными явле­  ниями действительности, практических операций с предметными  совокупностями.
  • Коррекционная школа ставит одной из основных задач под­ готовку учащихся к жизни, к овладению доступными им профес­ сиями, к посильному участию в труде. Поэтому в программе боль­ шое место отводится привитию учащимся практических умений и навыков.
  • Наряду с формированием практических умений и навыков программа предусматривает знакомство учащихся с некоторыми теоретическими знаниями, которые они приобретают индуктивным путем, т.е. путем обобщения наблюдений над конкретными явле­ ниями действительности, практических операций с предметными совокупностями.
Учитывая неоднородность состава учащихся школы VIII вида  и разные возможности учащихся в усвоении математических зна­  ний, программа указывает на необходимость дифференциации  учебных требований к разным категориям детей по их обучаемос­  ти математике. Программа в целом определяет оптимальный объем знаний, умений и навыков, который, как показывает многолетний опыт обучения, доступен большинству учащихся коррекционной школы. Однако практика и специальные исследования показывают, что почти в каждом классе имеются учащиеся, которые постоянно отстают от своих одноклассников в усвоении математических зна­ний. Оптимальный объем программных требований оказывается им недоступен, они не могут сразу, после первого объяснения
  • Учитывая неоднородность состава учащихся школы VIII вида и разные возможности учащихся в усвоении математических зна­ ний, программа указывает на необходимость дифференциации учебных требований к разным категориям детей по их обучаемос­ ти математике.
  • Программа в целом определяет оптимальный объем знаний, умений и навыков, который, как показывает многолетний опыт обучения, доступен большинству учащихся коррекционной школы. Однако практика и специальные исследования показывают, что почти в каждом классе имеются учащиеся, которые постоянно отстают от своих одноклассников в усвоении математических зна­ний. Оптимальный объем программных требований оказывается им недоступен, они не могут сразу, после первого объяснения
Для учащихся с локальными поражениями коры головного мозга или с акалькулией, которые, успевая по всем учебным предметам, не в состоянии усвоить программу школы VIII вида по математике даже при наличии дополнительных индивидуальных занятий, программой предусматривается возможность их обучения по индивидуальным планам, составленным учителем и утвержден­ным администрацией школы. В этом случае индивидуальная про­грамма составляется с учетом возможностей усвоения математи­ческих знаний конкретным ученикам.
  • Для учащихся с локальными поражениями коры головного мозга или с акалькулией, которые, успевая по всем учебным предметам, не в состоянии усвоить программу школы VIII вида по математике даже при наличии дополнительных индивидуальных занятий, программой предусматривается возможность их обучения по индивидуальным планам, составленным учителем и утвержден­ным администрацией школы. В этом случае индивидуальная про­грамма составляется с учетом возможностей усвоения математи­ческих знаний конкретным ученикам.
Программа нацеливает учителя на решение основной задачи преподавания математики в коррекционной школе — коррекционно-развивающей. В объяснительной записке программы по матема­тике говорится о необходимости использовать процесс обучения математике в целях повышения уровня общего развития и коррек­ции недостатков познавательной деятельности учащихся коррек­ционной школы.
  • Программа нацеливает учителя на решение основной задачи преподавания математики в коррекционной школе — коррекционно-развивающей. В объяснительной записке программы по матема­тике говорится о необходимости использовать процесс обучения математике в целях повышения уровня общего развития и коррек­ции недостатков познавательной деятельности учащихся коррек­ционной школы.
Учитывая, что в 0—1-й классы школы VIII вида поступают дети с разным уровнем развития, различной готовностью к обуче­нию и различной математической подготовкой (дети приходят из общеобразовательной начальной школы, проучившись там разные сроки, из детских садов, как массовых, так и специальных, из семьи, из стационарных лечебных учреждений), программа пред­усматривает значительный подготовительный (пропедевтический) период!
  • Учитывая, что в 0—1-й классы школы VIII вида поступают дети с разным уровнем развития, различной готовностью к обуче­нию и различной математической подготовкой (дети приходят из общеобразовательной начальной школы, проучившись там разные сроки, из детских садов, как массовых, так и специальных, из семьи, из стационарных лечебных учреждений), программа пред­усматривает значительный подготовительный (пропедевтический) период!
В пропедевтический период уточняются и формируются у уча щихся понятия о размерах предметов (большой — маленький, равные, больше — меньше, длинный — короткий, длиннее — короче и т.д.), пространственные представления (далекий — близкий, вверху — внизу, слева — справа и т. д.), количествен­ные представления (много — мало, поровну, столько же и др.), временные понятия и представления (сегодня, завтра, вчера, утро, день, вечер, ночь и др.). Продолжительность пропедевти­ческого периода определяется составом учащихся, их подготовленностью к школьным занятиям, уровнем их математических представлений
  • В пропедевтический период уточняются и формируются у уча щихся понятия о размерах предметов (большоймаленький, равные, больше — меньше, длинныйкороткий, длиннеекороче и т.д.), пространственные представления (далекий — близкий, вверху — внизу, слева — справа и т. д.), количествен­ные представления (много — мало, поровну, столько же и др.), временные понятия и представления (сегодня, завтра, вчера, утро, день, вечер, ночь и др.). Продолжительность пропедевти­ческого периода определяется составом учащихся, их подготовленностью к школьным занятиям, уровнем их математических представлений
Он может продолжаться весь учебный год в нулевом классе или от двух недель до полутора месяцев в первом классе. После пропедевтического периода излагается содержание раз­делов математики. Этими разделами являются: а) нумерация; б) арифметические действия с целыми числами; в) величины, еди­ницы измерения величин; г) дроби; д) элементы наглядной геомет­рии. Во всех классах предусмотрено обучение решению математических задач.
  • Он может продолжаться весь учебный год в нулевом классе или от двух недель до полутора месяцев в первом классе. После пропедевтического периода излагается содержание раз­делов математики. Этими разделами являются: а) нумерация; б) арифметические действия с целыми числами; в) величины, еди­ницы измерения величин; г) дроби; д) элементы наглядной геомет­рии. Во всех классах предусмотрено обучение решению математических задач.
В каждый из этих разделов включен материал, доступный по­ниманию умственно отсталых школьников на данном этапе их обучения, необходимый для овладения ими профессией, для подго-товки к жизни и социальной адаптации. С„При изучении нумерации учащиеся должны получить понятия натурального числа, нуля, натурального ряда чисел и его свойств, овладеть закономерностями десятичной системы счисления. Программа предусматривает обучение четырем арифметичес­ким действиям в пределах одного миллиона, основным приемам устных и письменных вычислений, изучение названий компонен­тов и результатов арифметических действий, зависимости между компонентами, практическое знакомство с переместительным и сочетательным свойствами арифметических действий.
  • В каждый из этих разделов включен материал, доступный по­ниманию умственно отсталых школьников на данном этапе их обучения, необходимый для овладения ими профессией, для подго-товки к жизни и социальной адаптации.
  • С„При изучении нумерации учащиеся должны получить понятия натурального числа, нуля, натурального ряда чисел и его свойств, овладеть закономерностями десятичной системы счисления.
  • Программа предусматривает обучение четырем арифметичес­ким действиям в пределах одного миллиона, основным приемам устных и письменных вычислений, изучение названий компонен­тов и результатов арифметических действий, зависимости между компонентами, практическое знакомство с переместительным и сочетательным свойствами арифметических действий.
В коррекционной школе учащиеся знакомятся с величинами (дли­ной, массой, стоимостью, временем, площадью, объемом), единицами измерения этих величин, их соотношением, числами, выражающими длину, стоимость, массу, время и т. д., и действиями с ними. Наряду с этим учащиеся должны изучить дроби, как обыкно­венные, так и десятичные: получение дробей, основные свойства, преобразования, сравнение дробей, арифметические действия с дробями, проценты
  • В коррекционной школе учащиеся знакомятся с величинами (дли­ной, массой, стоимостью, временем, площадью, объемом), единицами измерения этих величин, их соотношением, числами, выражающими длину, стоимость, массу, время и т. д., и действиями с ними.
  • Наряду с этим учащиеся должны изучить дроби, как обыкно­венные, так и десятичные: получение дробей, основные свойства, преобразования, сравнение дробей, арифметические действия с дробями, проценты
На всех годах обучения решаются как простые, так и составные арифметические задачи. Основную группу задач составляют, так называемые, собственно арифметические задачи) В программе представлены некоторые типовые задачи (на нахождение среднего арифметического, на части, на прямое и обратное приведение к единице, на пропорциональное деление, на движение), имеющие большое практическое значение.
  • На всех годах обучения решаются как простые, так и составные арифметические задачи. Основную группу задач составляют, так называемые, собственно арифметические задачи) В программе представлены некоторые типовые задачи (на нахождение среднего арифметического, на части, на прямое и обратное приведение к единице, на пропорциональное деление, на движение), имеющие большое практическое значение.
В программе по математике предусматривается концентрическое изучение нумерации и арифметических действий с целыми числами. Изучение арифметического материала внутри каждого концентра происходит достаточно полно и законченно, причем материал предыдущего концентра углубляется в последующих концентрах.
  • В программе по математике предусматривается концентрическое изучение нумерации и арифметических действий с целыми числами. Изучение арифметического материала внутри каждого концентра происходит достаточно полно и законченно, причем материал предыдущего концентра углубляется в последующих концентрах.
При концентрическом расположении материала учащиеся по­степенно знакомятся с числами, действиями и их свойствами, доступными на данном этапе их пониманию. На первых порах ость возможность использовать предметную основу, так как изуча­ются небольшие числа. Затем осуществляется постепенный пере­ход к отвлеченным понятиям и оперирование с числами, которые трудно конкретизировать с помощью предметных совокупностей
  • При концентрическом расположении материала учащиеся по­степенно знакомятся с числами, действиями и их свойствами, доступными на данном этапе их пониманию. На первых порах ость возможность использовать предметную основу, так как изуча­ются небольшие числа. Затем осуществляется постепенный пере­ход к отвлеченным понятиям и оперирование с числами, которые трудно конкретизировать с помощью предметных совокупностей
Приобретая новые знания в следующем концентре, учащиеся постоянно воспроизводят знания, полученные на более ранних сгапах обучения (в предыдущих концентрах), расширяют и углуб­ляют их. Неоднократное возвращение к одному и тому же поня­тию, включение его в новые связи и отношения позволяют умст-иенно отсталому школьнику овладеть им сознательно и прочно.
  • Приобретая новые знания в следующем концентре, учащиеся постоянно воспроизводят знания, полученные на более ранних сгапах обучения (в предыдущих концентрах), расширяют и углуб­ляют их. Неоднократное возвращение к одному и тому же поня­тию, включение его в новые связи и отношения позволяют умст-иенно отсталому школьнику овладеть им сознательно и прочно.
Задачей первого концентра является знакомство с числами первого десятка, цифрами для записи этих чисел, действиями сложения и вычитания; одновременно учащиеся знакомятся с еди­ницами измерения стоимости — копейкой, рублем, монетами достоинством в 1, 5, 10 копеек, 1 р., 5 р., 10 р. Изучение этого материала происходит в 0—1-х классах. Задачей второго концентра является изучение нумерации и четырех арифметических действий в пределах 20'. Учащиеся зна­комятся с названием чисел 11—20 (перед ними раскрывается позиционный принцип записи чисел второго десятка; единицы за­писываются в числе на первом месте справа, десятки — на вто­ром), с новыми арифметическими действиями — умножением и делением. Учащиеся знакомятся с единицами измерения длины — сантиметром, дециметром, мерой емкости — литром, единицами измерения времени — неделей, сутками, часом, определением времени по часам, учатся измерять и чертить отрезки в сантимет­рах и дециметрах, работать с монетами.
  • Задачей первого концентра является знакомство с числами первого десятка, цифрами для записи этих чисел, действиями сложения и вычитания; одновременно учащиеся знакомятся с еди­ницами измерения стоимости — копейкой, рублем, монетами достоинством в 1, 5, 10 копеек, 1 р., 5 р., 10 р. Изучение этого материала происходит в 0—1-х классах.
  • Задачей второго концентра является изучение нумерации и четырех арифметических действий в пределах 20'. Учащиеся зна­комятся с названием чисел 11—20 (перед ними раскрывается позиционный принцип записи чисел второго десятка; единицы за­писываются в числе на первом месте справа, десятки — на вто­ром), с новыми арифметическими действиями — умножением и делением. Учащиеся знакомятся с единицами измерения длины — сантиметром, дециметром, мерой емкости — литром, единицами измерения времени — неделей, сутками, часом, определением времени по часам, учатся измерять и чертить отрезки в сантимет­рах и дециметрах, работать с монетами.
В третьем концентре изучается нумерация в пределах 100, раскрывается понятие разряда, учащиеся знакомятся со сложени­ем и вычитанием двузначных чисел, приемами устных и письмен­ных вычислений. Завершается изучение табличного умножения и деления, озна­комление с внетабличным умножением и делением. Продолжается изучение величин и единиц их измерения. Материал третьего концентра изучается в 3—4-х классах. Уча­щиеся получают понятия о единицах измерения длины (метре), стоимости (копейке, рубле), массы (килограмме), времени (годе, месяце), знакомятся с соотношением единиц измерения.
  • В третьем концентре изучается нумерация в пределах 100, раскрывается понятие разряда, учащиеся знакомятся со сложени­ем и вычитанием двузначных чисел, приемами устных и письмен­ных вычислений.
  • Завершается изучение табличного умножения и деления, озна­комление с внетабличным умножением и делением. Продолжается изучение величин и единиц их измерения.
  • Материал третьего концентра изучается в 3—4-х классах. Уча­щиеся получают понятия о единицах измерения длины (метре), стоимости (копейке, рубле), массы (килограмме), времени (годе, месяце), знакомятся с соотношением единиц измерения.
Задачей четвертого концентра является изучение нумера­ции в пределах тысячи, вычленение трех разрядных единиц (еди­ниц, десятков, сотен), составляющих основу нумерации много­значных чисел. Продолжается изучение величин и единиц измерения длины (километр, миллиметр), массы (грамм, центнер, тонна), времени (секунда, год, месяц, сутки), соотношения единиц измерения, вы­работка практических умений, измерения величин. Изучение ма­териала четвертого концентра происходит в 5-м классе
  • Задачей четвертого концентра является изучение нумера­ции в пределах тысячи, вычленение трех разрядных единиц (еди­ниц, десятков, сотен), составляющих основу нумерации много­значных чисел.
  • Продолжается изучение величин и единиц измерения длины (километр, миллиметр), массы (грамм, центнер, тонна), времени (секунда, год, месяц, сутки), соотношения единиц измерения, вы­работка практических умений, измерения величин. Изучение ма­териала четвертого концентра происходит в 5-м классе
За период обучения математике в школе VIII вида должны овладеть следующим: а)  нумерацией чисел, счетом простыми и разрядными ми, равными числовыми группами в пределах 1 000 000, умением читать и записывать эти числа, знать их десятичный состав, раз­ряды и классы; б)  умением получить дробь, читать и записывать ее, знать виды  дробей, преобразовывать дроби; в)  арифметическими действиями, умением складывать и вычитать  устно в пределах 100, знать таблицу умножения и деления, приемами письменных вычислений, выполнять четыре арифметических действия в пределах 1 000 000 (умножать и де­лить на однозначное число), производить эти же действия с дроб­ными числами (кроме умножения и деления дроби на дробь), найти дробь и несколько процентов от числа; г)  умением решать простые и составные задачи в три действия,  указанных в программе видов;
  • За период обучения математике в школе VIII вида должны овладеть следующим:
  • а) нумерацией чисел, счетом простыми и разрядными
  • ми, равными числовыми группами в пределах 1 000 000, умением читать и записывать эти числа, знать их десятичный состав, раз­ряды и классы;
  • б) умением получить дробь, читать и записывать ее, знать виды дробей, преобразовывать дроби;
  • в) арифметическими действиями, умением складывать и вычитать устно в пределах 100, знать таблицу умножения и деления,
  • приемами письменных вычислений, выполнять четыре арифметических действия в пределах 1 000 000 (умножать и де­лить на однозначное число), производить эти же действия с дроб­ными числами (кроме умножения и деления дроби на дробь), найти дробь и несколько процентов от числа;
  • г) умением решать простые и составные задачи в три действия, указанных в программе видов;
 иметь конкретные представления о единицах измерения стои­мости, длины, емкости, массы, времени, площади и объема, знать таблицу соотношения этих единиц, уметь пользоваться измери­тельными инструментами и измерять длину масштабной линейкой, , циркулем и рулеткой, взвешивать на чашечных и циферблатных весах, определять емкость сосудов мерной кружкой, литровыми  или пол-литровыми емкостями (банками, бутылками), определять время по часам, уметь заменять число, выраженное в мерах длины, массы, времени и т.д., десятичной дробью и выполнять с ними четыре арифметических действия; е) геометрическим материалом — уметь различать основные геометрические фигуры (точка; линии — прямые, кривые, лома­ные; отрезок; луч; угол; многоугольник — треугольник, четырех­угольник; круг; окружность; шар; конус; параллелепипед; куб), знать их названия, элементы, уметь чертить их с помощью линей­ки, чертежного треугольника, транспортира, циркуля, измерять и вычислять пл.ощади геометрических фигур и объемы параллелепи­педа и куба.
  • иметь конкретные представления о единицах измерения стои­мости, длины, емкости, массы, времени, площади и объема, знать таблицу соотношения этих единиц, уметь пользоваться измери­тельными инструментами и измерять длину масштабной линейкой, , циркулем и рулеткой, взвешивать на чашечных и циферблатных весах, определять емкость сосудов мерной кружкой, литровыми или пол-литровыми емкостями (банками, бутылками), определять время по часам, уметь заменять число, выраженное в мерах длины, массы, времени и т.д., десятичной дробью и выполнять с ними четыре арифметических действия;
  • е) геометрическим материалом — уметь различать основные геометрические фигуры (точка; линии — прямые, кривые, лома­ные; отрезок; луч; угол; многоугольник — треугольник, четырех­угольник; круг; окружность; шар; конус; параллелепипед; куб), знать их названия, элементы, уметь чертить их с помощью линей­ки, чертежного треугольника, транспортира, циркуля, измерять и вычислять пл.ощади геометрических фигур и объемы параллелепи­педа и куба. "\
ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ МЕТОДОВ ОБУЧЕНИЯ НА УРОКАХ МАТЕМАТИКИ   В условиях школы VIII вида, учитывая дефекты познавательной деятельности учащихся, их эмоционально-волевой сферы, необхо-димо прежде всего развивать исполнительскую, воспроизводящую деятельность детеи^о только развитием этих видов деятельности учащихся нельзя ограничиваться, так как не будут в должной мере решаться задачи коррекции, подготовки к овладению профес­сией, социальной реабилитации и адаптации.

ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ МЕТОДОВ ОБУЧЕНИЯ НА УРОКАХ МАТЕМАТИКИ

  • В условиях школы VIII вида, учитывая дефекты познавательной деятельности учащихся, их эмоционально-волевой сферы, необхо-димо прежде всего развивать исполнительскую, воспроизводящую деятельность детеи^о только развитием этих видов деятельности учащихся нельзя ограничиваться, так как не будут в должной мере решаться задачи коррекции, подготовки к овладению профес­сией, социальной реабилитации и адаптации.
Развивая воспроизводящую деятельность учащихся, учитель ставит и решает более сложную задачу — развивает их инициа­тиву, творческую деятельность, учит использовать полученные знания сначала в аналогичных, а затем в новых условиях, для решения новых задач. Это возможно лишь при учете не только особенностей их познавательной деятельности, но и личностных качеств, их отношения к процессу познания, учению.
  • Развивая воспроизводящую деятельность учащихся, учитель ставит и решает более сложную задачу — развивает их инициа­тиву, творческую деятельность, учит использовать полученные знания сначала в аналогичных, а затем в новых условиях, для решения новых задач. Это возможно лишь при учете не только особенностей их познавательной деятельности, но и личностных качеств, их отношения к процессу познания, учению.
Прежде чем сообщить учащимся те или иные знания, необхо-димо создать у них определенную положительную установку на щи приятие и осмысление этих знаний. Это достигается созданием , тропой или жизненно-практической ситуации, в которой ученики прочувствовали бы недостаток знаний для решения определенной жизненной или учебной задачи, их заинтересовавшей. У учащихся присуждается чувство ожидания нового, неизвестного.
  • Прежде чем сообщить учащимся те или иные знания, необхо-димо создать у них определенную положительную установку на щи приятие и осмысление этих знаний. Это достигается созданием , тропой или жизненно-практической ситуации, в которой ученики прочувствовали бы недостаток знаний для решения определенной жизненной или учебной задачи, их заинтересовавшей. У учащихся присуждается чувство ожидания нового, неизвестного.
При объяснении учитель связывает новый материал с пройден­ным, включая его в систему знаний, устанавливая связи и взаимо­зависимость между уже имеющимися у учащихся знаниями и приобретаемыми вновь. В установление этих взаимосвязей учи­тель вовлекает учащихся, воспроизводя имеющиеся знания, опи­раясь на их прошлый опыт. При этом он широко использует наглядность: предметные пособия, иллюстративные таблицы, ди­дактический раздаточный материал, схемы, чертежи, графики, арифметические записи чисел, действий, решений задач.
  • При объяснении учитель связывает новый материал с пройден­ным, включая его в систему знаний, устанавливая связи и взаимо­зависимость между уже имеющимися у учащихся знаниями и приобретаемыми вновь. В установление этих взаимосвязей учи­тель вовлекает учащихся, воспроизводя имеющиеся знания, опи­раясь на их прошлый опыт. При этом он широко использует наглядность: предметные пособия, иллюстративные таблицы, ди­дактический раздаточный материал, схемы, чертежи, графики, арифметические записи чисел, действий, решений задач.
Изложение знаний, т. е. слово учителя, сочетается с наблюде­ниями учащихся. В процессе изложения знаний учитель выделяет существенные признаки, варьируя несущественные, ведет учащих­ся, опираясь на чувственную основу, к выводам, правилам, обоб­щениям.
  • Изложение знаний, т. е. слово учителя, сочетается с наблюде­ниями учащихся. В процессе изложения знаний учитель выделяет существенные признаки, варьируя несущественные, ведет учащих­ся, опираясь на чувственную основу, к выводам, правилам, обоб­щениям.
следует разбить на небольшие, логически завершенные «порции». На одном уроке излагается небольшой по объему мате­риал. Изложение учитель может иногда прерывать вопросом, об­ращенным к учащимся: «Как вы думаете, что нужно делать даль­ше?» или «Где нужно подписать десятки при сложении в стол­бик?» Вопросы ставятся для того, чтобы выяснить, понимают ли учащиеся излагаемый материал, успевают ли следить за изложе­нием или внимание их отвлечено. Они активизируют и познава­тельную деятельность учащихся, позволяют направлять их вни­мание.

следует разбить на небольшие, логически завершенные «порции». На одном уроке излагается небольшой по объему мате­риал. Изложение учитель может иногда прерывать вопросом, об­ращенным к учащимся: «Как вы думаете, что нужно делать даль­ше?» или «Где нужно подписать десятки при сложении в стол­бик?» Вопросы ставятся для того, чтобы выяснить, понимают ли учащиеся излагаемый материал, успевают ли следить за изложе­нием или внимание их отвлечено. Они активизируют и познава­тельную деятельность учащихся, позволяют направлять их вни­мание.

Нередко объяснение учителя сопровождается демонстрацией наглядных пособий, практической работой учащихся с дидактичес­ким материалом. Практическая работа с предметами, направляе­мая объяснением учителя, может служить базой для обобщений. Например, учитель знакомит учащихся с названием и количест­вом элементов треугольника. Каждый ученик получает треуголь­ник. У всех учащихся они разного вида, размера, цвета. Модель треугольника демонстрируется и перед классом. Учитель объясня­ет, что треугольник имеет углы, показывает их. Учащимся предла­гается практическая работа — отыскать углы на моделях своих
  • Нередко объяснение учителя сопровождается демонстрацией наглядных пособий, практической работой учащихся с дидактичес­ким материалом. Практическая работа с предметами, направляе­мая объяснением учителя, может служить базой для обобщений. Например, учитель знакомит учащихся с названием и количест­вом элементов треугольника. Каждый ученик получает треуголь­ник. У всех учащихся они разного вида, размера, цвета. Модель треугольника демонстрируется и перед классом. Учитель объясня­ет, что треугольник имеет углы, показывает их. Учащимся предла­гается практическая работа — отыскать углы на моделях своих
опре­деленный запас представлений для формирования на их основе новых знаний, понятий. Он готовит систему вопросов, с помощью которых не только воспроизводится усвоенный ранее учащимися материал, но организуются наблюдения учащихся. Учитель управ­ляет восприятием, помогает выделить главное, установить взаимо­отношения между изучаемыми фактами, свойствами объектов, явлений их обусловленностью и ведет учащихся к обобщениям, и, выбору действий при решении задач. Беседа активизирует учащихся будит мысль. После беседы учитель должен дать учащимся образец ответа в связного рассказа. Например, после беседы и выводов о свойстве элементов в прямоугольнике и свойствах его углов и учитель дает образец ответа детям: «Прямоугольник имеет I угла, 4 вершины, 4 стороны. Все углы у прямоугольника пря­мые 1 . Противоположные стороны равны». Беседа как метод обучения широко используется при решении ч.
  • опре­деленный запас представлений для формирования на их основе новых знаний, понятий. Он готовит систему вопросов, с помощью которых не только воспроизводится усвоенный ранее учащимися материал, но организуются наблюдения учащихся. Учитель управ­ляет восприятием, помогает выделить главное, установить взаимо­отношения между изучаемыми фактами, свойствами объектов, явлений их обусловленностью и ведет учащихся к обобщениям, и, выбору действий при решении задач. Беседа активизирует учащихся будит мысль.
  • После беседы учитель должен дать учащимся образец ответа в связного рассказа. Например, после беседы и выводов о свойстве элементов в прямоугольнике и свойствах его углов и учитель дает образец ответа детям: «Прямоугольник имеет I угла, 4 вершины, 4 стороны. Все углы у прямоугольника пря­мые 1 . Противоположные стороны равны».
  • Беседа как метод обучения широко используется при решении ч.
Однако постепенно учитель должен вести учащихся от системы вопросов в 1-м варианте к системе вопросов в 3-м, развивая самостоятельность и активность учащихся. Метод наблюдения в сочетании с предметно-практической деятельностью самих учащихся широко используется и при геометрического материала. Например, при знакомстве со свойствами углов и сторон прямоугольника (3-й класс) учитель использует такой способ: раздает каждому ученику по 2—3 модели этой фигуры разных размеров, просит измерить углы и стороны и записать результаты измерений. Когда практическая работа закончена, он спрашивает, что ученики могут сказать об углах своих прямо­угольников. Ученики подмечают, что во всех прямоугольниках все углы прямые. Самостоятельно формулируют правило: «У прямо­угольника все углы прямые». Аналогично учащиеся подводятся к самостоятельному выводу о свойствах сторон прямоугольника.
  • Однако постепенно учитель должен вести учащихся от системы вопросов в 1-м варианте к системе вопросов в 3-м, развивая самостоятельность и активность учащихся.
  • Метод наблюдения в сочетании с предметно-практической деятельностью самих учащихся широко используется и при геометрического материала. Например, при знакомстве со свойствами углов и сторон прямоугольника (3-й класс) учитель использует такой способ: раздает каждому ученику по 2—3 модели этой фигуры разных размеров, просит измерить углы и стороны и записать результаты измерений. Когда практическая работа закончена, он спрашивает, что ученики могут сказать об углах своих прямо­угольников. Ученики подмечают, что во всех прямоугольниках все углы прямые. Самостоятельно формулируют правило: «У прямо­угольника все углы прямые». Аналогично учащиеся подводятся к самостоятельному выводу о свойствах сторон прямоугольника.
Предъявлять учащимся учебник целесообразнее всего при оз­накомлении с новым случаем выполнения арифметического дейст­вия, который является более сложным по сравнению с ранее изученным. Например, после изучения сложения многозначных чисел с переходом через разряд в одном разряде учащимся можно предоставить возможность разобраться по учебнику в рассмотре­нии случаев сложения с переходом через разряд в двух (или даже трех) разрядах. Учащиеся должны показать, какой существенный признак отличает эти вычисления от рассматривавшихся ранее. Естественно, что этот метод можно применять лишь тогда, когда в учебнике материал изложен достаточно подробно, с пра­вильно подобранными примерами-образцами.
  • Предъявлять учащимся учебник целесообразнее всего при оз­накомлении с новым случаем выполнения арифметического дейст­вия, который является более сложным по сравнению с ранее изученным. Например, после изучения сложения многозначных чисел с переходом через разряд в одном разряде учащимся можно предоставить возможность разобраться по учебнику в рассмотре­нии случаев сложения с переходом через разряд в двух (или даже трех) разрядах. Учащиеся должны показать, какой существенный признак отличает эти вычисления от рассматривавшихся ранее.
  • Естественно, что этот метод можно применять лишь тогда, когда в учебнике материал изложен достаточно подробно, с пра­вильно подобранными примерами-образцами.
На уроках математики в школе VIII вида дидактические игры находят широкое применение при закреплении любой темы. Со­здано большое количество игр, развивающих количественные, пространственные, временные представления и представления о размерах предметов. Хорошо известны игры «Веселый счет», «Живые цифры», «Арифметическое лото» (домино), «Круговые примеры», «Лесенка», «Молчанка», «Магазин» и др. 1 . Поиски путей повышения эффективности учебного процесса привели к использованию элементов программированного обуче­ния. Опыт использования элементов программированного обучения в процессе преподавания математики показал, что целесообразнее использовать его при закреплении знаний и особенно при выра­ботке вычислительных навыков, решении задач и т. д.
  • На уроках математики в школе VIII вида дидактические игры находят широкое применение при закреплении любой темы. Со­здано большое количество игр, развивающих количественные, пространственные, временные представления и представления о размерах предметов. Хорошо известны игры «Веселый счет», «Живые цифры», «Арифметическое лото» (домино), «Круговые примеры», «Лесенка», «Молчанка», «Магазин» и др. 1 .
  • Поиски путей повышения эффективности учебного процесса привели к использованию элементов программированного обуче­ния.
  • Опыт использования элементов программированного обучения в процессе преподавания математики показал, что целесообразнее использовать его при закреплении знаний и особенно при выра­ботке вычислительных навыков, решении задач и т. д.
Программированные задания, которые уже нашли место на уроках математики, составляются таким образом, чтобы ученик, выполняя задание самостоятельно, находил ответ, сравнивал его либо с группой данных ему ответов, среди которых есть и ответ к данному заданию, либо с показаниями приборов. Если задание выполнено неверно, т.е. если ответ задания не совпадает с одним из данных ответов или не подкрепляется положительным сигналом, то ученик снова предпринимает попытку его решить и делает это до тех пор, пока не получит правильного ответа. Учитель выявляет причину ошибочного ответа и оказывает по­мощь ученику.
  • Программированные задания, которые уже нашли место на уроках математики, составляются таким образом, чтобы ученик, выполняя задание самостоятельно, находил ответ, сравнивал его либо с группой данных ему ответов, среди которых есть и ответ к данному заданию, либо с показаниями приборов. Если задание выполнено неверно, т.е. если ответ задания не совпадает с одним из данных ответов или не подкрепляется положительным сигналом, то ученик снова предпринимает попытку его решить и делает это до тех пор, пока не получит правильного ответа. Учитель выявляет причину ошибочного ответа и оказывает по­мощь ученику.
При использовании сравнения имеется возможность выделить существенные признаки одного понятия и сравнить их с сущест­венными признаками другого, подчеркивая черты сходства и раз­личия. Например, необходимо сравнить две задачи на увеличение числа на несколько единиц и на увеличение числа в несколько раз. Чтобы учащиеся смогли уяснить существенные признаки каждой из этих задач, учитель подбирает задачи с одинаковой фабулой, одинаковыми числовыми данными.
  • При использовании сравнения имеется возможность выделить существенные признаки одного понятия и сравнить их с сущест­венными признаками другого, подчеркивая черты сходства и раз­личия. Например, необходимо сравнить две задачи на увеличение числа на несколько единиц и на увеличение числа в несколько раз. Чтобы учащиеся смогли уяснить существенные признаки каждой из этих задач, учитель подбирает задачи с одинаковой фабулой, одинаковыми числовыми данными.
СИСТЕМА УРОКОВ МАТЕМАТИКИ Усвоение знаний учащимися на уроке происходит на разных уровнях. Одним учащимся доступно лишь восприятие, осмысление нового материала. Другие уже могут использовать эти знания в сходной ситуации. Потребуется неодинаковое количество уроков

