СДЕЛАЙТЕ СВОИ УРОКИ ЕЩЁ ЭФФЕКТИВНЕЕ, А ЖИЗНЬ СВОБОДНЕЕ

Благодаря готовым учебным материалам для работы в классе и дистанционно

Скидки до 50 % на комплекты
только до

Готовые ключевые этапы урока всегда будут у вас под рукой

Организационный момент

Проверка знаний

Объяснение материала

Закрепление изученного

Итоги урока

Оптические явления в природе

Категория: Физика

Нажмите, чтобы узнать подробности

Реферат на тему "Оптические явления в природе" сообщает о миражах, радуге, северном сиянии.

Просмотр содержимого документа
«Оптические явления в природе»

Оптические явления в природе

Мираж. Виды миражей

Нижние (“озерные”) миражи возникают над сильно нагретой поверхностью в пустынях и степях. Верхние миражи возникают, наоборот, над сильно охлажденной поверхностью над холодной водой в северных широтах.

Верхние миражи отличаются разнообразием: они дают прямое или перевернутое изображение. Миражи могут быть двойными, когда наблюдаются два изображения, простое и перевернутое. Эти изображения могут быть разделены полосой воздуха (одно может оказаться над линией горизонта, другое под ней), но могут непосредственно смыкаться друг с другом. Иногда возникает еще одно - третье изображение.

Особенно удивительны миражи сверхдальнего видения. “Летучего голландца” следует отнести именно к таким миражам. Известны случаи, когда подобные миражи наблюдались на больших расстояниях – до 1000км.

Объяснение нижнего (“озерного”) миража. Если воздух у самой поверхности земли сильно нагрет и, следовательно, его плотность относительно мала, то показатель преломления у поверхности будет меньше, чем в более высоких воздушных слоях. Изменение показателя преломления воздуха n с высотой h вблизи земной поверхности для рассматриваемого случая показано на рисунке 3, а.

В соответствии с установленным правилом, световые лучи вблизи поверхности земли будут в данном случае изгибаться так, чтобы их траектория была обращена выпуклостью вниз. Пусть в точке A находится наблюдатель. Световой луч от некоторого участка голубого неба попадет в глаз наблюдателя, испытав указанное искривление. А это означает, что наблюдатель увидит соответствующий участок небосвода не над линией горизонта, а ниже ее. Ему будет казаться, что он видит воду, хотя на самом деле перед ним изображение голубого неба. Если представить себе, что у линии горизонта находятся холмы, пальмы или иные объекты, то наблюдатель увидит и их перевернутыми, благодаря отмеченному искривлению лучей, и воспримет как отражения соответствующих объектов в несуществующей воде. Так возникает иллюзия, представляющая собой “озерный” мираж.

Простые верхние миражи. Можно предположить, что воздух у самой поверхности земли или воды не нагрет, а, напротив, заметно охлажден по сравнению с более высокими воздушными слоями; изменение n с высотой h показано на рисунке 4, а. Световые лучи в рассматриваемом случае изгибаются так, что их траектория обращена выпуклостью вверх. Поэтому теперь наблюдатель может видеть объекты, скрытые от него за горизонтом, причем он будет видеть их вверху как бы висящими над линией горизонта. Поэтому такие миражи называют верхними.

Верхний мираж может давать как прямое, так и перевернутое изображение. Показанное на рисунке прямое изображение возникает, когда показатель преломления воздуха уменьшается с высотой относительно медленно. При быстром уменьшении показателя преломления образуется перевернутое изображение. В этом можно убедится, рассмотрев гипотетический случай – показатель преломления на некоторой высоте h уменьшается скачком (рис. 5). Лучи объекта, прежде чем попасть к наблюдателю А испытывают полное внутреннее отражение от границы ВС ниже которой в данном случае находится более плотный воздух. Видно, что верхний мираж дает перевернутое изображение объекта. В действительности нет скачкообразной границы между слоями воздуха, переход совершается постепенно. Но если он совершается достаточно резко, то верхний мираж даст перевернутое изображение.

Двойные и тройные миражи. Если показатель преломления воздуха изменяется сначала быстро, а затем медленно, то в этом случае лучи в области I будут искривляться быстрее, чем в области II. В результате возникают два изображения. Световые лучи 1, распространяющиеся в пределах воздушной области I, формируют перевернутое изображение объекта. Лучи 2, распространяющиеся в основном в пределах области II, искривляются в меньшей степени и формируют прямое изображение.

