СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Методы клеточной биологии

Категория: Биология

Нажмите, чтобы узнать подробности

1. Микроскопирование

  • Электронный микроскоп увеличивает до 107 раз, что позволяет изучать микроструктуру органоидов. Метод не работает с живыми объектами.
  • Световой микроскоп увеличивает до 2000 раз (обычный школьный – от 100 до 500 раз) Метод позволяет изучать процессы, происходящие в живой клетке (митоз, движение органоидов и т.п.)

2. Ультрацентрифугирование. Клетки разрушаются и помещаются в центрифугу. Компоненты клетки разделаются по плотности (самые тяжелые части собираются на дне пробирки, самые легкие – на поверхности). Метод позволяет избирательно выделять и изучать органоиды, например, можно разделить малые (70S) и большие (80S) рибосомы.

3. Рентгеноструктурный анализ – изучение картины рассеивания рентгеновских лучей при прохождении их через кристалл. Позволяет выяснить взаимное расположение атомов в молекуле. Например, можно определить третичную структуру белка.

4. Метод меченых атомов (радиография). Если в определенном веществе заменить нормальные атомы на радиоактивные (например, N14 на N15), то его химические свойства не изменятся, но местонахождение этого атома в организме (в клетке) можно будет регистрировать.

5. Иммуногистохимия. Если к антителам прикрепить маркеры (радиоактивные или флюоресцентные), а затем ввести в клетку, то они соединятся с антигенами и можно будет обнаружить их местонахождение.

 

Клеточная теория

1а. Все живые организмы на Земле состоят из клеток, сходных по строению, …

1б. …химическому составу и функционированию. Это говорит об общем происхождении всего живого на Земле.

1в. Клетка является основной единицей:

  • структурной (организмы состоят из клеток)
  • функциональной (функции организма выполняются за счет работы клеток)
  • размножения (размножение происходит за счет половых клеток).

2а. Все новые клетки образуются из уже существующих клеток путем деления и не могут образовываться из неклеточной массы.

2б. Рост и развитие многоклеточного организма происходит за счет роста и размножения одной или нескольких исходных клеток.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ученые

1665 Гук открыл клетки на срезе пробки.

1680 Левенгук открыл одноклеточные организмы (сперматозоиды, эритроциты, инфузории, бактерии)

1831 Броун открыл ядро в растительных клетках.

1838 Шлейден выяснил, что ядро есть во всех растительных клетках, сделал вывод, что все растения построены из клеток, сходных по строению.

1839 Шванн открыл ядро в животных клетках, вывел первую клеточную теорию (п.1а).

1858 Вирхов дополнил клеточную теорию (п.2а).

 

Развитие микробиологии

Роберт Гук, 1665: открыл клетки на срезе пробки.

Франческо Реди, 1668: описал цикл развития мясной мухи и доказал невозможность ее самозарождения. Опыт: взял несколько кувшинов, положил в них гниющее мясо, часть кувшинов оставил открытыми, а часть закрыл пробкой, в следующем опыте – кисеёй.  В открытых кувшинах появились мухи, в закрытых – нет.

Антуан Ван Левенгук, 1680: открыл живые клетки– инфузории, сперматозоиды, эритроциты, бактерии

Лаццаро Спалаццани, 1760: доказал невозможность самозарождения инфузорий, открыл консервирование. Опыт: взял колбу с мясным бульоном, запаял её и прокипятил. Пока колба оставалась закрытой, бульон в ней не портился. (Сторонники теории витализма сказали, что жизненная сила не может попасть в запаянный сосуд.)

Эдуард Дженнер, 1769: открыл оспопрививание. Работа: заметил, что пастухи и доярки меньше остальных болеют черной (человеческой оспой). Предположил, что это связано с тем, что они контактируют с коровьей оспой. Втёр слизь из оспенных пузырьков коровы в царапины на плече мальчика, а затем заразил его человеческой оспой, мальчик не заболел.

Луи Пастер, 1860-1880:

  • Обосновал микробную теорию брожения, открыл анаэробные микроорганизмы, предложил пастеризацию (выдерживание продукта при температуре 60-80 градусов, пищевые качества сохраняются, бактерии погибают).
  • Доказал, что самозарождение жизни не происходит. Сторонники теории витализма сказали Спалаццани, что жизненная сила не может попасть в запаянный сосуд. Пастер вытянул и загнул горлышко колбы, запаял, прокипятил, отломил кончик. Воздух мог контактировать с бульоном, но бактерии из воздуха не попадали туда, оседали на изгибе.
  • Теоретически обосновал методику прививания (открытого Дженнером), создал прививку против бешенства.

Роберт Кох, 1870-1890: создал методику выделения в чистом виде и размножения на питательных средах бактерий – возбудителей заболеваний, что позволило соотнести определенную болезнь с определенным возбудителем. Открыл возбудителя туберкулеза (палочку Коха)

И.И.Мечников, 1880-1900: в России открыл фагоцитоз, в дальнейшем в институте Пастера создал фагоцитарную теорию иммунитета.

Пауль Эрлих, 1890-1910: в институте Коха разработал гуморальную теорию иммунитета (взаимодействия антител и антигенов), в 1907 создал первый химиотерапевтический препарат сальварсан против сифилиса.