СИСТЕМА УРОКОВ МАТЕМАТИКИ

  • Усвоение знаний учащимися на уроке происходит на разных уровнях. Одним учащимся доступно лишь восприятие, осмысление нового материала. Другие уже могут использовать эти знания в сходной ситуации. Потребуется неодинаковое количество уроков
Для того чтобы учитывать и различный уровень усвоения зна­ний учащимися, и постепенность изучения материала, необходимо четко планировать материал, ясно представлять себе всю систему уроков по теме, познавательные возможности учащихся, а также уровень их знаний.
  • Для того чтобы учитывать и различный уровень усвоения зна­ний учащимися, и постепенность изучения материала, необходимо четко планировать материал, ясно представлять себе всю систему уроков по теме, познавательные возможности учащихся, а также уровень их знаний.
Урок математики следует рассматривать как логически завершенную часть всего учебного процесса в системе уроков матема- тики. Система уроков дает возможность логически обоснованно рабо­тать над определенным понятием, целенаправленно формировать у учащихся определенные умения и навыки. При планировании системы уроков надо учитывать, что учащихся необходимо заблаговременно подвести к восприятию нового материала. Этому надо отвести специальное время.
  • Урок математики следует рассматривать как логически завершенную часть всего учебного процесса в системе уроков матема- тики.
  • Система уроков дает возможность логически обоснованно рабо­тать над определенным понятием, целенаправленно формировать у учащихся определенные умения и навыки. При планировании системы уроков надо учитывать, что учащихся необходимо заблаговременно подвести к восприятию нового материала. Этому надо отвести специальное время.
Затем планируется знакомство учащихся с новым материалом, т.е. восприятие, осмысление, первичное закрепление знаний. По­следующие уроки должны быть посвящены коррекции и закрепле­нию знаний, выработке умений и навыков. Следующим этапом усвоения знаний является повторение, обобщение, систематизация знаний, использование их в новых ситуациях
  • Затем планируется знакомство учащихся с новым материалом, т.е. восприятие, осмысление, первичное закрепление знаний. По­следующие уроки должны быть посвящены коррекции и закрепле­нию знаний, выработке умений и навыков.
  • Следующим этапом усвоения знаний является повторение, обобщение, систематизация знаний, использование их в новых ситуациях
Характерным для уроков математики в школе VIII вида являет­ся непрерывная повторяемость уже полученных знаний, возвраще­ние к ним на последующих уроках, использование этих знаний в иных связях и отношениях, включение в них новых знаний, а следовательно, их углубление и совершенствование, создание таких жизненных ситуаций, в которых бы учащиеся могли исполь­зовать ранее приобретенные знания. Именно непрерывность по­вторения даст возможность сократить время, специально отведен­ное на повторение в конце четверти и учебного года.
  • Характерным для уроков математики в школе VIII вида являет­ся непрерывная повторяемость уже полученных знаний, возвраще­ние к ним на последующих уроках, использование этих знаний в иных связях и отношениях, включение в них новых знаний, а следовательно, их углубление и совершенствование, создание таких жизненных ситуаций, в которых бы учащиеся могли исполь­зовать ранее приобретенные знания. Именно непрерывность по­вторения даст возможность сократить время, специально отведен­ное на повторение в конце четверти и учебного года.
ВИДЫ УРОКОВ МАТЕМАТИКИ Всегда можно выделить основную цель. В зависимости от нее и от \ логики процесса обучения в математике различают несколько видов уроков: Уроки усвоения новых знаний, на которых учащиеся знако­мятся с новым математическим материалом: нумерацией, вычисли­тельными приемами, решением нового вида задач, новыми свойст­вами фигур, величинами и мерами их измерения. Уроки коррекции и закрепления нового материала (примене­ние знаний в сходных ситуациях). Уроки выработки практических умений (применение знаний  в новых ситуациях). Уроки повторения, обобщения и систематизации знаний (ус­воение способов действий в комплексе). Уроки проверки, оценки, коррекции знаний. Комбинированные уроки.

ВИДЫ УРОКОВ МАТЕМАТИКИ

  • Всегда можно выделить основную цель. В зависимости от нее и от \ логики процесса обучения в математике различают несколько видов уроков:
  • Уроки усвоения новых знаний, на которых учащиеся знако­мятся с новым математическим материалом: нумерацией, вычисли­тельными приемами, решением нового вида задач, новыми свойст­вами фигур, величинами и мерами их измерения.
  • Уроки коррекции и закрепления нового материала (примене­ние знаний в сходных ситуациях).
  • Уроки выработки практических умений (применение знаний в новых ситуациях).
  • Уроки повторения, обобщения и систематизации знаний (ус­воение способов действий в комплексе).
  • Уроки проверки, оценки, коррекции знаний.
  • Комбинированные уроки.
ЧАСТНЫЕ ВОПРОСЫ МЕТОДИКИ  ОБУЧЕНИЯ МАТЕМАТИКЕ В КОРРЕКЦОННОЙ ШКОЛЕ VIII ВИДА   Обучение математике в школе VIII вида начинается с подгото-нительных занятий. Необходимость их диктуется чрезвычайной неоднородностью состава учащихся 1-го класса как по своим пси­хофизическим данным, так и по подготовленности к обучению. В 1-й класс поступают дети, которые уже какое-то время учились в массовой школе, причем сроки их пребывания в массовой школе колеблются от нескольких дней до одного-двух лет. Наряду с этим и 1-й класс приходят дети из массового и специального детского сада, из лечебных учреждений, из семьи.

ЧАСТНЫЕ ВОПРОСЫ МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ В КОРРЕКЦОННОЙ ШКОЛЕ VIII ВИДА

  • Обучение математике в школе VIII вида начинается с подгото-нительных занятий. Необходимость их диктуется чрезвычайной неоднородностью состава учащихся 1-го класса как по своим пси­хофизическим данным, так и по подготовленности к обучению. В 1-й класс поступают дети, которые уже какое-то время учились в массовой школе, причем сроки их пребывания в массовой школе колеблются от нескольких дней до одного-двух лет. Наряду с этим и 1-й класс приходят дети из массового и специального детского сада, из лечебных учреждений, из семьи.
Обучение математике в школе VIII вида начинается с подгото-нительных занятий. Необходимость их диктуется чрезвычайной неоднородностью состава учащихся 1-го класса как по своим пси­хофизическим данным, так и по подготовленности к обучению. В 1-й класс поступают дети, которые уже какое-то время учились в массовой школе, причем сроки их пребывания в массовой школе колеблются от нескольких дней до одного-двух лет. Наряду с этим и 1-й класс приходят дети из массового и специального детского сада, из лечебных учреждений, из семьи.
  • Обучение математике в школе VIII вида начинается с подгото-нительных занятий. Необходимость их диктуется чрезвычайной неоднородностью состава учащихся 1-го класса как по своим пси­хофизическим данным, так и по подготовленности к обучению. В 1-й класс поступают дети, которые уже какое-то время учились в массовой школе, причем сроки их пребывания в массовой школе колеблются от нескольких дней до одного-двух лет. Наряду с этим и 1-й класс приходят дети из массового и специального детского сада, из лечебных учреждений, из семьи.
В пропедевтический период выявляется имеющийся у учащ ся 0—1-х классов запас дочисловых и числовых представлен количественных, пространственных, временных, представление форме предметов, величине и размерах, а также умение счит; (счет вербальный и конкретный), знание чисел и цифр, умен производить действия сложения и вычитания, решать прост задачи на нахождение суммы и разности (остатка).
  • В пропедевтический период выявляется имеющийся у учащ ся 0—1-х классов запас дочисловых и числовых представлен количественных, пространственных, временных, представление форме предметов, величине и размерах, а также умение счит; (счет вербальный и конкретный), знание чисел и цифр, умен производить действия сложения и вычитания, решать прост задачи на нахождение суммы и разности (остатка).
Наряду с установлением актуальных знаний выявляются потенциальные возможности школьников, а затем учащиеся гот вятся к изучению математических знани^. Для изучения состс ния знаний по математике используются дидактический материа первые страницы учебника, предметы окружающей действитель­ности, игрушки, картинки и т. д. Выявляются пространственные представления учащихся путем предъявления заданий практичес­кого характера («Возьми карандаш в правую руку», «Придерживай тетрадь левой рукой», «Покажи верх (низ) доски», «Кто сидит ближе ко мне, дальше от меня?», «Сядь рядом с Сашей», «Встань между Надей и Витей»).
  • Наряду с установлением актуальных знаний выявляются потенциальные возможности школьников, а затем учащиеся гот вятся к изучению математических знани^. Для изучения состс ния знаний по математике используются дидактический материа первые страницы учебника, предметы окружающей действитель­ности, игрушки, картинки и т. д. Выявляются пространственные представления учащихся путем предъявления заданий практичес­кого характера («Возьми карандаш в правую руку», «Придерживай тетрадь левой рукой», «Покажи верх (низ) доски», «Кто сидит ближе ко мне, дальше от меня?», «Сядь рядом с Сашей», «Встань между Надей и Витей»).
Наряду с пространственными представлениями необходимо вы­явить понимание признаков предметов, характеризующих их раз­мер: большой — маленький, больше — меньше, равные по величине, длинный — короткий, длиннее — короче, равные по длине, высокий — \ низкий, выше — ниже, равные по высоте, широкий — узкий, шире — \ уже, равные по ширине и т. д. Выявление представлений учащихся о размерах предметов, понимание ими существенных признаков предметов вначале следует провести без использования дидакти­ческого материала, .применяя знакомые для учащихся предметы
  • Наряду с пространственными представлениями необходимо вы­явить понимание признаков предметов, характеризующих их раз­мер: большой — маленький, больше — меньше, равные по величине, длинный — короткий, длиннее — короче, равные по длине, высокий — \ низкий, выше — ниже, равные по высоте, широкий — узкий, шире — \ уже, равные по ширине и т. д. Выявление представлений учащихся о размерах предметов, понимание ими существенных признаков предметов вначале следует провести без использования дидакти­ческого материала, .применяя знакомые для учащихся предметы
Проверяется, знают ли ученики цифры, могут ли назвать предъявляемые цифры по порядку и вразброс, могут ли соотнести цифру и число, а также цифру и то количество предметов, кото­рое она обозначает, например: «Покажи цифру пять», «Сосчитай, сколько здесь матрешек, и положи нужную цифру», «Отсчитай столько карандашей, сколько показывает эта цифра». Необходимо проверить знание геометрических фигур: умение отыскивать геометрическую фигуру по образцу (круг, квадрат, тре­угольник, прямоугольник), умение назвать фигуру, показать назван­ную учителем фигуру, начертить фигуру, не имея ее образца.
  • Проверяется, знают ли ученики цифры, могут ли назвать предъявляемые цифры по порядку и вразброс, могут ли соотнести цифру и число, а также цифру и то количество предметов, кото­рое она обозначает, например: «Покажи цифру пять», «Сосчитай, сколько здесь матрешек, и положи нужную цифру», «Отсчитай столько карандашей, сколько показывает эта цифра».
  • Необходимо проверить знание геометрических фигур: умение отыскивать геометрическую фигуру по образцу (круг, квадрат, тре­угольник, прямоугольник), умение назвать фигуру, показать назван­ную учителем фигуру, начертить фигуру, не имея ее образца.
Учитель проверяет, в какой степени учащиеся справляются с решением примеров на сложение и вычитание в пределах 10. Вначале ученику предлагается прочитать готовый пример и опре­делить, правильно ли он решен (учитель выявляет понимание учеником значения знаков арифметических действий +, —, =, степень использования им дидактического материала). Затем пред­лагаются для решения примеры на сложение и вычитание в одно действие (3+2=..., 5—2=...).
  • Учитель проверяет, в какой степени учащиеся справляются с решением примеров на сложение и вычитание в пределах 10. Вначале ученику предлагается прочитать готовый пример и опре­делить, правильно ли он решен (учитель выявляет понимание учеником значения знаков арифметических действий +, —, =, степень использования им дидактического материала). Затем пред­лагаются для решения примеры на сложение и вычитание в одно действие (3+2=..., 5—2=...).
ФОРМИРОВАНИЕ ПРЕДСТАВЛЕНИЙ И ПОНЯТИЙ О ПРИЗНАКАХ ВЕЛИЧИНЫ ПРЕДМЕТОВ Формирование представлений о размерах требует тщательного • гбора наглядных пособий, дидактического материала, а также предметов окружающей ребенка обстановки, с которыми он повсе-пневно сталкивается. Для первых уроков по формированию того или иного понятия нужно подобрать дидактический материал, предметы, которые бы отличались друг от друга только одним признаком. Причем этот признак должен выступать контрастно. Например, при формирова­нии признака длины предметов следует подбирать ленты, полоски оумаги, тесьму и т. д., которые отличались бы только по длине, а псе другие признаки (ширина, материал, цвет) были одинаковы. Такой подбор наглядного материала предупреждает смешение су­щественных и несущественных признаков.