Чтобы понять, как появляется тройной мираж, нужно представить три последовательный воздушные области: первая (у самой поверхности), где показатель преломления уменьшается с высотой медленно, следующая, где показатель преломления уменьшается быстро, и третья область, где показатель преломления снова уменьшается медленно.

Мираж сверхдальнего видения. Природа этих миражей изучена менее всего. Ясно, что атмосфера должна быть прозрачной, свободной от водяных паров и загрязнений. Но этого мало. Должен образоваться устойчивый слой охлажденного воздуха на некоторой высоте над поверхностью земли. Ниже и выше этого слоя воздух должен быть более теплым. Световой луч, попавший внутрь плотного холодного слоя воздуха, как бы “запертым” внутри него и распространяется в нем как по своеобразному световоду.

Радуга

Древние греки думали, что радуга - это улыбка богини Ириды.

Радуга наблюдается в стороне, противоположной Солнцу, на фоне дождевых облаков или дождя. Разноцветная дуга обычно находится от наблюдателя на расстоянии 1-2 км. Центр радуги находится на продолжении прямой, соединяющей Солнце и глаз наблюдателя – на противосолнечной линии. Угол между направлением на главную радугу и противосолнечной линией составляет 41-42º.

В момент восхода солнца противосолнечная точка (точка М) находится на линии горизонта и радуга имеет вид полуокружности. По мере поднятия Солнца противосолнечная точка опускается под горизонт и размер радуги уменьшается. Она представляет собой лишь часть окружности.

Часто наблюдается побочная радуга, концентрическая с первой, с угловым радиусом около 52º и обратным расположением цветов.

При высоте Солнца 41º главная радуга перестает быть видимой и над горизонтом выступает лишь часть побочной радуги, а при высоте Солнца более 52º не видна и побочная радуга. Поэтому в средних экваториальных широтах в околополуденные часы это явление природы никогда не наблюдается.

У радуги различают семь основных цветов, плавно переходящих один в другой.

Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают более узкую радугу, с резко выделяющимися цветами, малые – дугу расплывчатую, блеклую и даже белую. Вот почему яркая узкая радуга видна летом после грозового дождя, во время которого падают крупные капли.

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Образование цветов и их последовательность были объяснены позже, после разгадки сложной природы белого света и его дисперсии в среде. Дифракционная теория радуги разработана Эри и Партнером.

При рассмотрении образования радуги нужно учесть еще одно явление – неодинаковое преломление волн света различной длины, то есть световых лучей разного цвета. Это явление носит название дисперсии. Вследствие дисперсии углы преломления γ и угла отклонения лучей Θ в капле различны для лучей различной окраски.

Чаще всего мы наблюдаем одну радугу. Нередки случаи, когда на небосводе появляются одновременно две радужные полосы, расположенные одна за другой; наблюдают и еще большее число небесных дуг – три, четыре и даже пять одновременно. Интересно, что радугу можно наблюдать не только днем. Она бывает и ночью, правда, всегда слабая. Увидеть такую радугу можно после ночного дождя, когда из-за туч выглянет Луна.


Полярные сияния

В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета.

Полярные сияния наблюдают в двух основных формах – в виде лент и в виде облакоподобных пятен. Когда сияние интенсивно, оно приобретает форму лент. Теряя интенсивность, оно превращается в пятна. Однако многие ленты исчезают, не успев разбиться на пятна. Ленты как бы висят в темном пространстве неба, напоминая гигантский занавес или драпировку, протянувшуюся обычно с востока на запад на тысячи километров. Высота этого занавеса составляет несколько сотен километров, толщина не превышает нескольких сотен метров, причем так нежен и прозрачен, что сквозь него видны звезды. Нижний край занавеса довольно резко и отчетливо очерчен и часто подкрашен в красный или розоватый цвет, напоминающий кайму занавеса, верхний – постепенно теряется в высоте и это создает особенно эффектное впечатление глубины пространства.

Различают четыре типа полярных сияний:

Однородная дуга – светящаяся полоса имеет наиболее простую, спокойную форму. Она более ярка снизу и постепенно исчезает кверху на фоне свечения неба ;

Лучистая дуга – лента становится несколько более активной и подвижной, она образует мелкие складки и струйки;

Лучистая полоса – с ростом активности более крупные складки накладываются на мелкие;

При повышении активности складки или петли расширяются до огромных размеров, нижний край ленты ярко сияет розовым свечением. Когда активность спадает, складки исчезают и лента возвращается к однородной форме. Это наводит на мысль, что однородная структура является основной формой полярного сияния, а складки связаны с возрастанием активности.