 

 

 

 

 

Химический состав клетки

Макроэлементы (по 0,1%-0,01%, кроме главных)

  • CONH (98%) – главные макроэлементы, входят в состав органических веществ – белков, жиров, углеводов, нуклеиновых кислот.
  • Р – входит в состав НК, АТФ, фосфолипидов, костей.
  • Na, K – поддерживают осмотическое давление, создают электрический заряд на мембране.
  • S – серные мостики в белках.
  • Cl – поддерживает осмотическое давление, входит в состав желудочного сока, окислитель в лизосомах.
  • Ca – входит в состав костной ткани, нужен для сокращения мышц и свертывания крови.
  • Mg – входит в состав реакционного центра хлорофилла и рибосом.
  • Fe – входит в состав гемоглобина и цитохромов.

Микроэлементы (от 0,001% и меньше), например:

  • Zn – входит в состав инсулина, ДНК- и РНК-полимераз.
  • I – входит в состав тироксина
  • F – входит в состав зубной эмали

Сравнение элементарного и химического состава живой и неживой природы

Есть только в живых организмах, в неживой природе отсутствуют:

  • элементы – нет
  • вещества – БЖУНКи.

Больше всего в живых организмах:

  • элементов – CONH
  • вещества – воды.
  • Вода составляет 70-80% от массы живых организмов.
  • Строение молекулы: электронная плотность смещена к кислороду, на нем частичный отрицательный заряд, на водородах – частичный положительный, молекула – диполь. Между + и –  могут образовываться водородные связи.

·         Функции воды

  • 1. Благодаря маленьким дипольным молекулам вода является лучшим растворителем для полярных (гидрофильных) веществ. В растворенном состоянии вещества очень быстро реагируют между собой.
  • 2. Транспортная функция: в растворенном состоянии вещества передвигаются по организму.
  • 3. Вещества, на поверхности которых нет полных или частичных зарядов (гидрофобные), не могут взаимодействовать с молекулами воды, вода их выталкивает (жир, бензин). На этом основано строение и работа биологических мембран.
  • 4. Вода обладает аномально высокой теплоемкостью (может поглотить много тепла и при этом почти не нагреться). За счет этого она защищает клетку от резких перепадов температуры.
  • 5. Вода, как и все жидкости, несжимаема, обеспечивает опору для клеток (тургор) и целых организмов (гидроскелет).
  • 6. Вода сама может участвовать в химических реакциях как реагент (реакции гидролиза, фотосинтеза и т.п.).

 

 

Осмос

Осмос – это движение воды через мембрану в сторону более высокой концентрации веществ.

Пресная вода

Концентрация веществ в цитоплазме любой клетки выше, чем в пресной воде, поэтому вода постоянно заходит внутрь клеток, которые соприкасаются с пресной водой.

  • Если эритроцит попадает в пресную воду, то за счет осмоса он наполняется водой до отказа и лопается.
  • У пресноводных простейших для удаления лишней воды имеется сократительная вакуоль.
  • У водорослей имеется твердая клеточная стенка, которая не дает клетке лопаться.

Пересоленая вода

Если эритроцит попадает в пересоленую воду, то за счет осмоса вода выходит из него, и он сморщивается.

Если человек будет пить морскую воду, то в его организм поступит много солей, концентрация плазмы крови возрастет, вода будет за счет осмоса выходить из клеток в кровь. Эти соли нужно будет выводить с мочой, причем количество необходимой для этого мочи превысит количество выпитой воды.

Изотонический раствор

Морским и паразитическим простейшим не нужна сократительная вакуоль, потому что концентрация веществ в их цитоплазме такая же, как в соленой воде, и осмос не происходит.

Физиологический раствор – это 0,9% раствор хлорида натрия. Такую же концентрацию имеет плазма нашей крови, в такой среде эритроциты не будут ни лопаться, ни сморщиваться. В больницах раствор для капельницы делают на основе физраствора (в нем растворяют лекарства).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Белки

Белки (протеины) составляют 50% от сухой массы живых организмов.

Белки состоят из аминокислот. У каждой аминокислоты есть

  • радикал (по ним аминокислоты отличаются друг от друга)
  • аминогруппа и кислотная (карбоксильная) группа, при взаимодействии которых получается пептидная связь, поэтому белки еще называют полипептидами.

Пептидная связь:

Структуры белка

Первичная структура – цепочка из аминокислот, связанных пептидной связью (сильной, ковалентной). Чередуя 20 аминокислот в разном порядке, можно получать миллионы разных белков. Если поменять в цепочке хотя бы одну аминокислоту, строение и функции белка изменятся (генная мутация, например, СКА). Поэтому первичная структура считается самой главной в белке.

Вторичная структура – спираль. Удерживается водородными связями (слабыми).

Третичная структура – глобула (шарик). Четыре типа связей:

  • дисульфидная (серный мостик) сильная,
  • остальные три (ионные, гидрофобные, водородные) – слабые.

Форма глобулы у каждого белка своя, от нее зависят функции. При денатурации форма глобулы меняется, и это сказывается на работе белка.

Четвертичная структура – имеется не у всех белков. Состоит из нескольких глобул, соединенных между собой теми же связями, что и в третичной структуре. (Например, гемоглобин.)

Свойства белков

1. Комплементарность: способность белка по форме подходить к какому-нибудь другому веществу как ключ к замку.

2. Денатурация: изменение формы глобулы белка, вызванное внешними воздействиями (температура, кислотность, соленость, присоединение других веществ и т.п.)

  • Если воздействия на белок слабые (изменение температуры на 1°), то происходит обратимая денатурация; после снятия воздействия белок вернется в исходную форму.
  • Если воздействие сильное (100°), то денатурация необратимая. При этом разрушаются все структуры, кроме первичной, а затем цепочки белков перепутываются между собой, образуя неправильные связи.