ФОРМИРОВАНИЕ ПРЕДСТАВЛЕНИЙ И ПОНЯТИЙ О ПРИЗНАКАХ ВЕЛИЧИНЫ ПРЕДМЕТОВ

  • Формирование представлений о размерах требует тщательного • гбора наглядных пособий, дидактического материала, а также предметов окружающей ребенка обстановки, с которыми он повсе-пневно сталкивается.
  • Для первых уроков по формированию того или иного понятия нужно подобрать дидактический материал, предметы, которые бы отличались друг от друга только одним признаком. Причем этот признак должен выступать контрастно. Например, при формирова­нии признака длины предметов следует подбирать ленты, полоски оумаги, тесьму и т. д., которые отличались бы только по длине, а псе другие признаки (ширина, материал, цвет) были одинаковы. Такой подбор наглядного материала предупреждает смешение су­щественных и несущественных признаков.
Для последующих уроков подбираются предметы, отличающие­ся друг от друга двумя, а потом и тремя признаками) Например, одна лента длинная и узкая, другая лента короткая и широкая. Один дом высокий, длинный, узкий, а рядом другой дом низкий, длинный, широкий. Такой подбор предметов ставит перед учащимися более труд­ную задачу — из ряда признаков выделить тот, который требует учитель. Характеризуя предмет несколькими уже известными уча­щимся признаками, можно добиться от учеников дифференциации этих признаков.
  • Для последующих уроков подбираются предметы, отличающие­ся друг от друга двумя, а потом и тремя признаками) Например, одна лента длинная и узкая, другая лента короткая и широкая. Один дом высокий, длинный, узкий, а рядом другой дом низкий, длинный, широкий.
  • Такой подбор предметов ставит перед учащимися более труд­ную задачу — из ряда признаков выделить тот, который требует учитель. Характеризуя предмет несколькими уже известными уча­щимся признаками, можно добиться от учеников дифференциации этих признаков.
Уточнение или формирование признака должно проходить на) раздаточном материале, натуральных предметах, причем таких, у] которых этот признак рельефно выступает и по которому эти; предметы отличаются друг от друга (все остальные признаки оди­наковы). Например, большой и маленький мяч, толстый и тонкий карандаш (длина, цвет одинаковы), длинная и короткая бечевка, высокая и низкая ваза, широкая и узкая линейка (длина, толщина одинаковы). На этом же уроке учащиеся используют карточки с рисунками. Учитель, например, просит показать большое яблоко и маленькое яблоко, большую куклу и маленькую куклу, большой шар и маленький шар, большой дом и маленький дом и т. д. Учащиеся находят среди игрушек, дидактического материала однородные предметы: большие и маленькие
  • Уточнение или формирование признака должно проходить на) раздаточном материале, натуральных предметах, причем таких, у] которых этот признак рельефно выступает и по которому эти; предметы отличаются друг от друга (все остальные признаки оди­наковы). Например, большой и маленький мяч, толстый и тонкий карандаш (длина, цвет одинаковы), длинная и короткая бечевка, высокая и низкая ваза, широкая и узкая линейка (длина, толщина одинаковы). На этом же уроке учащиеся используют карточки с рисунками. Учитель, например, просит показать большое яблоко и маленькое яблоко, большую куклу и маленькую куклу, большой шар и маленький шар, большой дом и маленький дом и т. д. Учащиеся находят среди игрушек, дидактического материала однородные предметы: большие и маленькие
Далее учащиеся должны в своей практической деятельности (лепка, обводка, рисо­вание, раскрашивание и др.) воссоздать предметы с определенным признаком. Например, учитель дает задание: вылепить из пласти­лина большой и маленький шарик, раскрасить большой лист жел­тым карандашом, а маленький — зеленым, нарисовать высокую и низкую елочку, вылепить толстую и тонкую палочку, вырезать широкую и узкую полоску из бумаги и т. д. Выполняя практическую работу, ученик должен придать пред­мету заданные качества. Это требует от него достаточно ясного представления о том или ином признаке предмета. /
  • Далее учащиеся должны в своей практической деятельности (лепка, обводка, рисо­вание, раскрашивание и др.) воссоздать предметы с определенным признаком. Например, учитель дает задание: вылепить из пласти­лина большой и маленький шарик, раскрасить большой лист жел­тым карандашом, а маленький — зеленым, нарисовать высокую и низкую елочку, вылепить толстую и тонкую палочку, вырезать широкую и узкую полоску из бумаги и т. д.
  • Выполняя практическую работу, ученик должен придать пред­мету заданные качества. Это требует от него достаточно ясного представления о том или ином признаке предмета. /""Наконец, необходимо закрепить знания о признаках величины в естественных условиях (на прогулке, экскурсии, на улице, в парке, лесу и т. д.),, в которых многие признаки предметов высту­пают в комплексе с другими качествами предмета (цвет, матери­ал, форма, конструкция и т. д.). Вычленение признака усложняет-ся
В практике работы школы VIII вида получила распространение 'дующая система изучения действий умножения и деления она требует глубокого научного обоснования и дополнитель-|Ых экспериментальных исследований
  • В практике работы школы VIII вида получила распространение 'дующая система изучения действий умножения и деления она требует глубокого научного обоснования и дополнитель-|Ых экспериментальных исследований
МЕТОДИКА ИЗУЧЕНИЯ ТАБЛИЧНОГО УМНОЖЕНИЯ И ДЕЛЕНИЯ   При обучении умножению и делению перед учителем стоит сложная задача — раскрыть смысл каждого арифметического дей­ствия на конкретном материале. Необходимо добиваться, чтобы на основе действий с конкретными предметами учащиеся смогли сде­лать доступные им выводы, обобщения, отдифференцировать дей­ствие умножения от сложения и в то же время установить связь, существующую между этими действиями, чтобы они осознали, что умножение — это сложение одинаковых слагаемых.

МЕТОДИКА ИЗУЧЕНИЯ ТАБЛИЧНОГО УМНОЖЕНИЯ И ДЕЛЕНИЯ

  • При обучении умножению и делению перед учителем стоит
  • сложная задача — раскрыть смысл каждого арифметического дей­ствия на конкретном материале. Необходимо добиваться, чтобы на основе действий с конкретными предметами учащиеся смогли сде­лать доступные им выводы, обобщения, отдифференцировать дей­ствие умножения от сложения и в то же время установить связь, существующую между этими действиями, чтобы они осознали, что умножение — это сложение одинаковых слагаемых.
ти, природный материал, игрушки, изображения предметов в вю" width="640"
  • Впервые в 3-м классе учащиеся школы VIII вида знакомятся 2, .1, 4, 5 с ответами, не превышающими число 20. Лучшему осознании' смысла действия умножения способствует подготовительная р та: счет равными группами предметов, а также счет по 2, 3, до 20, С этой целью учитель готовит наглядные пособия, разда ный Материал. Такими пособиями служат учебные принадлежи ти, природный материал, игрушки, изображения предметов в вю
Понятие об умножении как сложении равных слагаемых уча­щиеся получают на первом уроке. Необходимо показать целесооб­разность замены сложения умножением, познакомить со знаком умножения (х) и с записью действия в строчку. В качестве наглядных пособий используются предметные множества и кар­тинки с изображением предметов, объединенных в равные группы Например: «Пересчитайте варежки, связанные парами». Дети считают по 2: 2, 4, б, 8, 10 (рис. 13). Учитель спрашивает, сколько варежек связано вместе. Запишем так, как считали: 2+2+2+2+2 = 10. Сколько пар варежек? (Пять.) Сколько всего варежек? (Десять.) В этом примере сложение можно заменить другим действием — умножением и записать пример короче.
  • Понятие об умножении как сложении равных слагаемых уча­щиеся получают на первом уроке. Необходимо показать целесооб­разность замены сложения умножением, познакомить со знаком умножения (х) и с записью действия в строчку. В качестве наглядных пособий используются предметные множества и кар­тинки с изображением предметов, объединенных в равные группы
  • Например: «Пересчитайте варежки, связанные парами». Дети считают по 2: 2, 4, б, 8, 10 (рис. 13). Учитель спрашивает, сколько варежек связано вместе. Запишем так, как считали: 2+2+2+2+2 = 10. Сколько пар варежек? (Пять.) Сколько всего варежек? (Десять.) В этом примере сложение можно заменить другим действием — умножением и записать пример короче.
Как подвести учащихся к этой мысли, разберем на примере с использованием дидактического материала. Можно взять и веточ­ки, на каждой из которых по 2 листочка. «По скольку листочков на ветке? Сколько раз по 2 листочка? Какие числа складывали? Сколько раз складывали? Сколько получилось? Если по 2 (листоч­ка) взять 4 раза, получится 8 (листочков). Это можно записать так: 2x4=8. Вместо слова «взять» записываем знак х (умно­жить)».
  • Как подвести учащихся к этой мысли, разберем на примере с использованием дидактического материала. Можно взять и веточ­ки, на каждой из которых по 2 листочка. «По скольку листочков на ветке? Сколько раз по 2 листочка? Какие числа складывали? Сколько раз складывали? Сколько получилось? Если по 2 (листоч­ка) взять 4 раза, получится 8 (листочков). Это можно записать так: 2x4=8. Вместо слова «взять» записываем знак х (умно­жить)».
ОБУЧЕНИЕ ТАБЛИЧНОМУ ДЕЛЕНИЮ В ПРЕДЕЛАХ 20   В школе VIII вида действие деления рассматривается независи­мо от действия умножения. Только тогда, когда дети хорошо усвоят сущность деления, деление сопоставляется с умножением, устанавливается взаимосвязь между этими двумя действиями. Опыт показывает, что вывод деления из умножения без объясне­ния сущности самого процесса деления оказывается непонятным умственно отсталым учащимся. Известно, что существует два вида деления: деление на рав­ные части и деление по содержанию. Встает вопрос, с каким видом деления раньше знакомить учащихся школы VIII вида

ОБУЧЕНИЕ ТАБЛИЧНОМУ ДЕЛЕНИЮ В ПРЕДЕЛАХ 20

  • В школе VIII вида действие деления рассматривается независи­мо от действия умножения. Только тогда, когда дети хорошо усвоят сущность деления, деление сопоставляется с умножением, устанавливается взаимосвязь между этими двумя действиями. Опыт показывает, что вывод деления из умножения без объясне­ния сущности самого процесса деления оказывается непонятным умственно отсталым учащимся.
  • Известно, что существует два вида деления: деление на рав­ные части и деление по содержанию. Встает вопрос, с каким видом деления раньше знакомить учащихся школы VIII вида
Действия умножение и деление изучаются параллельно, т после изучения умножения числа 2 изучается деление на 2 ные части, эти два действия сопоставляются, устанавливав связь между ними. Далее изучается умножение числа 3 в пр лах 20 и соответствующие ему случаи деления на 3 равные ча и т. д. Случаи деления на 5, б, 7, 8, 9 даются на основе уста? ления взаимосвязи деления с умножением. (Это операция нах дения одного из множителей по известному произведению и др\ тому множителю.)
  • Действия умножение и деление изучаются параллельно, т после изучения умножения числа 2 изучается деление на 2 ные части, эти два действия сопоставляются, устанавливав связь между ними. Далее изучается умножение числа 3 в пр лах 20 и соответствующие ему случаи деления на 3 равные ча и т. д. Случаи деления на 5, б, 7, 8, 9 даются на основе уста? ления взаимосвязи деления с умножением. (Это операция нах дения одного из множителей по известному произведению и др\ тому множителю.)
ВНЕТАБЛИЧНОЕ УМНОЖЕНИЕ И ДЕЛЕНИЕ После изучения табличного умножения и деления учащиеся знакомятся с умножением круглых десятков и двузначных чисел на однозначное число, а также с умножением однозначных чисел на круглые десятки и двузначные числа, когда произведение не превышает 100 (20x3, 15-3, 4x20, 5-13), и соответствующими им случаями деления (60:3, 39:3, 80:20, 65:13). Все эти случаи умножения и деления относятся к внетабличному умножению и делению. Различные случаи внетабличного умножения и деления неодинаковы по сложности и поэтому изучаются в 5—6-х классах [ I школы VIII вида. Так, умножение и деление круглых десятков на однозначное число (30x2, 60:2) и двузначного числа на одно­значное без перехода через разряд (12x3, 36:3) изучаются в 4-м классе. Случаи умножения и деления двузначного числа на одно значное с переходом через разряд (15 «2, 30:2, 18x3, 54:3) и деления на круглые десятки (40:20) изучаются в 6-м классе. Случаи умножения и деления на двузначное число (3-25, 75:25) изучаются в 7-м классе:

ВНЕТАБЛИЧНОЕ УМНОЖЕНИЕ И ДЕЛЕНИЕ

  • После изучения табличного умножения и деления учащиеся знакомятся с умножением круглых десятков и двузначных чисел на однозначное число, а также с умножением однозначных чисел на круглые десятки и двузначные числа, когда произведение не превышает 100 (20x3, 15-3, 4x20, 5-13), и соответствующими им случаями деления (60:3, 39:3, 80:20, 65:13). Все эти случаи умножения и деления относятся к внетабличному умножению и делению. Различные случаи внетабличного умножения и деления неодинаковы по сложности и поэтому изучаются в 5—6-х классах
  • [ I школы VIII вида. Так, умножение и деление круглых десятков на однозначное число (30x2, 60:2) и двузначного числа на одно­значное без перехода через разряд (12x3, 36:3) изучаются в 4-м классе. Случаи умножения и деления двузначного числа на одно значное с переходом через разряд (15 «2, 30:2, 18x3, 54:3) и деления на круглые десятки (40:20) изучаются в 6-м классе. Случаи умножения и деления на двузначное число (3-25, 75:25) изучаются в 7-м классе:
Выполнение действий сложения и вычитания с двумя компо­нентами сопровождается проверкой обратными действиями, кроме этого, сложение проверяется перестановкой слагаемых, а вычита­ние — не только сложением, но и вычитанием. Проверка дейст­вий выполняется и на счетах.
  • Выполнение действий сложения и вычитания с двумя компо­нентами сопровождается проверкой обратными действиями, кроме этого, сложение проверяется перестановкой слагаемых, а вычита­ние — не только сложением, но и вычитанием. Проверка дейст­вий выполняется и на счетах.
Решаются также примеры с тремя и четырьмя компонентами вида 54 800+147 385+4768; 100 070+148 280-7525; 378 040-—275 896+178 608. В первых двух примерах учащиеся выполня­ют одно действие, а в третьем последовательно два действия. Необходимо указать на различие в записи и решении этих приме­ров. Практическое использование сочетательного закона сложения обычно сопровождается заданием: решить наиболее удобным спо­собом (37 864+15 000+7000+4836). В этом случае учащиеся должны устно сложить 15 тыс. и 7 тыс., а затем провести пись­менно сложение трех слагаемых: 37 864+22 000+4836.
  • Решаются также примеры с тремя и четырьмя компонентами вида 54 800+147 385+4768; 100 070+148 280-7525; 378 040-—275 896+178 608. В первых двух примерах учащиеся выполня­ют одно действие, а в третьем последовательно два действия. Необходимо указать на различие в записи и решении этих приме­ров.
  • Практическое использование сочетательного закона сложения обычно сопровождается заданием: решить наиболее удобным спо­собом (37 864+15 000+7000+4836). В этом случае учащиеся должны устно сложить 15 тыс. и 7 тыс., а затем провести пись­менно сложение трех слагаемых: 37 864+22 000+4836.
Разнообразить упражнения на сложение и вычитание можно,  предлагая задания на сравнение результатов действий, на провер­  ку правильности расстановки знаков равенств и неравенств. На­  пример, решить столбик примеров и расположить числа, получен­  ные в ответах, от большего к меньшему; выписать из ответов  четные или нечетные, простые или составные числа; проверить,  правильно ли поставлены знаки
  • Разнообразить упражнения на сложение и вычитание можно, предлагая задания на сравнение результатов действий, на провер­ ку правильности расстановки знаков равенств и неравенств. На­ пример, решить столбик примеров и расположить числа, получен­ ные в ответах, от большего к меньшему; выписать из ответов четные или нечетные, простые или составные числа; проверить, правильно ли поставлены знаки
Умножение и деление многозначных чисел Умножение и деление многозначных чисел представляют гораз до больше трудностей, чем сложение и вычитание. Это связано с тем, что ученики нетвердо знают таблицу умножения. Даже т

Умножение и деление многозначных чисел

  • Умножение и деление многозначных чисел представляют гораз до больше трудностей, чем сложение и вычитание. Это связано с тем, что ученики нетвердо знают таблицу умножения. Даже т
Трудности возникают и тогда, когда надо единицы низшего разряда перевести в высший, удержать их в памяти (умножение с переходом через разряд). Неумение долгое время сосредоточить внимание на выполнении действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки. Неустойчивость внимания, стереотипность мышления являются нередко и причиной таких ошибок: умножая первый множитель на двузначный второй мно­житель, умственно отсталый школьник производит умножение только на единицы, т. е. находит первое неполное произведение, а на десятки умножение не производит, при этом считает, что дей­ствие им выполнено полностью.
  • Трудности возникают и тогда, когда надо единицы низшего разряда перевести в высший, удержать их в памяти (умножение с переходом через разряд). Неумение долгое время сосредоточить внимание на выполнении действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки. Неустойчивость внимания, стереотипность мышления являются нередко и причиной таких ошибок: умножая первый множитель на двузначный второй мно­житель, умственно отсталый школьник производит умножение только на единицы, т. е. находит первое неполное произведение, а на десятки умножение не производит, при этом считает, что дей­ствие им выполнено полностью.
Трудности возникают и тогда, когда надо единицы низшего разряда перевести в высший, удержать их в памяти (умножение с переходом через разряд). Неумение долгое время сосредоточить внимание на выполнении действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки. Неустойчивость внимания, стереотипность мышления являются нередко и причиной таких ошибок: умножая первый множитель на двузначный второй мно­житель, умственно отсталый школьник производит умножение только на единицы, т. е. находит первое неполное произведение, а на десятки умножение не производит, при этом считает, что дей­ствие им выполнено полностью.
  • Трудности возникают и тогда, когда надо единицы низшего разряда перевести в высший, удержать их в памяти (умножение с переходом через разряд). Неумение долгое время сосредоточить внимание на выполнении действия приводит к тому, что учащиеся низшие разряды числа умножают правильно, а при умножении высших разрядов допускают ошибки. Неустойчивость внимания, стереотипность мышления являются нередко и причиной таких ошибок: умножая первый множитель на двузначный второй мно­житель, умственно отсталый школьник производит умножение только на единицы, т. е. находит первое неполное произведение, а на десятки умножение не производит, при этом считает, что дей­ствие им выполнено полностью.
Умения и навыки в делении многозначных чисел, особенно на двузначное и трехзначное числа, вырабатываются с еще большим трудом. Умственно отсталым школьникам трудно, а некоторым даже непосильно самостоятельно применить алгоритм деления. Требуется помощь учителя, его наводящие вопросы, чтобы ученик все операции при делении применил последовательно и правиль­но. Особенно трудно подобрать цифру частного и устно прове­рить, подходит ли она. Например, характерная ошибка, которая встречается при делении, — неправильный выбор цифры частного, получение остатка больше делителя.
  • Умения и навыки в делении многозначных чисел, особенно на двузначное и трехзначное числа, вырабатываются с еще большим трудом. Умственно отсталым школьникам трудно, а некоторым даже непосильно самостоятельно применить алгоритм деления. Требуется помощь учителя, его наводящие вопросы, чтобы ученик все операции при делении применил последовательно и правиль­но. Особенно трудно подобрать цифру частного и устно прове­рить, подходит ли она. Например, характерная ошибка, которая встречается при делении, — неправильный выбор цифры частного, получение остатка больше делителя.
Умственно отсталые школьники, даже старших классов, отно-1тся к полученным ответам некритично. Они редко себя контро-_Фуют, не замечают абсурда (частное может получиться больше Делимого), полученного в ответе, и это их не смущает, не натал­кивает на мысль о неправильности выполнения деления. Наибольшего внимания и большего количества упражнений требуют примеры, в которых в частном получаются нули, как в середине, так и на конце.
  • Умственно отсталые школьники, даже старших классов, отно-1тся к полученным ответам некритично. Они редко себя контро-_Фуют, не замечают абсурда (частное может получиться больше Делимого), полученного в ответе, и это их не смущает, не натал­кивает на мысль о неправильности выполнения деления.
  • Наибольшего внимания и большего количества упражнений требуют примеры, в которых в частном получаются нули, как в середине, так и на конце.
После первоначального знакомства с алгоритмом умножени» деления необходимо дать достаточное количество вариативных |_ ражнений, для того чтобы учащиеся научились применять его к различным числам. Затем учащиеся учатся закреплять алгоритм и разных ситуациях, сначала под руководством учителя, а потом и самостоятельно
  • После первоначального знакомства с алгоритмом умножени» деления необходимо дать достаточное количество вариативных |_ ражнений, для того чтобы учащиеся научились применять его к различным числам. Затем учащиеся учатся закреплять алгоритм и разных ситуациях, сначала под руководством учителя, а потом и самостоятельно
Умножение и деление многозначных чисел на однозначное число без раздробления и превращения не представляют собой ничего нового по сравнению с выполнением этих действий в пределах 1000. Поэтому эти действия также следует рассматривать как подготовительные к следующему, более трудному этапу. Нужно повторить, как подписываются числа при записи примеров в столбик, требовать подробных объ­яснений, затем объяснения свертываются (разрядные единицы не называются) Далее учащиеся решают примеры на умножение, а затем и на деление с раздроблением и превращением разрядных единиц.
  • Умножение и деление многозначных чисел на однозначное число без раздробления и превращения не представляют собой ничего нового по сравнению с выполнением этих действий в пределах 1000. Поэтому эти действия также следует рассматривать как подготовительные к следующему, более трудному этапу. Нужно повторить, как подписываются числа при записи примеров в столбик, требовать подробных объ­яснений, затем объяснения свертываются (разрядные единицы не называются)
  • Далее учащиеся решают примеры на умножение, а затем и на деление с раздроблением и превращением разрядных единиц.
Умножение многозначного числа на однозначное Подбираются для решения случаи с постепенным нарастание трудности: сначала с переходом через разряд в одном, в двух, затем и в нескольких разрядах. Наконец, решаются примеры на умножение, в которых первым множитель имеет нули в середине или на конце (особые случаи) Опыт и специальные исследования показывают, что в условиях вспомогательной школы целесообразно бывает сохранить единую, привычную для учащихся форму записи умножения в столбик даже в том случае, когда первый множитель оканчивается нулями

Умножение многозначного числа на однозначное

  • Подбираются для решения случаи с постепенным нарастание трудности: сначала с переходом через разряд в одном, в двух, затем и в нескольких разрядах.
  • Наконец, решаются примеры на умножение, в которых первым множитель имеет нули в середине или на конце (особые случаи)
  • Опыт и специальные исследования показывают, что в условиях вспомогательной школы целесообразно бывает сохранить единую, привычную для учащихся форму записи умножения в столбик даже в том случае, когда первый множитель оканчивается нулями
При записи примеров с первым множителем, оканчивающимся! нулями, второй множитель можно подписывать под первой знача­щей цифрой справа: При делении необходимо примеры подбирать так, чтобы выс­ший разряд делимого делился на делитель (был больше его). На таких примерах удобнее всего закрепить предварительную прикид­ку числа цифр в частном, о которой учащиеся уже получили представление при делении чисел в пределах 1000
  • При записи примеров с первым множителем, оканчивающимся! нулями, второй множитель можно подписывать под первой знача­щей цифрой справа:
  • При делении необходимо примеры подбирать так, чтобы выс­ший разряд делимого делился на делитель (был больше его). На таких примерах удобнее всего закрепить предварительную прикид­ку числа цифр в частном, о которой учащиеся уже получили представление при делении чисел в пределах 1000
Умножение и деление на разрядные числа (десятки, сотни, тысячи) Умножение на разрядные числа. Подготовительным упражне­нием к умножению на разрядные числа является повторение таб­личного умножения, умножения на однозначное число, а также на 10, 100, 1000. Следует вспомнить, как круглое число представить в виде произведения двух чисел (например, 20=2-10, 500=5-100, 6000=6-1000), повторить уже известные учащимся случаи умножения на круглые числа (например, 24 12-20= 12-(2-10)=(12-2)-10=24-10=240), вспомнить 30 правило: чтобы умножить число на круглые десятки, 720 нужно умножить это число на число десятков и к полу­ченному произведению приписать нуль, т. е. умножить его на 10. Это правило учащиеся применяют и при умножении больших чисел в пределах 10 000, 100 000 и 1 000 000. Аналогично учащиеся знакомятся с умножением двузначных, трех- и четырехзначных чисел на круглые сотни: 25 - 300=25 - 3 • 100=75 • 100=7500.
  • Умножение и деление на разрядные числа (десятки, сотни, тысячи)
  • Умножение на разрядные числа. Подготовительным упражне­нием к умножению на разрядные числа является повторение таб­личного умножения, умножения на однозначное число, а также на 10, 100, 1000. Следует вспомнить, как круглое число представить в виде произведения двух чисел (например, 20=2-10, 500=5-100, 6000=6-1000), повторить уже известные учащимся случаи умножения на круглые числа (например, 24 12-20= 12-(2-10)=(12-2)-10=24-10=240), вспомнить 30 правило: чтобы умножить число на круглые десятки, 720 нужно умножить это число на число десятков и к полу­ченному произведению приписать нуль, т. е. умножить его на 10.
  • Это правило учащиеся применяют и при умножении больших чисел в пределах 10 000, 100 000 и 1 000 000. Аналогично учащиеся знакомятся с умножением двузначных, трех- и четырехзначных чисел на круглые сотни: 25 - 300=25 - 3 • 100=75 • 100=7500.
На умножение на круглые тысячи распространяется уже из­вестное учащимся правило умножения числа на круглые десятки и сотни. Сначала рассматривается устно решение примеров вида: 7x5000. Можно 5000 записать как произведение 5-1000. 7 - (5 - 1000Ы7 • 5) -1000=35 -1000=35 000. Деление на разрядные числа. Учащиеся уже знакомы с деле­нием на круглые десятки и сотни. При изучении действий в пределах 1000 они опираются на этот знакомый материал. Поэто­му необходимо повторить табличное деление, деление на 10, 100, 1000 и, так же как в умножении, вспомнить, как представить круглые числа в виде произведения двух чисел (30=3-10, 100=3-100, 3000=3-1000), повторить устные и письменные слу­чаи деления.
  • На умножение на круглые тысячи распространяется уже из­вестное учащимся правило умножения числа на круглые десятки и сотни.
  • Сначала рассматривается устно решение примеров вида: 7x5000. Можно 5000 записать как произведение 5-1000. 7 - (5 - 1000Ы7 • 5) -1000=35 -1000=35 000.
  • Деление на разрядные числа. Учащиеся уже знакомы с деле­нием на круглые десятки и сотни. При изучении действий в пределах 1000 они опираются на этот знакомый материал. Поэто­му необходимо повторить табличное деление, деление на 10, 100, 1000 и, так же как в умножении, вспомнить, как представить круглые числа в виде произведения двух чисел (30=3-10, 100=3-100, 3000=3-1000), повторить устные и письменные слу­чаи деления.
МЕТОДИКА ИЗУЧЕНИЯ МЕТРИЧЕСКОЙ СИСТЕМЫ МЕР  ОБУЧЕНИЕ ИЗМЕРЕНИЯМ   Занятия по данной теме способствуют формированию обобще­ний, совершенствованию целенаправленности и точности выполне­ния действий, воспитанию умения планировать деятельность, до­водить любую работу до конца, формированию навыков самокон­троля. В ходе формирования практических умений и навыков развива­ются внимание, память, наблюдательность, совершенствуются мо­торика, тактильные и зрительные ощущения. Все это служит ре­шению задач коррекции как познавательной деятельности, так и личностных качеств школьников с нарушением интеллекта. В процессе знакомства с единицами измерения величин у уча­щихся расширяются представления о числе. Они убеждаются, что числа получаются не только от пересчета предметных совокупнос­тей, но и в результате измерения величин.