Часто возникают сияния иного вида. Они захватывают весь полярный район и оказываются очень интенсивными. Происходят они во время увеличения солнечной активности. Эти сияния представляются в виде беловато-зеленой шапки. Такие сияния называют шквалами.

По яркости сияния разделяют на четыре класса, отличающиеся друг от друга на один порядок (то есть в 10 раз). К первому классу относятся сияния, еле заметные и приблизительно равные по яркости Млечному Пути, сияние же четвертого класса освещают Землю так ярко, как полная Луна.

Надо отметить, что возникшее сияние распространяется на запад со скоростью 1 км/сек. Верхние слои атмосферы в области вспышек сияний разогреваются и устремляются вверх, что сказалось на усиленном торможении искусственных спутников Земли, проходящих эти зоны.

Во время сияний в атмосфере Земли возникают вихревые электрические токи, захватывающие большие области. Они возбуждают магнитные бури, так называемые дополнительные неустойчивые магнитные поля. Когда атмосфера сияет, она излучает рентгеновские лучи, являющиеся, скорей всего результатом торможения электронов в атмосфере.

Частые вспышки сияния практически всегда сопровождаются звуками, напоминающими шум, треск. Полярные сияния оказывают большое влияние на сильные изменения в ионосфере, влияющие в свою очередь на условия радиосвязи, т. е. радиосвязь сильно ухудшается, в результате чего возникают сильные помехи, или даже полная потеря приема.

Возникновение полярных сияний.

Земля - это огромный магнит, северный полюс которого находится вблизи южного географического полюса, а южный – вблизи северного. А силовые линии магнитного поля Земли - это геомагнитные линии, выходящие из области, прилегающей к северному магнитному полюсу Земли. Они охватывают весь земной шар и входят в него в области южного магнитного полюса, образуя тороидальную решетку вокруг Земли.

“Солнечный ветер”, т. е. поток протонов и электронов, излучаемых Солнцем, налетает на геомагнитную оболочку Земли с высоты около 20000 км. Он оттягивает ее в сторону от Солнца, тем самым у Земли образуется своеобразный магнитный “хвост”.

Попавшие в магнитное поле Земли, электрон или протон движутся по спирали, навиваясь на геомагнитную линию. Эти частицы, попавшие из солнечного ветра в магнитное поле Земли, разделяются на две части: одна часть вдоль магнитных силовых линий сразу стекает в полярные области Земли, а другая - попадает внутрь тероида и движется внутри него, как это можно по правилу левой руки, вдоль замкнутой кривой АВС. В конце концов, эти протоны и электроны по геомагнитным линиям также стекают в область полюсов, где появляется их увеличенная концентрация. Протоны и электроны производят ионизацию и возбуждение атомов и молекул газов. Для этого они обладают достаточной энергией. Поскольку протоны прилетают на Землю с энергиями 10000-20000эв (1эв= 1.6 10 дж), а электроны с энергиями 10-20эв. А для ионизации же атомов нужно: для водорода – 13,56 эв, для кислорода - 13,56 эв, для азота – 124,47 эв, для возбуждения же еще меньше.

По принципу того, как это происходит в трубках с разреженным газом при пропускании через них токов, возбужденные атомы газов отдают обратно полученную энергию в виде света.

Зеленое и красное свечение, по результатам спектрального исследования принадлежит возбужденным атомам кислорода, а инфракрасное и фиолетовое – ионизованным молекулам азота. Некоторые линии излучения кислорода и азота образуются на высоте 110 км, а красное свечение кислорода – на высоте 200-400 км. Следующим слабым источником красного света являются атомы водорода, образовавшие в верхних слоях атмосферы из протонов прилетевших с Солнца. Такой протон, после захвата электрона, превращается в возбужденный атом водорода и дает излучение красным светом.

После вспышек на Солнце обычно через день-два происходят вспышки сияний. Это указывает на связь между этими явлениями. Исследование при помощи ракет показало, что в местах большей интенсивности сияний сохраняется более высокий уровень ионизации газов электронами. По мнению ученых, максимальная интенсивность полярных сияний достигается у берегов океанов и морей.

Существует ряд трудностей для научного объяснения всех явлений, связанных с полярными сияниями. То есть, неизвестен полностью механизм ускорения частиц до определенных энергий, не ясны их траектории движения в околоземном пространстве, не вполне ясен механизм образования свечения различных видов, неясно происхождение звуков, не все сходится количественно в энергетическом балансе ионизации и возбуждения частиц.