МЕТОДИКА ИЗУЧЕНИЯ МЕТРИЧЕСКОЙ СИСТЕМЫ МЕР ОБУЧЕНИЕ ИЗМЕРЕНИЯМ

  • Занятия по данной теме способствуют формированию обобще­ний, совершенствованию целенаправленности и точности выполне­ния действий, воспитанию умения планировать деятельность, до­водить любую работу до конца, формированию навыков самокон­троля.
  • В ходе формирования практических умений и навыков развива­ются внимание, память, наблюдательность, совершенствуются мо­торика, тактильные и зрительные ощущения. Все это служит ре­шению задач коррекции как познавательной деятельности, так и личностных качеств школьников с нарушением интеллекта.
  • В процессе знакомства с единицами измерения величин у уча­щихся расширяются представления о числе. Они убеждаются, что числа получаются не только от пересчета предметных совокупнос­тей, но и в результате измерения величин.
Изучение данной темы позволяет тесно связать преподавание математики с жизнью: учащиеся получают практические умения и навыки измерения, необходимые как в повседневной жизни, так и при овладении будущими профессиями, учатся правильно пользо­ваться измерительными инструментами — линейкой и рулеткой (устанавливать линейку, вести отсчет единиц измерения от нулевого деления линейки, а также от любого другого деления), веса ми (уравновешивать весы, производить взвешивание на чашечных весах, циферблатных весах со стрелкой), часами (определят! время по часам с точностью до минуты) и т. д. Данная тема, несмотря на большую по сравнению с другими разделами математики конкретность, трудна для учащихся вспомогательной школы. У учащихся как младших, так и старших классов нет реальных представлений о единицах измерения величины, наблюдается смешение единиц измерения одной и той же величины (сантиметра с дециметром и метром) и разных систем мер (метра с квадратным метром, а иногда и с килограммом). Учащиеся путают единицы измерения и измерительные инструменты.
  • Изучение данной темы позволяет тесно связать преподавание математики с жизнью: учащиеся получают практические умения и навыки измерения, необходимые как в повседневной жизни, так и при овладении будущими профессиями, учатся правильно пользо­ваться измерительными инструментами — линейкой и рулеткой (устанавливать линейку, вести отсчет единиц измерения от нулевого деления линейки, а также от любого другого деления), веса ми (уравновешивать весы, производить взвешивание на чашечных весах, циферблатных весах со стрелкой), часами (определят! время по часам с точностью до минуты) и т. д.
  • Данная тема, несмотря на большую по сравнению с другими разделами математики конкретность, трудна для учащихся вспомогательной школы. У учащихся как младших, так и старших классов нет реальных представлений о единицах измерения величины, наблюдается смешение единиц измерения одной и той же величины (сантиметра с дециметром и метром) и разных систем мер (метра с квадратным метром, а иногда и с килограммом). Учащиеся путают единицы измерения и измерительные инструменты.
Для школьников с нарушением интеллекта также характерна неточность измерений. Это вызвано непониманием значения точ­ности измерения в практике, неумением правильно установить инструмент, выбрать соответствующую единицу измерения, произ­вести отсчет по шкале измерительного инструмента (линейки, весов, циферблатов часов), правильно записать результат измере­ния.
  • Для школьников с нарушением интеллекта также характерна неточность измерений. Это вызвано непониманием значения точ­ности измерения в практике, неумением правильно установить инструмент, выбрать соответствующую единицу измерения, произ­вести отсчет по шкале измерительного инструмента (линейки, весов, циферблатов часов), правильно записать результат измере­ния.
. Нужно стремиться (учитывая слабость воображения, малый практический опыт, конкретность мышления умственно отсталых), чтобы учащиеся ощутили, четко представили каждую единицу измерения, используя все органы чувств. Надо шире использовать Наблюдения, опыт, знание уж известных единиц измерения.
  • . Нужно стремиться (учитывая слабость воображения, малый практический опыт, конкретность мышления умственно отсталых), чтобы учащиеся ощутили, четко представили каждую единицу измерения, используя все органы чувств. Надо шире использовать Наблюдения, опыт, знание уж известных единиц измерения.
4. Изучение мер должно сопровождаться активной практичес­кой деятельностью самих учащихся: а) по изготовлению единиц измерения (метра, дециметра, сантиметра, миллиметра, квадрат­ных и кубических мер); б) по измерению величин с помощью инструментов; в) по выяснению соотношения мер (в дециметре укладывать сантиметры, метр делить на дециметры и сантиметры, приходя к выводу: 1 дм = 10 см, 1 м=10 дм=100 см).
  • 4. Изучение мер должно сопровождаться активной практичес­кой деятельностью самих учащихся: а) по изготовлению единиц измерения (метра, дециметра, сантиметра, миллиметра, квадрат­ных и кубических мер); б) по измерению величин с помощью инструментов; в) по выяснению соотношения мер (в дециметре укладывать сантиметры, метр делить на дециметры и сантиметры, приходя к выводу: 1 дм = 10 см, 1 м=10 дм=100 см).
При изучении данной темы учащиеся должны получить пред­ставление о размерах некоторых наиболее часто встречающихся в их опыте и опыте других людей предметов, знание которых помо­жет им лучше ориентироваться в окружающей жизни, подготовит к участию в доступной им трудовой деятельности. Например, уча­щиеся должны знать средний рост ребенка их возраста, средний рост взрослого человека, длину и ширину тетради, классной доски, высоту, длину и ширину класса, длину карандаша, сред­нюю длину шага, высоту стола, стула, массу одного яблока, кар­тофелины, буханки хлеба, батона, мешка картофеля (зерна, муки), среднюю массу человека, грузоподъемность машины, вместимость ведра, молочных бидонов, среднюю скорость пешехода, лошади, автомашины, поезда, самолета, уметь показать примерные разме­ры 1 см и 1 м.
  • При изучении данной темы учащиеся должны получить пред­ставление о размерах некоторых наиболее часто встречающихся в их опыте и опыте других людей предметов, знание которых помо­жет им лучше ориентироваться в окружающей жизни, подготовит к участию в доступной им трудовой деятельности. Например, уча­щиеся должны знать средний рост ребенка их возраста, средний рост взрослого человека, длину и ширину тетради, классной доски, высоту, длину и ширину класса, длину карандаша, сред­нюю длину шага, высоту стола, стула, массу одного яблока, кар­тофелины, буханки хлеба, батона, мешка картофеля (зерна, муки), среднюю массу человека, грузоподъемность машины, вместимость ведра, молочных бидонов, среднюю скорость пешехода, лошади, автомашины, поезда, самолета, уметь показать примерные разме­ры 1 см и 1 м.
6.  Закрепление знаний мер и умения измерять проводится  только на уроках математики, но и на других учебных предмета!  особенно на уроках ручного и профессионального труда, физкул|  туры, черчения, при работе на пришкольном участке, на произвс  ственной практике, а также во внеклассное время. Успех  зависит от целенаправленной работы всех учителей и воспитач  лей, работающих с одним коллективом учащихся. Измерению с помощью инструментов для определения точн|  го значения размеров предметов должно предшествовать опред^  ление этих размеров на глаз. Это разовьет глазомер, закреп»  представление о единицах измерения, укрепит знание назван!  единиц измерения величин, предупредит их уподобление.
  • 6. Закрепление знаний мер и умения измерять проводится только на уроках математики, но и на других учебных предмета! особенно на уроках ручного и профессионального труда, физкул| туры, черчения, при работе на пришкольном участке, на произвс ственной практике, а также во внеклассное время. Успех зависит от целенаправленной работы всех учителей и воспитач лей, работающих с одним коллективом учащихся.
  • Измерению с помощью инструментов для определения точн| го значения размеров предметов должно предшествовать опред^ ление этих размеров на глаз. Это разовьет глазомер, закреп» представление о единицах измерения, укрепит знание назван! единиц измерения величин, предупредит их уподобление.
Формирование навыков у детей с нарушением интеллект  происходит очень медленно, и требуется большое количество у]|  ражнений на протяжении долгого времени, чтобы сформировал  тот или иной навык. Поэтому упражнения в измерении необход  мо проводить систематически. Они должны быть неотъемлемо!,  частью большинства уроков математики. Не реже трех-четырех раз  в неделю следует предлагать учащимся упражнения по измерению  или вычерчиванию отрезков, геометрических фигур, определению на  глаз длины, ширины, высоты предметов, емкости сосудов, определе­  нию массы груза, времени по часам, а также времени, затраченного  на ту или иную работу. Задания могут быть как индивидуальными  («Определите массу яблока, пакета с крупой»), так и фронтальными  («Нужно решить столбик примеров. Запишите время начала работы  по часам. Решите примеры. Запишите время окончания работы.  Определите, сколько времени затратил каждый»).
  • Формирование навыков у детей с нарушением интеллект происходит очень медленно, и требуется большое количество у]| ражнений на протяжении долгого времени, чтобы сформировал тот или иной навык. Поэтому упражнения в измерении необход мо проводить систематически. Они должны быть неотъемлемо!, частью большинства уроков математики. Не реже трех-четырех раз в неделю следует предлагать учащимся упражнения по измерению или вычерчиванию отрезков, геометрических фигур, определению на глаз длины, ширины, высоты предметов, емкости сосудов, определе­ нию массы груза, времени по часам, а также времени, затраченного на ту или иную работу. Задания могут быть как индивидуальными («Определите массу яблока, пакета с крупой»), так и фронтальными («Нужно решить столбик примеров. Запишите время начала работы по часам. Решите примеры. Запишите время окончания работы. Определите, сколько времени затратил каждый»).
Весьма полезной для закрепления знаний о единицах измере­ния, для выработки практических навыков по измерению и ис­пользованию измерительных инструментов, для установления связи знаний с жизнью является дидактическая игра «Магазин». Эту игру нужно проводить систематически с 1-го по 4-й класс. Наряду с игрой «Магазин» необходимо организовывать игры «Почта», «Поездка на транспорте» и др.
  • Весьма полезной для закрепления знаний о единицах измере­ния, для выработки практических навыков по измерению и ис­пользованию измерительных инструментов, для установления связи знаний с жизнью является дидактическая игра «Магазин». Эту игру нужно проводить систематически с 1-го по 4-й класс. Наряду с игрой «Магазин» необходимо организовывать игры «Почта», «Поездка на транспорте» и др.
УМНОЖЕНИЕ И ДЕЛЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ      В школе VIII вида рассматривается только умножение и деле­ние дробей и смешанных чисел на целое число. Изучение этих действий, так же как и изучение сложения и вычитания, дает параллельно. Для удобства изложения мы сначала рассмотрим методику знакомства с умножением дроби на целое число, а затем с деление дроби на целое число.

УМНОЖЕНИЕ И ДЕЛЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ  

  • В школе VIII вида рассматривается только умножение и деле­ние дробей и смешанных чисел на целое число. Изучение этих действий, так же как и изучение сложения и вычитания, дает параллельно.
  • Для удобства изложения мы сначала рассмотрим методику знакомства с умножением дроби на целое число, а затем с деление дроби на целое число.
Прежде чем знакомить учащихся с умножением дроби на цел^ число, необходимо повторить умножение целых чисел. При рассмотрении умножения дроби на целое число необхоД| мо соблюдать определенную последовательность разных случае] которая определяется степенью их трудности. Умножение дроби на целое число. Умножение смешанного числа на целое.  Подготовительными заданиями к объяснению умножения дрой на целое число являются задания на умножение целых чисел | последующей заменой действия умножения действием сложений например: заменить умножение 7-3=21 сложением 7+7+7=21| заменить действие умножения (первый множитель — дробь второй множитель — целое число) действием сложения
  • Прежде чем знакомить учащихся с умножением дроби на цел^ число, необходимо повторить умножение целых чисел.
  • При рассмотрении умножения дроби на целое число необхоД| мо соблюдать определенную последовательность разных случае] которая определяется степенью их трудности.
  • Умножение дроби на целое число.
  • Умножение смешанного числа на целое. Подготовительными заданиями к объяснению умножения дрой
  • на целое число являются задания на умножение целых чисел | последующей заменой действия умножения действием сложений например: заменить умножение 7-3=21 сложением 7+7+7=21| заменить действие умножения (первый множитель — дробь второй множитель — целое число) действием сложения
При этом обращается внимание на числитель знаменатель произведения и первого множителя. С помощью во просов: «Изменился ли знаменатель дроби при умножении? Чт| произошло с числителем дроби?» — учащиеся приходят к выводу^ что числитель увеличился в 3 раза, а знаменатель не изменился.. Для вывода правила умножения дроби на целое число недостаточ­но ограничиться рассмотрением только одного примера, нужно, рассмотреть еще несколько примеров
  • При этом обращается внимание на числитель знаменатель произведения и первого множителя. С помощью во просов: «Изменился ли знаменатель дроби при умножении? Чт| произошло с числителем дроби?» — учащиеся приходят к выводу^ что числитель увеличился в 3 раза, а знаменатель не изменился.. Для вывода правила умножения дроби на целое число недостаточ­но ограничиться рассмотрением только одного примера, нужно, рассмотреть еще несколько примеров
Правильность ответов в этих примерах необходимо подтвер­дить демонстрацией рисунков. В рассмотренных примерах внимание учащихся надо обратить на то, что в числителе сумму одинаковых слагаемых (трех двоек) можно заменить произведением (2 • 3).
  • Правильность ответов в этих примерах необходимо подтвер­дить демонстрацией рисунков.
  • В рассмотренных примерах внимание учащихся надо обратить на то, что в числителе сумму одинаковых слагаемых (трех двоек) можно заменить произведением (2 • 3).
Число надо сопоставить эти числа со знаменателем и, если у них есть общий делитель, разделить на него и только потом произвести-умножение. Такой прием предварительного сокращения чисел, записанных в числителе и знаменателе, облегчает вычисления
  • Число надо сопоставить эти числа со знаменателем и, если у них есть общий делитель, разделить на него и только потом произвести-умножение. Такой прием предварительного сокращения чисел, записанных в числителе и знаменателе, облегчает вычисления
Деление дроби на целое число дается в следующей последо­вательности: Деление дроби на целое число без предварительного сокращения. Деление смешанного числа на целое число без предваритель­ного сокращения. Деление с предварительным сокращением. Учащимся необходимо показать и такие случаи деления дроби или смешанного числа на целое, когда предварительное сокраще­ние облегчает процесс выполнения действия
  • Деление дроби на целое число дается в следующей последо­вательности:
  • Деление дроби на целое число без предварительного сокращения.
  • Деление смешанного числа на целое число без предваритель­ного сокращения.
  • Деление с предварительным сокращением.
  • Учащимся необходимо показать и такие случаи деления дроби или смешанного числа на целое, когда предварительное сокраще­ние облегчает процесс выполнения действия
ПОЛУЧЕНИЕ ДЕСЯТИЧНЫХ ДРОБЕЙ   Успех усвоения десятичных дробей во многом зависит от зна­ния учащимися нумерации целых чисел, свойств десятичной сис­темы счисления и десятичного соотношения мер метрической сис­темы (длины, стоимости, массы). Все эти знания необходимо вос­произвести в памяти учащихся перед тем, как переходить к изуче­нию десятичных дробей. Учитывая конкретность мышления умственно отсталых уча­щихся, понятие о десятичной дроби целесообразнее всего сформи­ровать, используя знания учащихся о соотношениях метрической системы единиц измерения длины. В качестве наглядного пособия используется метр, разделенный на дециметры, сантиметры и мил­лиметры. Учащиеся вспоминают, что в 1 м содержится 10 дм, 100 см и 1000 мм. Теперь можно установить, какую часть метра составляет 1 дм, 1 см, 1 мм,

ПОЛУЧЕНИЕ ДЕСЯТИЧНЫХ ДРОБЕЙ

  • Успех усвоения десятичных дробей во многом зависит от зна­ния учащимися нумерации целых чисел, свойств десятичной сис­темы счисления и десятичного соотношения мер метрической сис­темы (длины, стоимости, массы). Все эти знания необходимо вос­произвести в памяти учащихся перед тем, как переходить к изуче­нию десятичных дробей.
  • Учитывая конкретность мышления умственно отсталых уча­щихся, понятие о десятичной дроби целесообразнее всего сформи­ровать, используя знания учащихся о соотношениях метрической системы единиц измерения длины. В качестве наглядного пособия используется метр, разделенный на дециметры, сантиметры и мил­лиметры. Учащиеся вспоминают, что в 1 м содержится 10 дм, 100 см и 1000 мм. Теперь можно установить, какую часть метра составляет 1 дм, 1 см, 1 мм,
Учитель просит учащихся записать подряд без наименования все дроби, которые получили, с тем чтобы обратить внимание на знаменатели этих дробей. Учащиеся на основе наблюдений уста­навливают, что у всех дробей знаменатели 10, 100, 1000, т. е. единица с одним или несколькими нулями. Учитель формулирует вывод: дробь, у которой знаменатель — единица с одним или несколькими нулями, называется десятичной дробью.
  • Учитель просит учащихся записать подряд без наименования все дроби, которые получили, с тем чтобы обратить внимание на знаменатели этих дробей. Учащиеся на основе наблюдений уста­навливают, что у всех дробей знаменатели 10, 100, 1000, т. е. единица с одним или несколькими нулями. Учитель формулирует вывод: дробь, у которой знаменатель — единица с одним или несколькими нулями, называется десятичной дробью.
Наибольшую трудность для учащихся представляет запись де сятичных дробей (так же как и целых чисел) с отсутствующими разрядными долями, например: 19,07; 25,905; 27,009. Поэтому эти дроби даются для записи только тогда, когда учащиеся хорошо усвоят запись дробей с наличием всех разрядных долей, могут объяснить, как называется каждая разрядная доля, на каком месте справа от запятой она стоит, поймут, что каждая последую­щая доля в 10 раз меньше предыдущей (если имеет одно и то же число долей). Например, 5 сотых в 10 раз меньше, чем 5 десятых, а 5 тысячных в 10 раз меньше, чем 5 сотых.
  • Наибольшую трудность для учащихся представляет запись де сятичных дробей (так же как и целых чисел) с отсутствующими разрядными долями, например: 19,07; 25,905; 27,009. Поэтому эти дроби даются для записи только тогда, когда учащиеся хорошо усвоят запись дробей с наличием всех разрядных долей, могут объяснить, как называется каждая разрядная доля, на каком месте справа от запятой она стоит, поймут, что каждая последую­щая доля в 10 раз меньше предыдущей (если имеет одно и то же число долей). Например, 5 сотых в 10 раз меньше, чем 5 десятых, а 5 тысячных в 10 раз меньше, чем 5 сотых.
При знакомстве с письменной нумерацией десятичных дробей необходимо обратить внимание учащихся на то, что после запятой в десятичной дроби должно стоять столько знаков, сколько нулей в знаменателе дроби. Например, надо записать дробь семь целых восемь сотых. Знаменатель дроби 100, т. е. имеет два нуля. Сле­довательно, после запятой должно быть два знака, произносится же только один знак (число 8), значит, сразу после запятой надо написать нуль: 7,08. На особенность, которую мы используем при записи десятичных дробей, следует обратить внимание учащихся и при их чтении.
  • При знакомстве с письменной нумерацией десятичных дробей необходимо обратить внимание учащихся на то, что после запятой в десятичной дроби должно стоять столько знаков, сколько нулей в знаменателе дроби. Например, надо записать дробь семь целых восемь сотых. Знаменатель дроби 100, т. е. имеет два нуля. Сле­довательно, после запятой должно быть два знака, произносится же только один знак (число 8), значит, сразу после запятой надо написать нуль: 7,08. На особенность, которую мы используем при записи десятичных дробей, следует обратить внимание учащихся и при их чтении.
МЕТОДИКА ИЗУЧЕНИЯ ПРОЦЕНТОВ Десятичные дроби со знаменателем 100 наиболее удобны для вычислений, так как во многих мерах метрической системы встреча­ется единичное отношение 100 (1 м=100 см, 1 р. = 100 к., 1 га=100а, 1 ц=100кг; следовательно, 1 см=0,01 м, 1 к.=0,01 р., 1 а=0,01 га, 1 кг=0,01 ц), таг часть числа обозначается так: 1%. Можно записать, что 1 см=0,01 м=1% метра, 1 к.=0,01 р. = 1% рубля, 1а=0,01 га = 1% гектара, 1 кг=1% центнера. В данном случае мы выразили полученные числа в процентах. Отвлеченные от числа также можно выразить в процентах.

МЕТОДИКА ИЗУЧЕНИЯ ПРОЦЕНТОВ

  • Десятичные дроби со знаменателем 100 наиболее удобны для вычислений, так как во многих мерах метрической системы встреча­ется единичное отношение 100 (1 м=100 см, 1 р. = 100 к., 1 га=100а, 1 ц=100кг; следовательно, 1 см=0,01 м, 1 к.=0,01 р., 1 а=0,01 га, 1 кг=0,01 ц), таг часть числа обозначается так: 1%. Можно записать, что 1 см=0,01 м=1% метра, 1 к.=0,01 р. = 1% рубля, 1а=0,01 га = 1% гектара, 1 кг=1% центнера. В данном случае мы выразили полученные числа в процентах. Отвлеченные от числа также можно выразить в процентах.
На основе понятия о проценте и умений выразить (записат числа в процентах необходимо объяснить значение часто встр чающихся на производстве и в быту выражений, например: «РаС чий выполнил норму по обработке деталей на 100%». Это озна«, ет, что рабочий обработал за смену то количество деталей, кот. рое было запланировано, например 150 деталей. Если рабоч! сделал меньше 150 деталей, то он не выполнил норму, т. е. в| полнил ее меньше чем на 100%. Если рабочий сделал болы 150 деталей, то он перевыполнил норму, т. е. выполнил ее болы чем на 100%. Учащиеся знакомятся не только с выражением целого чис; но и десятичных дробей процентами.
  • На основе понятия о проценте и умений выразить (записат числа в процентах необходимо объяснить значение часто встр чающихся на производстве и в быту выражений, например: «РаС чий выполнил норму по обработке деталей на 100%». Это озна«, ет, что рабочий обработал за смену то количество деталей, кот. рое было запланировано, например 150 деталей. Если рабоч! сделал меньше 150 деталей, то он не выполнил норму, т. е. в| полнил ее меньше чем на 100%. Если рабочий сделал болы 150 деталей, то он перевыполнил норму, т. е. выполнил ее болы чем на 100%.
  • Учащиеся знакомятся не только с выражением целого чис; но и десятичных дробей процентами.
В этом случае учитель при объяснении также исходит из опре­деления процента: 0,01 = 1%, следовательно, 0,02=2%; 0,05=5%; 0,25=25%; 0,5=50%, так как 0,5=0,50=50%; 1,7=170%. На основании подобных рассуждений, наблюдений и сравнения деся-1 тичной дроби и числа, выражающего эту дробь в процентах, неко­торые учащиеся могут сделать вывод: чтобы десятичную^ дробь заменить процентами, надо перенести за-! пятую вправо на два знака и поставить знак %. Вместо недостающих знаков ставятся нули. Обыкновенную дробь также можно выразить (заменить) процентами. Ее нужно для этого обратить в десятичную дробь и применить правило замены
  • В этом случае учитель при объяснении также исходит из опре­деления процента: 0,01 = 1%, следовательно, 0,02=2%; 0,05=5%; 0,25=25%; 0,5=50%, так как 0,5=0,50=50%; 1,7=170%. На основании подобных рассуждений, наблюдений и сравнения деся-1 тичной дроби и числа, выражающего эту дробь в процентах, неко­торые учащиеся могут сделать вывод: чтобы десятичную^ дробь заменить процентами, надо перенести за-! пятую вправо на два знака и поставить знак %. Вместо недостающих знаков ставятся нули. Обыкновенную дробь также можно выразить (заменить) процентами. Ее нужно для этого обратить в десятичную дробь и применить правило замены
Рассуждения ведутся также исходя из понятия о проценте: 1%=0,01; 2%=0,02%; 40%=0,40=0,4; 100% = 1; 200%=2; 150% = 1,5; 0,5=50%; 0,25=25%; 0,1 = 10%.
  • Рассуждения ведутся также исходя из понятия о проценте: 1%=0,01; 2%=0,02%; 40%=0,40=0,4; 100% = 1; 200%=2;
  • 150% = 1,5; 0,5=50%; 0,25=25%; 0,1 = 10%.
МЕТОДИКА РЕШЕНИЯ АРИФМЕТИЧЕСКИХ ЗАДАЧ Решение арифметических задач помогает раскрыть основно смысл арифметических действий, конкретизировать их, связать определенной жизненной ситуацией. Задачи способствуют усвс нию математических понятий, отношений, закономерностей, этом случае они, как правило, служат конкретизации этих поня­тий и отношений, так как каждая сюжетная задача отражав] определенную жизненную ситуацию

МЕТОДИКА РЕШЕНИЯ АРИФМЕТИЧЕСКИХ ЗАДАЧ

  • Решение арифметических задач помогает раскрыть основно смысл арифметических действий, конкретизировать их, связать определенной жизненной ситуацией. Задачи способствуют усвс нию математических понятий, отношений, закономерностей, этом случае они, как правило, служат конкретизации этих поня­тий и отношений, так как каждая сюжетная задача отражав] определенную жизненную ситуацию
При решении задач у умственно отсталых школьников развив! ется произвольное внимание, наблюдательность, логическое мыт ление, речь, сообразительность. Решение задач способствует раа витию таких процессов познавательной деятельности, как анализ синтез, сравнение, обобщение. В процессе решения арифметических задач учащиеся учато планировать и контролировать свою деятельность, овладеваю 1 приемами самоконтроля (проверка задачи, прикидка ответа, реше ние задачи разными способами и т. д.), у них воспитывается на стойчивость, воля, развивается интерес к поиску решения задачи
  • При решении задач у умственно отсталых школьников развив! ется произвольное внимание, наблюдательность, логическое мыт ление, речь, сообразительность. Решение задач способствует раа витию таких процессов познавательной деятельности, как анализ синтез, сравнение, обобщение.
  • В процессе решения арифметических задач учащиеся учато планировать и контролировать свою деятельность, овладеваю 1 приемами самоконтроля (проверка задачи, прикидка ответа, реше ние задачи разными способами и т. д.), у них воспитывается на стойчивость, воля, развивается интерес к поиску решения задачи
  • Решение арифметических задач на уроках математики позволит реализовать задачу подготовки учащихся к более успешному овла­дению профессиональным трудом, сблизить обучение с жизнью.
  • Умением решать арифметические задачи учащиеся овладевают с большим трудом.
  • Анализ контрольных работ учащихся, наблюдения и специаль­ные исследования показывают, что ошибки, которые учащиеся допускают при решении задач, можно классифицировать так:
  • Привнесение лишнего вопроса и действия.
  • Исключение нужного вопроса и действия.
  • Несоответствие вопросов действиям: правильно поставлен­ные вопросы и неправильный выбор действий или, наоборот, пра­вильный выбор действий и неверная формулировка вопросов.
  • Случайный подбор чисел и действий.
  • Ошибки в наименовании величин при выполнении действий: а) наименования не пишутся; б) наименования пишутся ошибочно, вне предметного понимания содержания задачи; в) наименова­ния пишутся лишь при отдельных компонентах.
  • Ошибки в вычислениях.
  • Неверная формулировка ответа задачи (сформулированный ответ не соответствует вопросу задачи, стилистически построено верно, не соответствует ответу последнего действия и т. Д-^__
Причины ошибочных решений задач умственно отсталыми школьниками кроются в первую очередь в особенностях мышле­ния этих детей. Трудности в решении задач у умственно отсталых учащихся связаны с недостаточным пониманием предметно-действенной си­туации, отраженной в задаче, и математических связей и отноше­ний между числовыми данными, а также между данными и иско­мыми.
  • Причины ошибочных решений задач умственно отсталыми школьниками кроются в первую очередь в особенностях мышле­ния этих детей.
  • Трудности в решении задач у умственно отсталых учащихся связаны с недостаточным пониманием предметно-действенной си­туации, отраженной в задаче, и математических связей и отноше­ний между числовыми данными, а также между данными и иско­мыми.
Опыт показывает, что школьники с нарушением интеллекта справляются с решением задач, если они составлены на основе действий с реальными предметами. Основные трудности возника­ют тогда, когда необходимо наглядно представить словесно сфор­мированные задачи. Б их сознании не всегда возникает отражение действительного содержания ситуации и заключенных в ней пред­метных отношений. Понимание условия задачи нередко не отвеча­ет ее предметному содержанию.
  • Опыт показывает, что школьники с нарушением интеллекта справляются с решением задач, если они составлены на основе действий с реальными предметами. Основные трудности возника­ют тогда, когда необходимо наглядно представить словесно сфор­мированные задачи. Б их сознании не всегда возникает отражение действительного содержания ситуации и заключенных в ней пред­метных отношений. Понимание условия задачи нередко не отвеча­ет ее предметному содержанию.
Поверхностный анализ содержания задачи приводит к отклонению от конечной цели. Школьники с нарушением интеллектаI осознают условия задачи, изменяют и упрощают его. Нередко н| воспроизведении текста задачи они привносят в условие штампы руководствуются ими при решении, а действительные связи и отношения не учитывают, опираются на фрагменты или несущественны' элементы задачи, при выборе действий руководствуются словами всего, меньше, больше, осталось. В силу стереотипности действии характерной для умственно отсталых учащихся, они решают задачи шаблонными способами, руководствуясь случайными ассоциациями вызванными созвучием слов и выражений. Уподобление одних зад;1ч другим — наиболее часто встречающийся вид ошибок, так как оси знание сходства и различия арифметических задач представляет для учащихся с нарушением интеллекта наибольшую трудность.
  • Поверхностный анализ содержания задачи приводит к отклонению от конечной цели. Школьники с нарушением интеллектаI осознают условия задачи, изменяют и упрощают его. Нередко н| воспроизведении текста задачи они привносят в условие штампы руководствуются ими при решении, а действительные связи и отношения не учитывают, опираются на фрагменты или несущественны' элементы задачи, при выборе действий руководствуются словами всего, меньше, больше, осталось. В силу стереотипности действии характерной для умственно отсталых учащихся, они решают задачи шаблонными способами, руководствуясь случайными ассоциациями вызванными созвучием слов и выражений. Уподобление одних зад;1ч другим — наиболее часто встречающийся вид ошибок, так как оси знание сходства и различия арифметических задач представляет для учащихся с нарушением интеллекта наибольшую трудность.
Большое внимание следует уделять работе над содержанием задачи, т. е. над осмыслением ситуации, изложенной в задаче, установлением зависимости между данными, а также между дан­ными и искомым. Последовательность работы над усвоением содержания задачи: а) разбор непонятных слов или выражений, которые встретятся в тексте задачи; б) чтение текста задачи учителем и учащимися; в) запись условия задачи; г) повторение задачи по вопросам; д) воспроизведение одним из учащихся пол­ного текста задачи.
  • Большое внимание следует уделять работе над содержанием задачи, т. е. над осмыслением ситуации, изложенной в задаче, установлением зависимости между данными, а также между дан­ными и искомым. Последовательность работы над усвоением содержания задачи:

а) разбор непонятных слов или выражений, которые встретятся в тексте задачи;

б) чтение текста задачи учителем и учащимися;

в) запись условия задачи;

г) повторение задачи по вопросам;

д) воспроизведение одним из учащихся пол­ного текста задачи.

Работа над отдельными словами и выражениями должна вес­тись не тогда, когда учитель знакомит учащихся с содержанием задачи, а раньше, до предъявления задачи, иначе словарная ра­бота разрушает структуру задачи, уводит учащихся от понима­ния арифметического содержания задачи, зависимости между данными
  • Работа над отдельными словами и выражениями должна вес­тись не тогда, когда учитель знакомит учащихся с содержанием задачи, а раньше, до предъявления задачи, иначе словарная ра­бота разрушает структуру задачи, уводит учащихся от понима­ния арифметического содержания задачи, зависимости между данными
Текст задачи первоначально рассказывает или читает учитель, 1 а начиная со 2-го класса его могут читать и ученики по учебнику или по записи на доске. Читать задачу нужно выразительно, вы­деляя голосом математические выражения, главный вопрос зада­чи, делая логические ударения на тех предложениях или сочета­ниях слов, которые прямо указывают на определенное действие (например, разложили поровну в две вазы, купили 3 тетради по 12 р. за каждую). Между условием задачи и вопросом следует сделать паузу, если вопрос стоит в конце задачи.
  • Текст задачи первоначально рассказывает или читает учитель, 1 а начиная со 2-го класса его могут читать и ученики по учебнику или по записи на доске. Читать задачу нужно выразительно, вы­деляя голосом математические выражения, главный вопрос зада­чи, делая логические ударения на тех предложениях или сочета­ниях слов, которые прямо указывают на определенное действие (например, разложили поровну в две вазы, купили 3 тетради по 12 р. за каждую). Между условием задачи и вопросом следует сделать паузу, если вопрос стоит в конце задачи.
Восприятие текста задачи только на слух на первых порах невозможно для школьников с нарушением интеллекта, они вос­принимают нередко только фрагменты задачи, с трудом вычленя­ют числовые данные. При первом чтении они в основном запоми­нают лишь повествовательную часть задачи. Все это свидетельст­вует о необходимости при восприятии текста задачи использовать не только слуховые, но и зрительные, а если возможно, то и кинестезические анализаторы.
  • Восприятие текста задачи только на слух на первых порах невозможно для школьников с нарушением интеллекта, они вос­принимают нередко только фрагменты задачи, с трудом вычленя­ют числовые данные. При первом чтении они в основном запоми­нают лишь повествовательную часть задачи. Все это свидетельст­вует о необходимости при восприятии текста задачи использовать не только слуховые, но и зрительные, а если возможно, то и кинестезические анализаторы.
Наряду с конкретизацией содержания задачи с помощью пред­метов, трафаретов и рисунков в практике работы учителей школы VIII вида широкое распространение получили следующие формы записи содержания задачи: Сокращенная форма записи, при которой из текста задачи  выписывают числовые данные и только те слова и выражения,  которые необходимы для понимания логического смысла задачи.  Вопрос задачи записывается полностью. Например: «В вазе стоял  букет цветов из ромашек и васильков. В букете было 7 ромашек,  а васильков на 5 штук больше. Сколько всего цветов в букете?»  Сокращенная запись: «Ромашек 7 штук, васильков на 5 штук  больше. Сколько всего цветов?»
  • Наряду с конкретизацией содержания задачи с помощью пред­метов, трафаретов и рисунков в практике работы учителей школы VIII вида широкое распространение получили следующие формы записи содержания задачи:
  • Сокращенная форма записи, при которой из текста задачи выписывают числовые данные и только те слова и выражения, которые необходимы для понимания логического смысла задачи. Вопрос задачи записывается полностью. Например: «В вазе стоял букет цветов из ромашек и васильков. В букете было 7 ромашек, а васильков на 5 штук больше. Сколько всего цветов в букете?» Сокращенная запись: «Ромашек 7 штук, васильков на 5 штук больше. Сколько всего цветов?»
Сокращенно-структурная форма записи, при которой каждая логическая часть задачи записывается с новой строки. Вопрос задачи записывается или внизу, или сбоку. Текст задачи принимает наглядно-воспринимаемую форму Схематическая форма записи. Это запись содержания задачи в виде схемы В схеме желательно сохранить пропорции, соответствующие числовым данным. «В одном ящике 17 кг помидоров, а в другом на 5 кг больше. Сколько килограммов помидоров в двух ящиках?» Графическая форма записи. Это запись содержания задачи в виде чертежа, диаграммы. Удобнее всего в графической форме записывать задачи на движение Опыт показывает, что пониманию зависимости между число­выми данными, а также между данными и искомыми в некоторых задачах способствует не конкретизация условия, а наоборот
  • Сокращенно-структурная форма записи, при которой каждая логическая часть задачи записывается с новой строки. Вопрос задачи записывается или внизу, или сбоку. Текст задачи принимает наглядно-воспринимаемую форму
  • Схематическая форма записи. Это запись содержания задачи в виде схемы В схеме желательно сохранить пропорции, соответствующие числовым данным. «В одном ящике 17 кг помидоров, а в другом на 5 кг больше. Сколько килограммов помидоров в двух ящиках?»
  • Графическая форма записи. Это запись содержания задачи в виде чертежа, диаграммы. Удобнее всего в графической форме записывать задачи на движение
  • Опыт показывает, что пониманию зависимости между число­выми данными, а также между данными и искомыми в некоторых задачах способствует не конкретизация условия, а наоборот
В тексте многих задач имеются слова: всего, осталось, боль-, ше, меньше, которые указывают на выбор арифметического деист-!, вия, но опираться только на них при выборе действия нельзя, так как в отрыве от контекста они могут натолкнуть ученика на ошибочный выбор действия. Исключать эти опорные слова из задач не следует, так как они отражают определенную жизненную ситуацию, но нельзя акцентировать на них внимание учащихся вне контекста задачи. Например, нельзя говорить ученику, что «если в задаче есть слова всего, стало, то надо складывать; если есть в задаче слово осталось, то надо вычитать».
  • В тексте многих задач имеются слова: всего, осталось, боль-, ше, меньше, которые указывают на выбор арифметического деист-!, вия, но опираться только на них при выборе действия нельзя, так как в отрыве от контекста они могут натолкнуть ученика на ошибочный выбор действия. Исключать эти опорные слова из задач не следует, так как они отражают определенную жизненную ситуацию, но нельзя акцентировать на них внимание учащихся вне контекста задачи. Например, нельзя говорить ученику, что «если в задаче есть слова всего, стало, то надо складывать; если есть в задаче слово осталось, то надо вычитать».
Выбор действия при решении задачи определяется той зависи­мостью, которая имеется между данными и искомыми в задаче. Зависимость эта правильно может быть понята в том случае, если ученики поняли жизненно-практическую ситуацию задачи и могут перевести зависимость между предметами и величинами на «язык математики», т. е. правильно выразить ее через действия над числами. С этой целью учитель проводит беседу с учащимися, которая называется разбором задачи. В беседе устанавливается зависимость между данными и искомым. При разборе содержания задачи нового вида учитель ставит вопросы так, чтобы подвести учащихся к правильному и осознанному выбору действия.
  • Выбор действия при решении задачи определяется той зависи­мостью, которая имеется между данными и искомыми в задаче. Зависимость эта правильно может быть понята в том случае, если ученики поняли жизненно-практическую ситуацию задачи и могут перевести зависимость между предметами и величинами на «язык математики», т. е. правильно выразить ее через действия над числами. С этой целью учитель проводит беседу с учащимися, которая называется разбором задачи. В беседе устанавливается зависимость между данными и искомым. При разборе содержания задачи нового вида учитель ставит вопросы так, чтобы подвести учащихся к правильному и осознанному выбору действия.
В младших классах школы VIII вида при разборе задачи рас­суждения чаще всего проводятся от числовых данных к вопросу задачи, так как учащимся легче к выделенным числовым данным поставить вопрос, чем подобрать два числа (из них могут быть оба числа или одно неизвестны) к вопросу задачи. Однако, начиная с 3-го класса, следует проводить рассуждения от главного вопроса задачи, так как такой ход рассуждений более целенаправлен на составление плана решения в целом (а не на выделение одного действия, как это происходит при первом способе разбора — от данных к вопросу задачи).
  • В младших классах школы VIII вида при разборе задачи рас­суждения чаще всего проводятся от числовых данных к вопросу задачи, так как учащимся легче к выделенным числовым данным поставить вопрос, чем подобрать два числа (из них могут быть оба числа или одно неизвестны) к вопросу задачи. Однако, начиная с 3-го класса, следует проводить рассуждения от главного вопроса задачи, так как такой ход рассуждений более целенаправлен на составление плана решения в целом (а не на выделение одного действия, как это происходит при первом способе разбора — от данных к вопросу задачи).
чему? Во сколько действий эта задача? Какое первое действие? 11 чему вычитание? Какое второе действие? Почему сложение? Сколь ко слагаемых во втором действии? Почему складываем 3 числа? Назвать эти слагаемые. Какое из них неизвестно?» " width="640"
  • Учитель может поставить только узловые вопросы перед сост лением плана решения и определением последовательности вий. Например: «Что нужно узнать в задаче? Все ли данные у ш есть, чтобы узнать, сколько килограммов яблок собрали ученики м три дня? Какого данного не хватает? Можно ли из условия задачи определить, сколько килограммов яблок собрали во второй день? 1 1 чему? Во сколько действий эта задача? Какое первое действие? 11 чему вычитание? Какое второе действие? Почему сложение? Сколь ко слагаемых во втором действии? Почему складываем 3 числа? Назвать эти слагаемые. Какое из них неизвестно?»
Работа по закреплению решения задачи (см. с. 354) может быть проведена различными приемами. 1. Ставятся узловые вопросы по содержанию задачи. Напри­мер: Сколько дней дети собирали яблоки с пришкольного участка? Известно ли, сколько яблок дети собрали в первый день (во второй день, в третий день)? Что неизвестно в задаче? Что нужно узнать в задаче? Можно ли сразу ответить на главный вопрос задачи? Какого данного для этого не хватает? Как решали задачу? 2.  Предлагается рассказать весь ход решения задачи с обосно­ванием выбора действий. 3.  Ставятся вопросы к отдельным действиям или вопросам. Например: Почему в первом действии выполнили вычитание? Для чего нужно было узнавать, сколько собрали яблок во второй день? Почему во втором действии три слагаемых? И т. д. С закреплением решения задач тесно связана последующая работа над решенной задачей, которая способствует осознанному выбору действий и подходу к решению задачи.
  • Работа по закреплению решения задачи (см. с. 354) может быть проведена различными приемами.
  • 1. Ставятся узловые вопросы по содержанию задачи. Напри­мер:
  • Сколько дней дети собирали яблоки с пришкольного участка?
  • Известно ли, сколько яблок дети собрали в первый день (во второй день, в третий день)?
  • Что неизвестно в задаче?
  • Что нужно узнать в задаче?
  • Можно ли сразу ответить на главный вопрос задачи?
  • Какого данного для этого не хватает?
  • Как решали задачу?
  • 2. Предлагается рассказать весь ход решения задачи с обосно­ванием выбора действий.
  • 3. Ставятся вопросы к отдельным действиям или вопросам.
  • Например:
  • Почему в первом действии выполнили вычитание?
  • Для чего нужно было узнавать, сколько собрали яблок во второй день?
  • Почему во втором действии три слагаемых? И т. д.
  • С закреплением решения задач тесно связана последующая работа над решенной задачей, которая способствует осознанному выбору действий и подходу к решению задачи.
Рассмотрим несколько вариантов последующей работы над ре­шенной задачей на примере задачи, разобранной выше:  Изменение отношений между данными условия задач выяснение, как это изменение отразится на решении задачи, пример: «Если бы в задаче было сказано, что во второй  собрано на 35 кг больше, чем в первый день, как тогда  решалась задача?» Изменение вопроса задачи. Например: «Если в главном вопросе спрашивается, на сколько килограммов яблок собрано меньше во второй день, чем в третий, как тогда бы решалась задач Изменение условия задачи, привнесение в него дополнительного данного или изъятие какого-либо данного. Например: «Iв условии задачи сказано, что в третий день собрано сто;  яблок, сколько в первый и второй день вместе, тогда как решаться задача? Во сколько действий будет эта задача?» И т.* Изменение числовых данных, сюжета задачи, решение задачи, аналогичной данной.
  • Рассмотрим несколько вариантов последующей работы над ре­шенной задачей на примере задачи, разобранной выше:
  • Изменение отношений между данными условия задач выяснение, как это изменение отразится на решении задачи, пример: «Если бы в задаче было сказано, что во второй собрано на 35 кг больше, чем в первый день, как тогда решалась задача?»
  • Изменение вопроса задачи. Например: «Если в главном вопросе спрашивается, на сколько килограммов яблок собрано меньше во второй день, чем в третий, как тогда бы решалась задач
  • Изменение условия задачи, привнесение в него дополнительного данного или изъятие какого-либо данного. Например: «Iв условии задачи сказано, что в третий день собрано сто; яблок, сколько в первый и второй день вместе, тогда как решаться задача? Во сколько действий будет эта задача?» И т.*
  • Изменение числовых данных, сюжета задачи, решение задачи, аналогичной данной.


Скачать

Рекомендуем курсы ПК и ППК для учителей

Вебинар для учителей

Свидетельство об участии БЕСПЛАТНО!